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ABSTRACT

A review of the literature revealed that nanofluids are more effective in transferring heat than conventional
fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission
in nanomaterials, a thorough investigation of the previously outlined models is essential. The goal of the ongoing
study is to determine whether the microscopic gold particles that are involved in mass and heat transmission
drift in freely. The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of
Casson nanofluid-induced bio-convection past a stretched sheet. The inclusion of the nanoparticles is a result
of their peculiar properties, such as remarkable thermal conductivity, which are important in heat exchangers
and cutting-edge nanotechnology. The gyrotactic microorganisms must be included to prevent the potential
deposition of minute particles. The proposed flow dynamics model consists of an evolving nonlinear system of
PDEs, which is subsequently reduced to a system of dimensionless ODEs utilizing similarity approximations.
MATLAB software was utilized to create an effective code for the Runge-Kutta technique using a shooting tool
to acquire numerical results. This method is extensively used to solve these issues since it is accurate to fourth
order, efficient, and affordable. The influence of submerged factors on the velocity, temperature, concentration,
and density of motile microorganisms is shown in the figures. Additionally, tables and bar charts are used to
illustrate the physical characteristics of the Nusselt and Sherwood numbers for the densities of both nanoparticles
and motile microorganisms. The dimensionless velocities are observed declining when the casson, magnetic,
porosity, and forchheimer parameters grow, whereas the dimensionless temperature and concentration rise as the
thermophoresis parameter rises. This work provides insights into practical applications such nanofluidic, energy
conservation, friction reduction, and power generation. Furthermore, in a concentration field, the Brownian and
thermophoresis parameters exhibit very distinct behaviours. However, the work makes a significant point that the
flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter,
thermophoresis parameter, and Brownian motion parameter.
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Nomenclature

k Permeability (W m−1 K−1)
KT Thermal conductivity (W/m·K)(
ρCp

)
Heat capacitance

DB Brownian coefficient
DT Thermophoretic diffusion coefficient
DN Diffusivity of microorganisms
Tw, T∞ Surface and ambient fluid temperature, respectively
Cw, C∞ Surface and ambient fluid concentration, respectively (kg m−3)
Lb Bio-convection Lewis number
ε Bio-convective constant
ν Kinematic viscosity (m2s−1)
cp Specific heat at constant pressure (J kg−1 k−1)
σ Electrical conductivity (S/m)
Fr Inertia parameter
B0 The strength of the magnetic field (Wb m−2)
α Thermal diffusivity
Le Lewis number
Nt Thermophoresis parameter
Nb Brownian motion parameter
Pe Péclet number
Pr Prandtl number
M Magnetic parameter
μ Dynamics viscosity (kg/m·s)
ρ Fluid density (kg/m3)
u, v, w Velocity components (m/s)

1 Introduction

Due to their involvement in several mechanisms, such as power engineering, petroleum produc-
tion, chemical processes, and broad-spectrum, researchers’ and academics’ interest in the rheology of
non-Newtonian fluid has been sparked by a variety of industrial uses. Over the past several years, there
has been a notable rise in the number of academic papers discussing the issue of non-Newtonian fluid
flow. Since no one equation can adequately explain the properties of all non-Newtonian fluids, they
are separated into a variety of fluid models (such as tangent hyperbolic, power-law, Sisko, Oldroyd-B,
Williamson, Casson, and others). Of the several fluid models, the Casson fluid model is the subject of
the current study. Casson fluid is a non-Newtonian fluid having pseudoplastic features. According
to Alwawi et al. [1], a sodium alginate sphere was passed through a Casson nanofluid exhibiting
MHD and natural convection. The Casson liquid created by a stretched sheet that was subjected
to blowing and suction was explored by Mukhopadhyay [2] about how heat radiation affected it.
Mabood et al. [3] looked at how a stretched surface and the Casson fluid flow affected the magnetic
field. They examined the impact of thermal radiation by assuming that the surface is porous. Analysis
of the natural convective unsteady MHD Casson fluid flow by Anwar et al. [4] took into account
the varying wall temperature. Furthermore, Sandeep et al.’s [5] in-depth investigation involved closely
examining the reactive chemical Casson fluid flow over a curved heated surface. The Casson fluid
flows through a tube was investigated by Saleem et al. [6] and the tube wall was believed to be wavy
and stretchy. Hafez et al. [7] demonstrated the impact of rotation on an inclined surface’s MHD Casson
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fluid flow. Makkar et al. [8] investigated the behavior of the MHD Casson nanofluid under convective
and gyrotactic microorganism environments.

An important application of bio-convection is in biotechnology, environmental systems, and
biofuels. Microorganisms that are swimming increase the initial density of a fluid and create a
density gradient, which causes bio-convection. Microfluidics, nanomaterials, microcontrollers, and
bioinformatics are just a few of the many fields that use bio-convection in various ways. Another
essential component of bio-convection is the coupling of nanotechnology and motile microorganisms
which enhances the heat and mass transfer, and the stability of nanomaterials. It has also been utilized
in biomedicine to treat cancer. To demonstrate the flow of Prandtl nano-liquid, Mekheimer et al. [9]
used an illustration of gyrotactic microorganisms on a stretching/shrinking plane. Khan’s [10] analysis
of the bio-convection brought on by gyrotactic microorganisms and nanoparticles revealed that
conductivity increased along with a rise in the convective form’s buoyancy factor, whereas nanoparticle
concentration rose along with a rise in the Brownian motion constriction. On the foundation of
the mechanism determining the directional motion of various kinds of microorganisms, many bio-
convection systems have been researched by several scholars, including [11–13].

Stretchable sheets with fluid motion are essential for both industrial and biomedical research.
The dynamics of various slip barriers and their effects on the flow of a stretched sheet on MHD
Casson-Williamson nanofluid with double-diffusive were examined by Humane et al. [14]. Numerical
simulations by Rana et al. [15] show how energy is transferred over a nonlinearly extending sheet via
nano-liquid flow. The flow of Casson nanofluid along an extended surface with various consequences
was observed by Ali et al. [16]. Another research are also found [17,18].

The phenomena of flow transfer in porous space have received recent attention in engineering and
geophysical processes. Grain storage, groundwater systems, high power density machines, gas-cooled
reactor vessels, gas-cleaning filtration, porous pipes, porous bearings, casting solidification, fossil fuel
beds, blood circulation in the lungs or the arteries, etc., are just a few examples of the applications
for these processes. Scientists and engineers from a variety of disciplines may be interested in these
applications. Rashid et al. [19] included Darcy-Forchheimer’s model in the momentum conservation
equation to study 3D convective nanoliquid flows along a stretched rotating surface enclosed in a
non-linear porous medium in the existence of chemical reaction and activation energy. Seddeek [20]
investigated the mixture of convective thermophoretic movement saturation in porous space using
the Darcy-Forchheimer hypothesis. Numerous researchers in related domains have demonstrated the
value of the porosity of a medium in a variety of contexts [21–28].

In light of the afore-stated surveys, no study has been reported on 3D MHD Darcy–Forchheimer
flow of Casson nanofluid-induced bio-convection past a stretched sheet.

The importance of the heat and mass transportation of 3D MHD Casson nanofluid along
a stretch surface susceptible to convective circumstances, gyrotactic microorganisms, and Darcy-
Forchheimer law received little attention in the aforementioned literature. Hence, this extensive
research’s main goal was to use the Casson nanofluid model to optimize heat and mass transportation.
The elaborated fluid model was chosen as a result of the aforementioned uses of this fluid in the
literature. The Runge-Kutta-Fehlberg approach [29–32] was used to solve ODEs after the geomet-
rical problems in three dimensions were reduced to ODEs dimensions by employing a similarity
transformation. There are many significant applications for a Casson type incompressible viscous
nanofluid that passes through the specified porous medium using the Darcy-Forchheimer relation,
including numerous engineering, industrial, and environmental setups like chemical action reactors,
heat exchangers, geological setups, geothermic systems, and many others [33–39]. The results were
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then tested and coded using MATLAB software. By contrasting the numerical results with previously
accessible data, the results were confirmed. Additionally, these data are shown in graphical, bar
charts, and tabular form. This study discusses the different uses that have produced paints, crude oil
purification systems, liquid materials, heat exchangers, spinning of plastic, polymer extrusion, etc. The
non-Newtonian Casson nanofluid model, along with the managing parameters, has more effective
thermal conductivity, stability, chemical inertness, cost-effectiveness, and environmental friendliness,
making it useful in a variety of engineering and industrial applications where thermal improvement
is crucial. The findings of this investigation can be used to guide future work in which the thermal
performance of a thermal system can be determined by the dispersion of various kinds of NPs into
other non-Newtonian fluids like Casson Fluid.

2 Mathematical Formulation

Consider a three-dimensional stretched sheet with a Darcy-Forchheimer-subjected Casson
nanofluid flowing steadily and incompressibly over it and transmits electricity when gold particles
of minuscule size (GNPs) move in sp. Nanoparticles can improve fluid thermal stability, provide
better lubricity, hole cleaning and wellbore stability, and mitigate hydrates formation within the
fluid circulation system. Furthermore, the majority of cancer patients face a hazardous and fatal
condition. Due to their large atomic numbers, which produce heat and help treat cancerous tumours,
gold nanoparticles (GNPs) are able to treat and eradicate it. GNPs possesses numerous qualities
that are crucial in the treatment of cancer. They can pierce deep into the body while being quite
little. It is believed that the sheet is stretched in the “xy” plane while the fluid is positioned along
the z-axis. Investigations were done into bio-convection’s impacts. The inclusion of the nanoparticles
was also made possible by their peculiar properties, such as remarkable thermal conductivity, which
are important in heat exchangers and cutting-edge nanotechnology. The geometry of this research
model is shown in Fig. 1. Additionally considered are thermophoresis, Brownian motion effects, and
heat and mass transfer. The nanoparticle suspension was believed to be a stable substance, which is
crucial for the presence of motile microorganisms and the agglomeration of microscopic particles was
disregarded. Additionally, we speculate that probably surface concentration and temperature as well
as the ambient concentration and temperature are Cw, Tw and C∞, T∞, respectively. Thermophoresis,
Brownian motion effects, and heat and mass transfer are also taken into account.

Following is an example of the rheological equation of an isotropic and steady flow of a Casson
fluid [32]:

Sij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
(

μB + Pz√
2π

)
eij, π > πc

(
μB + Pz√

2π

)
eij, π < πc

(1)

According to the equation above π = eijeij, where eij stands for the (i, j) component of the
deformation rate, πc be the crucial value of this product based on the non-Newtonian model, μB be
the plastic dynamic viscosity of the Casson fluid, and Pz be the fluid yield stress.
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Figure 1: Sketch and problem-solving scheme

The following are the equations for continuity, momentum, heat, and mass transfer:

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0, (2)

(
u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= ν

(
1 + 1

γ

)
∂2u
∂z2

− σB2
0u

ρf

− ν
u
k

− Fu2, (3)

(
u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)
= ν

(
1 + 1

γ

)
∂2v
∂z2

− σB2
0v

ρf

− ν
v
k

− Fv2, (4)

(
u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

)
= KT(

ρcp

)
f

∂2T
∂z2

+ τ

(
DB

∂T
∂z

∂C
∂z

+ DT

T∞

(
∂T
∂z

)2
)

, (5)

(
u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

)
= DB

∂2C
∂z2

+ DT

T∞

∂2T
∂z2

, (6)

(
u
∂N
∂x

+ v
∂N
∂y

+ w
∂N
∂z

)
= DN

∂2T
∂z2

− bWc

(Cw − C∞)

∂

∂z

(
N

∂C
∂z

)
. (7)

We use the convective boundary conditions. There are many Important applications of such flows
and conditions include the MHD pump, radiation therapy, MHD generator, melt spinning process,
soil mechanics thermal insulation as well as many others. Practical applications of convective BC are
often encountered in laser damage or laser processing. BCs take the following form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = Uw = Ax, v = Vw = By, w = 0, hf (Tw − T) + Kf

(
∂T
∂z

)
= 0,

hc (Cw − C) + DB

(
∂C
∂z

)
= 0, hn (Nw − N) + DN

(
∂N
∂z

)
= 0, at z = 0,

u = 0, v = 0, T = T∞, C = C∞, N = N∞, at z → ∞.

(8)
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Assumptions for the similarity transformations include the following:

η =
√

A
υ

z, u = Axf ′
1 (η), v = Byf ′

2 (η), w = −√
Aυ [f1 (η) + cf2 (η)] ,

θ (η) = T − T∞
Tw − T∞

, φ (η) = C − C∞
Cw − C∞

, ξ (η) = N − N∞
Nw − N∞

. (9)

The skin friction coefficients Cfx and Cfy, local Nusselt number Nux, and Sherwood number Shx

are stated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cfx = 2τwx

ρU 2
x

,

Cfy = 2τwy

ρV 2
x

,

Nux = xqw

K (Tw − T∞)
,

Shx = xjw

DB (Cw − C∞)
,

Nnx = xMw

DN (Tw − T∞)
,

(10)

where τwx, τwy, qw, and Mw are defined by:

τwx = μ

(
1 + 1

β3

) (
∂u
∂z

)
|

z=0

, τwy = μ

(
1 + 1

β3

) (
∂v
∂z

)
|

z=0

,

qw = −K
(

∂T
∂z

)
|

z=0

jw = −DB

(
∂C
∂z

)
|

z=0

, Mw = −DN

(
∂C
∂z

)
|

z=0

. (11)

3 Solution of the Problem

The continuity equation Eq. (2) is immediately satisfied by Eq. (9), and the ensuing Eqs. (3)–(7)
are as follows:(

1 + 1
γ

)
f1

′′′ + (f1 + c f2) f1
′′ − (1 + Fr) f1

′2 − (M + β) f ′
1 = 0, (12)

(
1 + 1

γ

)
f2

′′′ + (f1 + c f2) f2
′′ − (1 + Fr) c f2

′2 − (M + β) f ′
2 = 0,

(13)

θ ′′ + Pr (f1 + c f2) θ ′ + Nbθ ′φ ′ + Ntθ ′2 = 0, (14)

φ ′′ + LePr (f1 + c f2) φ ′ + Nt
Nb

θ ′′ = 0, (15)

ξ ′′ + LbPr (f1 + c f2) ξ ′ − Pe [(ξ + ε) φ ′′ + ξ ′φ ′] = 0. (16)
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Following that, the changed boundary conditions are provided by:

f1 (0) = 0, f2 (0) = 0, f ′
1 (0) = 1, f ′

2 (0) = 1, θ (0) = −Bi1 (1 − θ (0)) ,

φ (0) = −Bi2 (1 − φ (0)) , ξ (0) = −Bi3 (1 − ξ (0)) , f ′
1 (∞) = 0,

f ′
2 (∞) = 0, θ (∞) = 0, φ (∞) = 0, ξ (∞) = 0. (17)

The following are the receptively dimensionless relationships between skin-friction coefficients,
local Nusselt, Sherwood, and density numbers:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CfxRe1/2 =
(

1 + 1
β3

)
f1

′′
(0) ,

CfyRe1/2 =
(

1 + 1
β3

)
f2

′′
(0) ,

NuxRe− 1
2 = −θ ′ (0) ,

ShxRe− 1
2 = −φ ′ (0) ,

NuxRe−1/2 = −ξ ′ (0) .

(18)

where it is possible to use the corresponding expressions for dimensionless parameters

γ =
(

Py

μB

√
2πc

)−1

, β = ν

kA
, Fr = Cb

k0.5
, M = σB2

0

ρf

,

α = KT(
ρcp

) , Pr = ν
(
ρcp

)
KT

, Lb = α

DN

, Le = α

DB

, Pe = bWc

DN

,

Nt = τDt (Tw − T∞)

ν
, Nb = τDB (Cw − C∞)

ν
, ε = bN∞

Nw − N∞
,

Bi1 = hf√
A
υ

Kf

, Bi2 = hs√
A
υ

DB

, Bi1 = hn√
A
υ

DN

. (19)

4 Numerical Procedure

An effective 4th order “Runge-Kutta” method and the Shooting method were applied to scrutinize
the flow model from the above mentioned coupled ODEs (12)–(16) for several values of controlling
factors like Nt, Nb, Le, Pr, and β. The ODEs are first broken up into a set of 1st ODEs. The coupled
ODEs (12)–(16) are 3rd order in f1, 3rd order in f2, 2nd order in θ , 2nd order in φ, and 2nd order in ξ

which were decreased to twelve simultaneous equations for 12 unknowns. To numerically resolve the
equation system via the “Runge-Kutta” technique, the solution needs 7 initial conditions, however,
4 initial conditions are recognized in f1, f2 along with 3 initial condition all of θ , φ, ξ , respectively.
Nevertheless, the values of ϕ, θ , ξ and f1, f2 are given at η → ∞. These constraints are used by the
shooting technique to create unknown initial conditions η = 0. The key step in this approach is to take
proper finite values η∞. Therefore, to calculate the η∞ value with the aid of a certain initial value and
resolve the BVP containing Eqs. (12)–(16) to get f1

′′′ (0), θ ′ ′(0), ϕ ′ ′ (0) and f2
′′′
(0).
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The solution procedure is continued with an additional bigger value η∞ till 2 consecutive values
of f1

′′′ (0), θ ′ ′(0), ϕ ′ ′ (0) and f2
′′′
(0) differ merely after the required substantial digit. The final η∞

value is regarded as the limit for finite value η∞ for the specific collection of physical variables
for measuring concentration, temperature along velocity are f1

′′′ (0), θ ′ ′(0), ϕ ′ ′(0) and f2
′′′
(0) in the

boundary layer. After, starting conditions we resolve this simultaneous equation system employing the
4th order “Runge-Kutta Integration” method. The η∞ is chosen between range 5–20 based on physical
variables controlling the fluid flow to avoid numerical oscillation.

This research first converts the BVP into an IVP: “Initial Value Problem”. This is addressed by
properly estimating the missing initial value applying the shooting technique for multiple parameter
combinations. The size of step h = 0.1 is utilized for computation applications. The findings are
expressed via graphs and tables, and the major characteristics of the issues are addressed and evaluated.

The Runge-Kutta-Fehlberg (RKF) method is used to solve the non-linear coupled and non-
dimensional transformed ODEs Eqs. (12)–(16) and the boundary conditions Eq. (17) numerically
using MATLAB R2016a’s built-in function “bvp-4c” solver. The boundary value problem is trans-
formed into the initial issue by converting the nonlinear ODEs system into a linear first-order
differential equation. The following are the freshly defined variables:

f1 (η) = ω1, f ′
1 (η) = ω2, f1

′′
(η) = ω3, f2 (η) = ω4,

f ′
2 (η) = ω5, f2

′′
(η) = ω6, θ (η) = ω7, θ ′ (η) = ω8,

φ (η) = ω9, φ ′ (η) = ω10, ξ (η) = ω11, ξ ′ (η) = ω12.

(20)

We get:

ω′
3 =

(
γ

1 + γ

) [
r − (ω1 + cω4) ω3 + (1 + Fr) ω2

2 + (M + β) ω2

]
, (21)

ω′
6 =

(
γ

1 + γ

) [− (ω1 + cω4) ω6 + (1 + Fr) ω2
5 + c (M + β) ω5

]
, (22)

ω′
8 = − Pr

[
(ω1 + cω4) ω8 + Nbω8ω10 + Ntω2

8

]
, (23)

ω′
10 = −Le Pr (ω1 + cω4) ω10 − Nt

Nb
ω8, (24)

ω′
12 = −Lb Pr (ω1 + cω4) ω12 + Pe [(ω11 + ε) ω10 + ω10ω12] . (25)

Taking into account both:

f1
′′′
(η) = ω′

3, f2
′′′
(η) = ω′

6, θ ′′ (η) = ω′
8, φ ′ (η) = ω′

10, ξ
′ (η) = ω′

12. (26)

Bvp-4c approach with matching boundary conditions as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωa (1) , ωa (2) − 1, ωa (4) , ωa (5) − 1
ωa (8) + Bi1 (1 − ω (7)) , ωa (10) + Bi2 (1 − ω (9))

ωa (12) + Bi3 (1 − ω (11)) , ωb (2) ,
ωb (5) , ωb (7) , ωb (9) , ωb (11) .

(27)
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5 Results and Discussion

An important factor in the boundary layer flow of a “Casson nanofluid” across a stretched
plate is the heat transmission characteristics. Understanding the characteristics of heat transport
over a stretched plate is important to achieving the requisite quality. This is because the value of the
finished product depends mainly on the rates of stretching and heat transmission. In this section, to
understand the problem physically, a parametric analysis is carried out on a non-Newtonian Casson
nanofluid to demonstrate the effects of different regulating parameters. The Runge-Kutta-Fehlberg
approach is used to numerically solve the nonlinear ODEs (10) through (14) using Eqs. (15) and (16)
and the shooting method. The findings are obtained by observing how various functions, such as
velocities, temperature, concentration, and density of motile microorganisms in Casson nanofluid,
behave. We contrasted our numerical results with those described by Makkar et al. [8] with some
special assumptions to show the legitimacy and accuracy of our numerical approach (see Table 1).
Table 1 shows that the current statistics are consistent with Makkar et al. ’s findings [8]. Tables 2–4
assess and display physical quantities, including the Nusselt number, Sherwood number, and density
number of microorganisms.

Table 1: Comparison of the values of f ′′ (0) for different values M and γ when Fr = β = 0

M γ f ′′ (0) Residual error

Makkar et al. [8] Present study

1 0.1 −0.4963769365 −0.4962646782 0.0001122583
2 −0.5797848658 −0.5797994776 0.0000146118
3 −0.6530205556 −0.6563194762 0.0032989206
1.5 0.1 −0.5396023558 −0.5359894712 0.0036128846

0.2 −0.7305133017 −0.7317794763 0.0012661746
0.3 −0.8595870199 −0.8591221591 0.0004648608

Table 2: Variants of −θ (0) for adaptable Bi1, Nb, Nt, and Pr

Bi1 Nb Nt Pr Nusselt number

0.1 0.1 0.5 0.7 0.089299624245118
0.5 0.308028002375695
0.9 0.417060194257501

0.4 0.089206573895250
0.7 0.089112582696564

0.8 0.089550351524160
1.1 0.089432254581991

1.2 0.092220492908713
1.7 0.093532939788255
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Table 3: Variants of −φ (0) for adaptable Bi2, Nb, Nt, and Le

Bi2 Nb Nt Le Sherwood number

0.1 0.1 0.5 2 0.077597725599489
0.8 0.409278866999973
1.7 0.604766821802450

0.4 0.088869750818581
0.7 0.090480189019759

0.8 0.068401798147921
1.1 0.059495720302416

4 0.086249778077987
6 0.089688265077552

Table 4: Variants of −ξ (0) for adaptable Bi3, Lb, Pe, and ε

Bi3 Lb Pe ε Local density number

0.1 0.5 0.7 0.5 0.080178562654876
0.6 0.260715682465464
1.1 0.327643443318984

1 0.086885442986853
1.5 0.089311415023421

1.2 0.074085428340442
1.7 0.065824876058850

1 0.077229530974343
1.5 0.074280504819403

The impacts of the magnetic parameter (M) and Forchheimer number (Fr) on the non-
dimensional velocities are shown in Fig. 2. In Figs. 2a and 2b, it is clear that the dimensionless
velocities (f ′

1 (η), f ′
2 (η)) “horizontal and vertical” decrease as the magnetic parameter increases. The

magnetic field opposes the movement’s flow. As the magnetic field grows, the dimensionless velocities
usually decrease significantly. This is due to the Lorentz force, a retarding body force, being introduced
by the magnetic field. This is brought about by the interaction of the magnetic and electric fields with
the movements of an electrically conducting fluid, i.e. Physically, the presence of a magnetic field
causes a resistive force to arise in the flow of the nanofluid. The nanofluid’s velocity can be slowed
down by this force. The nanofluid consequently receives some heat energy from the same force as a
result. The variation of velocities (f ′

1 (η), f ′
2 (η) as a consequence of the change in the Fr parameter is

depicted in Figs. 2c and 2d. When one can elevate, the amount of fluid flow decreases, which slows
the motion.The fluid’s connection with the porous substance, which raises its viscosity and generates
resistance, is what reduces its speed, i.e. It should also be noticed that when the same parameter Fr
grows larger, an obstructing force acts against the velocity and the boundary layer thickness.
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Figure 2: Velocity profile “(f ′
1 (η) and (f ′

2 (η)” variations. (a & b) vs. M. (c & d) vs. Fr

Under the effect of the Casson parameter (γ ), and porous parameter (β) . Fig. 3 considers velocity
distribution. Casson fluid is treated as fluid with variable plastic dynamic viscosity with a strong effect
of yield stress, the velocity increases near the wall and negligibly decreases far from the vertical heated
wall for an increase in the values of Casson fluid parameter (γ ). As seen in both graphs, Figs. 3a and 3b
indicate that higher fluid flow non-Newtonian behavior causes a decrease in velocity distribution.
Additionally, in Figs. 3c and 3d, the porous parameter, displays a comparable impact compared to its
greater strength.

In contrast to the thermophoresis parameter (Nt) and the parameters of Brownian motion and
(Nb), Fig. 4 portrays the implications of temperature distribution θ(η) and concentration distribution
φ(η). It is envisaged that the temperature function at η∞ will resemble that of a typical fluid. According
to the thickening of the thermal boundary layer fluid thickness, temperature rises as Nt and Nb rise. As
Nt rises, it is seen that nanoparticles in Figs. 4a and 4b migrate from the warmer to the colder region,
improving the temperature distribution. Additionally, Nt enhancement increases the abundance of
nanoparticles so the concentration also increases. As Nb rises, nanoparticles move quickly, causing
their kinetic energy to rise and their temperature to rise, as shown in Fig. 4a. However, contrary
conduct is seen for concentration, as shown in Fig. 4b.
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Figure 3: Velocity profile “f ′
1 (η) and f ′

2 (η)” variations. (a & b) vs. γ . (c & d) vs. β

Figure 4: (Continued)
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Figure 4: Temperature and concentration profiles “θ(η) and φ(η)” variations (a & b) vs. Nt (c & d) vs.
Nb

Fig. 5 depicts how (Pr) affects temperature θ(η), concentration φ(η), and motile density distribu-
tion ξ(η) for the Prandtl number Pr. The Prandtl number (Pr) or Prandtl group is a dimensionless
number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum
diffusivity to thermal diffusivity. Because higher Pr reduces the thermal diffusion rate, it has been
found that raising Pr lowers the temperature profile. The distribution of concentration and motile
density also declines for higher Pr because increasing Pr indicates that the heat conduction is more
significant compared to convection, so thermal diffusivity is dominant.

Figure 5: (Continued)
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Figure 5: Temperature, concentration, and Motile density distribution for bio-convective profiles
“θ(η), φ(η), and ξ(η)” variations (a & b & c) vs. Pr

In Fig. 6, we describe the effects on the microorganism density ξ(η) by changing the Peclet
number (pe), bio-convection Lewis number (Lb), and bio-convective constant (ε). Since is a crucial
component of liquid motility, higher inputs of can reduce the proportion of bacteria that move
in liquids. Microorganisms’ behaviours, such as how swiftly they swim and how responsively they
respond to environmental signals, can also affect the motile density distribution. The distribution of
motile density may be impacted by variations in temperature. Bioconvection is significantly influenced
by temperature gradient. The distribution of motile density can be affected by the fluid’s viscosity
by changing the bioconvection patterns. Fig. 6a debates how Peclet quantity affects microorganism
density. The graph illustrates that for a higher Pe in the range [1.2–4.9], motile microorganism density
drops which complies with the convergence requirement of eta as η → ∞. Fig. 6b displays the bio-
convection Lewis number’s effect (Lb) on microorganism proliferation functions. These curves yield
asymptotic patterns that preserve boundary conditions, and it is investigated how they demonstrate
that as Lb increased, the density function of microorganisms dropped. Variation in ξ(η) about the
bioconvective constant ε is presented in Fig. 6c. Additionally, this figure shows a decrease in motile
microorganism density for heavier ε in the range [0.87–6.7].

Figure 6: (Continued)
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Figure 6: Motile density distribution for bio-convective profile “ξ(η)” variations (a) vs. Pe. (b) vs. Lb,
(c) vs. ε

Fig. 7 presents the data collected regarding the Nusselt, Sherwood, and local density numbers in
a bar chart format against various values of Bi1, Bi2, and Bi3, respectively.

Figure 7: Bar Chart depiction of “Nusselt, Sherwood and local density numbers” (a) vs. Bi1. (b) vs.
Bi2. (c) vs. Bi3
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6 Conclusion

Particularly when it comes to heat transfer and energy transmission, melting thermal transport
can have a considerable impact on bioconvection in fluids. Due to physical or chemical gradients, such
as light, temperature, or chemical concentrations, microorganisms or biological particles may assemble
in a fluid. We call this process “bioconvection.” Mobile microorganisms can be used in bioprocessing
to produce useful products including biofuels, medications, and food additives. Their motility allows
them to move around freely in the fluid, which enhances the mixing and distribution of other substrates
like nutrition. In the current research, it has been examined how gyrotactic microorganisms affect
MHD bio-convective Casson nanofluid Darcy-Forchheimer flow caused by a 3D stretching surface.
We use an effective conventional Runge–Kutta method together with shooting methodology to solve
them for various values of some key parameters. Moreover, the current results are validated against
earlier literature. The following are the research’s main ramifications:

• With both the bio-convection Lewis and Peclet numbers, motile microorganisms’ rescaled
density drops.

• Brownian motion parameter and bio-convection Lewis number have the propensity to acceler-
ate mass transfer.

• Biot numbers tend to regulate the rapidity of mass and heat transfer.

• As the number of the bio-convective constant (ε) and Peclet number (pe) rise, the reduced
density number of the motile microorganisms diminishes.

• The results were largely consistent with the most current, state-of-the-art studies that had been
published in the literature. The present results were said to have potential for advancing fluid
mechanics, biomedical sciences, as well as engineering.

• The information in this study may be helpful to scientists, engineers, and those working on the
advancement of nanofluid mechanics.

Future Perceptions: Finite Difference method, the Chebyshev spectral method, and Keller-box
scheme may be employed for the numerical treatment of numerous prospective applications appearing
in bioinformatics, fluid mechanics problems, financial mathematics of vital implication.
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