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ABSTRACT

In this particular study, we have considered the flow of Casson fluid over inclined flat and cylindrical surfaces,
and have conducted a numerical analysis taking into account various physical factors such as mixed convection,
stagnation point flow, MHD, thermal radiation, viscous dissipation, heat generation, Joule heating effect, variable
thermal conductivity and chemical reaction. Flow over flat plate phenomena is observed aerospace industry, and
airflow over solar panels, etc. Cylindrical surfaces are commonly used in several applications interacting with fluids,
such as bridges, cables, and buildings, so the study of fluid flow over cylindrical surfaces is more important. Due
to the motivation of these applications, in this paper, a comparative study of fluid flow over these two surfaces
is considered. By applying appropriate similarity transformations, the governing PDEs of the problem have been
transformed into non-linear ODEs, which are solved by utilizing the Keller box technique. We have examined the
impact of distinct parameters by plotting velocity and thermal concentration graphs. All the profiles are plotted
in both cases of cylindrical and inclined flat surface. It has been observed that for higher Casson and Magnetic
parameter values, a decreasing velocity profile is noted for progressive values of the Eckert Number, thermal
conductivity parameter, Joule heating parameter, heat generation, and growth in temperature profiles are witnessed.
While the Prandtl number shows the opposite trend. Further, it has been observed that the concentration profile
declines for incremental observations of Schmidt number and chemical reaction parameters. Computed Local
parameters like the coefficient of skin friction for various values of Casson parameter and Curvature parameter,
Skin friction value increases for increasing observations of Curvature parameter the phenomena agree with
existing literature. Also, Nusselt number is calculated for various observations of curvature and variable thermal
conductivity parameters. Nusselt number decreases in magnitude with rising observations of varying thermal
conductivity argument at both flat and cylindrical surfaces. The values are matched with prevailing results and
noted a good agreement.
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Nomenclature

x, r Cylindric coordinates
u, v Components of velocity
α Angle of inclination
B Casson argument
υ Kinematic viscosity coefficient (m2/s)
g0 Acceleration due to gravity (m/s2)

βc Solutal expansion coefficient
βT Thermal expansion coefficient (per °C)

M Magnetic constraint
Pr Prandtl number
Sc Schmidt number
T∞ Free stream temperature
T Fluid temperature
B0 Magnetic field constant
C Fluid Concentration (mol/m3)
C∞ Free stream concentration
ue Free stream velocity
σ Electrical conductivity (s/m)
CP Specific heat (J/Kg.K)
Q Heat flux (W/m2)
K Thermal conductivity (W/mk)
K1 Chemical reaction parameter
∈ Variable thermal conductivity parameter
A Velocity ratio parameter
Rd Thermal radiation parameter
Gc Concentration Grashof number
Gr Thermal Grashof number
Dm Mass diffusivity parameter
Ec Eckert number
G Curvature parameter
� Chemical reaction parameter

1 Introduction

The widespread occurrence of non-Newtonian fluid behaviour in various applications, including
natural and technological ones. After introducing the concept of non-Newtonian fluids, a brief
overview of their distinct features is mentioned [1]. Under convective boundary conditions, an
incompressible mixed convection immobility point flow non-Newtonian fluid over an elongating sheet
is analyzed by Hayat et al. [2]. Mukhopadhyay et al. [3] investigated the turbulent non-Newtonian 2-
dimensional fluid stream over an extending surface with a predetermined surface temperature using
the shooting method. Swathi Mukhopadhyay conducted a numerical analysis of non-Newtonian
fluid flow and heat transfer over a non-linearly stretched surface using the shooting method [4].
An incompressible three-dimensional Casson fluid Porous boundary layer flow is examined under
the influence of MHD by Hayat et al. [5]. Non-Newtonian boundary layer flow was numerically
explored by suction or blowing heat transfer fluid at the surface towards an exponentially increasing
surface by Pramanik [6]. Bhattacharya [7] studied the stagnation point flow of Casson fluid flow with
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the influence of thermal radiation and concluded that the heat transfer rate increases for enhanced
values of the magnetic parameter. Medikare et al. [8] explored the immobility point flow of Casson
fluid flow over a nonlinear extending sheet and concluded that the rate of heat transfer and wall
friction drag enhances progressive amounts of the Casson argument. Unsteady free convective MHD
boundary layer analytical expression, thermal radiation and chemical reaction are achieved from
the Casson fluid flow past an oscillating vertical plate numerically analyzed by Kataria et al. [9].
Rauf et al. [10] studied 3-dimensional Casson Nanofluid stream using the RK Fehlberg technique
and observed that the level of mass transfer enhances for progressive observations of the Biot number
and Brownian movement argument. Ajayi et al. [11] studied the issue of non-Newtonian fluid flow
past an object’s upper surface that is neither perfectly horizontal/vertical is taken into consideration.
In this problem, energy dissipation is convected to temperature-dependent plastic dynamic viscosity.
Siddiq et al. [12] studied the stagnation point flow of micropolar Nanofluid over a shrinking sheet
and concluded that decrement in concentration profiles is witnessed for progressive values of the
Schmidt number and Brownian motion parameter. Later, Anantha Kumar et al. [13] investigated
thermal radiation influence on Casson fluid course across a curved elongating sheet using the RK
shooting technique and concluded that the velocity of the fluid declines in both cases of increasing
observations of magnetic and Casson parameter values. Raza [14] investigated the combined velocity
slip and thermal radiation effects on a stretched sheet that has been convective. Another fact taken
into account is the Magnetohydrodynamics (MHD) effect close to the stagnation point. In an
electrically conducting Casson fluid stream via a slanted permeable micro channel, the combined
impacts of the magnetic field, suction/injection, and convective exterior conditions were analyzed
by Gireesha et al. [15]. Study of the impact of thermal diffusion and heat production on MHD,
the chemical reaction is obtained by allowing Casson fluid to flow past an oscillating vertical plate
inserted through porous material analyzed by Patel et al. [16]. Nusselt number enhances progressive
observations of Magnetic and volume fraction parameters discussed by Khan et al. [17] in the analysis
of hybrid nanofluid flow over stretching surface. Bejan number and entropy generation have similar
impacts on electric field influence concluded by Hayat et al. [18]. The basics of various thermophysical
characteristics of higher-order chemical reactions, including the viscous dissipation on nanofluid, and
continuously extending porous sheet are considered and analyzed by Gopal et al. [19]. After that,
Khan et al. [20–24] studied entropy exploration with melting heat effect, radiation, and porosity and
concluded that the impact of heat conductivity on ternary Nanofluid and concludes that for enhanced
observation of radiation temperature of fluid enhances and consequently rise in entropy is observed.
Temperature losses for augmented amounts of Prandtl number in the case of Reiner Rivlin fluid
flow over a stretching sheet. Velocity profiles decline for porosity in both cases of nanoparticles,
whereas the opposite effect is witnessed in the case of entropy generation. Radiation influence for
higher values of magnetic parameter temperature and entropy enhancement is noted in an analysis
of entropy exploration study on Prandtl fluid flow. The heat source and MHD blended convection
fluid course across a slanted flat plate in Casson theory numerically using the shooting method
analyzed by Ramzan et al. [25]. Ganesh et al. [26] observed entropy exploration on Casson Nanofluid
flow with the influence of higher order chemical reaction and concludes for higher amounts of the
order of chemical reaction constraint Nusselt number enhances and the Sherwood number declines.
Reddy et al. [27] considered Casson fluid flow with Soret, Joule heating, and viscous dissipation
influences utilizing Homotopy analysis technique. Satya narayana et al. [28] concluded in their study
that temperature enhances with an increase in the Eckert number and variable thermal conductivity
parameter. Hayat et al. [29] examined the Casson fluid flow approaches a stretching surface near its
stagnation point and conclude that Nusselt number decreases for progressive values of the Eckert
number. Abbas et al. [30] explored heat and mass relocation in an unstable exterior layer Casson



410 FHMT, 2023, vol.21

fluid course over an extending/shrinking sheet with radiation influence with the Spectral collocation
quasi-linearization method. Ramesh et al. [31] analyzed Casson fluid flow across a stretching sheet
with adaptive thickness and radiation. Sridhar et al. [32] examined the hydromagnetic Williamson
Nanofluid over an absorbent media past an extending sheet with constant and erratic thickness.
Also, Ganesh et al. [33] examined the heat transmission of a Casson nanofluid through an absorbent
medium over a movable plate with changeable heat conductivity, adjustable thickness and chemical
reaction. Waqas et al. [34] investigated heat transmission of radiative Nanofluid flow across a
cylinder and concluded that temperature distribution enhances progressive values of the magnitude
of nanoparticles. Bilal et al. [35] examined Williamson Nanofluid flow over a cylinder with adaptive
thermal conductivity and observed that the Nanofluid’s velocity reduces for higher Weissenberg
number values. Islam et al. [36] analyzed the thermal influence on mixed convection flow of Maxwell
nanofluid over a bidirectional stretching cylinder and concluded that concentration increases for
the thermal diffusion and reduces for the Brownian motion argument. Later Rehman et al. [37]
investigated the immobility point Casson fluid stream upon slanted flat and cylindric surfaces and
found that the Nusselt number decreases with enhanced values of the thermal conductivity. The
velocity of Casson fluid decreases in all cases of a flat and cylindrical surfaces. A Casson fluid is
the most appropriate flow model for non-Newtonian fluids. Casson fluids exhibit yield stress and
have numerous applications. If shear stress is less than the elastic limit, Casson fluid acts similar to an
elastic solid and no flow occurs. On the other hand, if shear stress is greater than yield stress it ensures
the flow of Casson fluid. Few specific examples of Casson fluid are emulsions, slurries, and artificial
fibres. The contribution of Casson fluid can be witnessed in the preparation of multiple products such
as synthetic lubricants, pharmaceutical chemicals, paints, etc.

As heat transfer involves transferring and converting energy, it is important to define the specified
level of heat exchange at a specified temperature modification. It is imperative for some components,
such as turbine blades, electrical machines, electronic gadgets, transformers, bearings, etc, to remove
thermal energy at a quick rate to prevent overheating. Therefore, it is essential to understand how
heat transfers and the governing laws of heat transfer. By mass transfer, we mean the transfer of
matter based on a concentration difference between species in a system. It has several applications
in the fields of science, engineering and technology. As a result of its importance in a wide variety
of industrial and scientific applications, stagnation point flow continues to be an interesting area of
research for scientists and investigators. Stagnation flow is useful for designing thrust bearings and
radial diffusers, reducing drag, and cooling by transpiration. Radiation is the heat transfer process
that happens using electromagnetic waves. The transmission of heat by radiation comprises the drift
of heat energy from the origin to the space surrounded by it. The movement of energy can be carried out
by using electromagnetic waves. Energy is transferred by thermal radiation in combustion chambers,
furnaces, and nuclear explosions. The Joule heating effect is the process of creating heat when a current
passes through an electrical conductor. Joule heating is used in many heating devices, such as electric
stoves, electric heaters, soldering irons, cartridge heaters, and food processing equipment. Flow over
flat plate phenomena is observed aerospace industry, and airflow over solar panels, etc. Cylindrical
surfaces are commonly used in several applications interacting with fluids, such as bridges, cables,
buildings, so the study of fluid flow over cylindrical surface has a greater importance.

Due to the motivation of these applications, In this paper, a comparative study of Casson fluid
flow over these two surfaces is taken into consideration. In the present study, Casson fluid’s two-
dimensional stagnation point flow is analyzed on both flat and cylindrical surfaces with the influences
of radiation, mixed convection, MHD, heat source, Joule heating, viscous dissipation and chemical
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reaction. Here a magnetic field is applied externally to fluid flow. The governing equations are
explained by Keller Box numerical technique.

2 Mathematical Formulation

We considered the two-dimensional Casson fluid stream, Inclined at an angle α at both flat and
cylindric surfaces. Here u and v are components of velocity towards the r-axis and x-axis Flow over
surface is affected by MHD, Chemical reaction, viscous dissipation, radiation, Joule heating, variable
thermal conductivity and mixed convection. The geometry of the problem is mentioned in Fig. 1. The
basic equations of continuity and momentum, and energy in vector form are taken as

divV = 0

ρ
DV
Dt

= ∇.T + μ∇2V + JXB

ρCp

dT
dt

= k∇2T

u

Fluid flow x

v

r

c

0

Figure 1: Problem’s flow model

Based on these suppositions, the leading partial differential equations [34–36] are
∂

∂x
(ru) + ∂

∂y
(rv) = 0 (1)

u
∂u
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∂u
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= υ

(
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) (
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+ 1
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)
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∂ue
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1
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∂
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)(
∂u
∂r
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+ σB2
0
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2 (3)

u
∂C
∂x

+ v
∂C
∂r

= Dm

∂2C
∂r2

− k1 (C − C∞) (4)
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In this case, the boundary conditions are as follows:

u = uw = ax
v = 0
T = Tw, C = Cw

⎫⎬
⎭ at r = c (5)

u = ue = dx
T → T∞, C → C∞

}
as r → ∞ (6)

Corresponding similarity transformations [36] are

u = xU0

L
f ′ (η)

v = −c
r

√
υU0

L
f (η)

θ (η) = T − T∞
Tw − T∞

φ (η) = C − C∞
Cw − C∞

η = r2 − c2

2c

√
U0

υL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

By utilizing the similarity transforms, the governing Eqs. (2)–(4) are converted to(
1 + 1

β

)
((1 + 2ηG) f ′′′ + 2Gf ′′) − f ′2 + (Gr) θ cos α + (Gc) φ cos α − M2 (f ′ − A) + ff ′′ + A2 = 0 (8)

(
1 + 4

3
Rd

)
((1 + 2ηG) θ ′′ + 2γ θ ′) + ε

((
θθ ′′ + θ ′2) (1 + 2ηG) + 2Gθθ ′)

+ Pr Ec
(

1 + 1
β

)
(1 + 2ηG) f ′′2 + Pr Hθ + Pr f θ ′ + Pr J (f ′ − A)

2 = 0 (9)

(1 + 2ηG) φ ′′ + 2Gφ ′ + Scf φ ′ − Scγφ = 0 (10)

and the converted boundary conditions

f = 0, f ′ = 1, θ = 1, φ = 1 at η = 0 (11)

f ′ = A, θ = 0, φ = 0 as η → ∞

3 Solution Procedure

Using,
df
dη

= p,
dp
dη

= q, g = θ ,
dg
dη

= t, s = φ,
ds
dη

= n. Equations are reduced to
(

1 + 1
β

)
((1 + 2ηG) q′ + 2Gq) − p2 + fq + (Gr) g cos α + (Gc) s cos α − M2 (p − A) + A2 = 0 (12)



FHMT, 2023, vol.21 413

(
1 + 4

3
Rd

)
((1 + 2ηG) t′ + 2Gt) + ε

((
gt′ + t2

)
(1 + 2ηG) + 2Ggt

)

+ Pr Ec
(

1 + 1
β

)
(1 + 2ηG) q2 + Pr Hg + Pr ft + Pr J (p − A)

2 = 0 (13)

(1 + 2ηG) n′ + 2Gn + Scfn − Scγ s = 0 (14)

Using the concept of finite differences, convert the equations to difference equations and linearize
them using Newton’s method.

The system of linear equations are

δfj − hj

2

(
δpj + δpj−1

) − δfj−1 = (r1)j

δpj − hj

2

(
δqj + δqj−1

) − δpj−1 = (r2)j

δgj − hj

2

(
δtj + δtj−1

) − δgj−1 = (r3)j

δsj − hj

2

(
δnj + δnj−1

) − δsj−1 = (r4)j

(a1)j δqj + (a2)j δqj−1 + (a3)j δpj + (a4)j δpj−1 + (a5)j δfj + (a6)j δfj−1

+ (a7)j δgj + (a8)j δgj−1 + (a9)j δsj + (a10)j δsj−1 = (r5)j

(b1)j δtj + (b2)j δtj−1 + (b3)j δgj + (b4)j δgj−1 + (b5)j δqj + (b6)j δqj−1

+ (b7)j δfj + (b8)j δfj−1 + (b9)j δpj + (b10)j δpj−1 = (r6)j

(c1)j δnj + (c2)j δnj−1 + (c3)j δfj + (c4)j δfj−1 + (c5)j δsj + (c6)j δsj−1 = (r7)j

(15)

where,

(a1)j = 1.0 + 2ηG + Ghj + 0.25 ∗ βhj

(β + 1)

(
fj + fj−1

)
(16)

(a2)j = −1 − 2ηG + Ghj + βhj

4 (β + 1)

(
fj + fj−1

)
(17)

(a3)j = −0.5 ∗ βhj

(β + 1)

(
pj + pj−1

) − M2βhj

2 (β + 1)
(18)

(a4)j = − βhj

2 (β + 1)

(
pj + pj−1

) − M2βhj

2 (β + 1)
(19)

(a5)j = βhj

4 (β + 1)

(
qj + qj−1

)
(20)

(a6)j = βhj

4 (β + 1)

(
qj + qj−1

)
(21)

(a7)j = βhj

2 (β + 1)
Gr cos α (22)
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(a8)j = βhj

2 (β + 1)
Gc cos α (23)

(b1)j = (1 + 2Gη) + Ghj + 3 Pr hj

4 (3 + 4Rd)

(
fj + fj−1

) + 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
gj + gj−1

)

+ 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
tj + tj−1

) + 3εGhj

2 (3 + 4Rd)

(
gj + gj−1

)
(24)

(b2)j = − (1 + 2Gη) + Ghj + 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
tj + tj−1

) − 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
gj + gj−1

)

+ 3εGhj

2 (3 + 4Rd)

(
gj + gj−1

) + 3 Pr hj

4 (3 + 4Rd)

(
fj + fj−1

)
(25)

(b3)j = 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
tj − tj−1

) + 3εGhj

2 (3 + 4Rd)

(
tj + tj−1

) + 3 Pr Hhj

2 (3 + 4Rd)
(26)

(b4)j = 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
tj − tj−1

) + 3εGhj

2 (3 + 4Rd)

(
tj + tj−1

) + 3 Pr Hhj

2 (3 + 4Rd)
(27)

(b5)j = 3 Pr Ec (β + 1) hj

2β (3 + 4Rd)
(1 + 2Gη)

(
qj + qj−1

)
(28)

(b6)j = 3 Pr Ec (β + 1) hj

2β (3 + 4Rd)
(1 + 2Gη)

(
qj + qj−1

)
(29)

(b7)j = 3 Pr hj

4 (3 + 4Rd)

(
tj + tj−1

)
(30)

(b8)j = 3 Pr hj

4 (3 + 4Rd)

(
tj + tj−1

)
(31)

(b9)j = 3 Pr Jhj

2 (3 + 4Rd)

(
pj + pj−1

) − 3A Pr Jhj

3 + 4Rd
(32)

(b10)j = 3 Pr Jhj

2 (3 + 4Rd)

(
pj + pj−1

) − 3A Pr Jhj

3 + 4Rd
(33)

(c1)j = (1 + 2Gη) + Ghj + Schj

4

(
fj + fj−1

)
(34)

(c2)j = (1 + 2Gη) + Ghj + Schj

4

(
fj + fj−1

)
(35)

(c3)j = Schj

4

(
nj + nj−1

)
(36)

(c4)j = Schj

4

(
nj + nj−1

)
(37)

(c5)j = ScΓhj

2
(38)
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(c6)j = ScΓhj

2
(39)

(r1)j = fj−1 − fj + hj

2

(
pj + pj−1

)
(40)

(r2)j = pj−1 − pj + hj

2

(
qj + qj−1

)
(41)

(r3)j = gj−1 − gj + hj

2

(
tj + tj−1

)
(42)

(r4)j = sj−1 − sj + hj

2

(
nj + nj−1

)
(43)

(r5)j = (1 + 2Gη)
(
qj−1 − qj

) − Ghj

(
qj + qj−1

) + βhj

4 (β + 1)

(
pj + pj−1

)2 − βhj

4 (β + 1)

(
pj + pj−1

) (
qj + qj−1

)

− βhj

2 (β + 1)
Gr cos (α)

(
gj + gj−1

) − βhj

2 (β + 1)
Gc cos (α)

(
sj + sj−1

) − M2βhj

2 (β + 1)

(
pj + pj−1

)

− AM2βhj

β + 1
− A2βhj

β + 1
(44)

(r6)j = (1 + 2Gη)
(
tj−1 − tj

) − Ghj

(
tj + tj−1

) − 3ε (1 + 2Gη)

2 (3 + 4Rd)

(
gj + gj−1

) (
tj − tj−1

)

− 3ε (1 + 2Gη)

4 (3 + 4Rd)

(
tj + tj−1

)2 − 6εGhj

4 (3 + 4Rd)

(
gj + gj−1

) (
tj + tj−1

)

− 3 Pr Ec (β + 1) hj

4β (3 + 4Rd)
(1 + 2Gη)

(
qj + qj−1

)2 − 3 Pr Hhj

2 (3 + 4Rd)

(
gj + gj−1

)

− 3 Pr hj

4 (3 + 4Rd)

(
fj + fj−1

) (
tj + tj−1

) − 3 Pr Jhj

4 (3 + 4Rd)

(
pj + pj−1

)2 + 3A Pr Jhj

3 + 4Rd

(
pj + pj−1

)

− 3 Pr JA2hj

3 + 4Rd
(45)

(r7)j = (1 + 2Gη)
(
nj−1 − nj

) − Ghj

(
nj + nj−1

) − Schj

4

(
fj + fj−1

) (
nj + nj−1

) + Scγ hj

2

(
sj + sj−1

)
(46)

Further, the resultant system of linear equations is solved using Block tri-diagonal elimination
technique and solved using LU decomposition method.

The matrix form of equations [15] is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1 C1 . . . . .
B2 A2 C2 . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . Bj−1 Aj−1 Cj−1

. . . . . Bj Aj

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ1

δ2

δ3

.

.
δj−1

δj

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r1

r2

r3

rj−1

rj

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(47)
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where,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
d 0 0 0 d 0 0
0 d 0 0 0 d 0
0 0 −1 0 0 0 d
(a2)1 0 (a10)1 (a5)1 (a1)1 0 0
(b6)1 (b2)1 0 (b7)1 (b5)1 (b1)1 0
0 0 (c6)1 (c3)1 0 0 (c1)1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 1 0 0 0
−1 0 0 0 d 0 0
0 −1 0 0 0 d 0
0 0 −1 0 0 0 d
(a4)j (a8)j (a10)j (a5)j (a1)j 0 0
(b10)j (b4)j 0 (b7)j (b5)j (b1)j 0
0 0 (c6)j (c3)j 0 0 (c1)j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Bj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 d 0
0 0 0 0 0 0 d
0 0 0 (a6)j (a2)j 0 0
0 0 0 (b8)j (b6)j (b2)j 0
0 0 0 (c4)j 0 0 (c2)j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Cj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
(a1)j (a7)j (a9)j 0 0 0 0
(b9)2 (b3)2 0 0 0 0 0
0 0 (c5)j 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

To validate the method, the current outcomes are matched with old literature.

4 Results & Discussion

The influence of distinct parameters is analyzed by plotting graphs for both cases of a flat plate
(G = 0), Cylindrical surface (G = 0.4) with MATLAB.

Here for all the graphs, we considered curvature parameter G = 0.0 for flat plate and G =
0.4 for cylindrical surfaces. Fig. 2 shows the velocity graphs of the Casson argument. For enhanced
values of the Casson parameter, the velocity is found to be decreasing in both cases of flat plate and
cylindrical surface. For higher values of the Casson parameter, the viscosity of the fluid increases,
which causes the thickness of the momentum boundary layer to decrease so a decrement in velocity
profiles is witnessed. Fig. 3 portrays the velocity profiles of the Magnetic constraint. A decrement in
velocity graphs is noted for progressive observations of the Magnetic parameter. With augmented
amounts of magnetic parameters, a force called Lorentz force will be produced due to this flow
speed of fluid reduction observed. The same phenomena are observed in both cases of flat and
cylindrical surfaces. Fig. 4 displays velocity profiles for increasing observations of the velocity ratio
parameter. We observed that Casson fluid velocity is straightaway influenced by the velocity ratio
argument, with higher observations of the argument leading to higher magnitudes of the velocity of
the fluid. Prandtl number is the ratio of momentum diffusivity to thermal diffusivity. It is particularly
useful in controlling the relative thickness of momentum and thermal boundary layers. For smaller
values of the Prandtl number, heat diffuses quickly. Fig. 5 depicts temperature profiles of enhanced
observations of Prandtl number. Increasing the Prandtl number, a decrease in heat conductivity is
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noted. So the temperature declination happens. The same phenomenon is observed in both cases of
flat and cylindrical surfaces. Fig. 6 discloses temperature profiles of heat generation argument. For
enhanced values of heat generation parameter, temperature growth is noted in both cases of flat
and cylindrical surfaces. Thermal conductivity is the property of a material to transfer heat from a
region of high temperature to a low temperature. Fig. 7 portrays temperature graphs of the thermal
conductivity constraint. For increasing observations of thermal conductivity parameter temperature
distribution enhances in both cases of flat and cylindrical surfaces. Fig. 8 shows temperature outlines
of Eckert number. For enhanced observations of Eckert number, The driving force of the fluid is
converted to internal energy, so temperature enhancement is observed in profiles. The Joule heating
effect enhances the heat transfer process. Fig. 9 depicts the temperature graphs of Joule heating.
For enhanced observations of the Joule heating parameter, it produces electricity in the conductor
consequently it raises the temperature distribution in both cases of Flat and cylindrical surfaces.
Schmidt number is the ratio of momentum spreading to mass spreading. Fig. 10 displays concentration
sketches of Schmidt number. For increasing units of Schmidt number, mass transfer enhancement is
witnessed so concentration profiles decrease in both cases. Fig. 11 depicts the concentration graphs
of the Chemical reaction argument. For higher values of the chemical reaction argument, chemical
molecular diffusivity decreases, so the fluid concentration decreases. This phenomenon we can observe
in both cases of flat and cylindrical surfaces.

Figure 2: Velocity profiles for β, G
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Figure 3: Velocity profiles of M, G

Figure 4: Velocity profiles of A, G
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Figure 5: Temperature outlines of Pr, G

Figure 6: Temperature outlines of H, G
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Figure 7: Temperature outlines of ε, G

Figure 8: Temperature outlines of Ec, G



FHMT, 2023, vol.21 421

Figure 9: Temperature profiles of J, G

Figure 10: Concentration profiles of Sc, G
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Figure 11: Concentration profiles of Γ, G

The measure of skin friction rises as the curvature argument increases and decreases with the
Casson parameter’s progressive values. This phenomenon agrees with the previous study mentioned
in Table 1. Also, the Nusselt number decreases in magnitude with increasing observations of curvature
parameter and variable thermal conductivity parameter and these values are in accordance with
previous studies presented in Table 2.

Table 1: Comparitive study of skin friction coefficient

β γ Hayat et al. [5] Islam et al. [36] Present study

1.0 0.1 1.2347 1.2135 1.2241
1.5 0.1 1.1082 1.1030 1.1045
2.0 0.1 1.0310 1.0150 1.0322
2.0 0.0 0.9966 0.9643 0.9620
2.0 0.1 1.0409 1.0214 1.0414
2.0 0.2 1.0850 1.0413 1.1079
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Table 2: Comparitive study of Nusselt number

β γ ε Hayat et al. [5] Islam et al. [36] Present study

2.0 0.19 0.0 0.5739 0.5216 0.5273
2.0 0.19 0.2 0.5308 0.5124 0.5167
2.0 0.19 0.3 0.5123 0.5061 0.5116
2.0 0.0 0.0 0.5442 0.5220 0.5718
2.0 0.12 0.0 0.5336 0.5213 0.5287
2.0 0.19 0.0 0.5279 0.5016 0.5052

5 Conclusions

In this paper, a two-dimensional Casson fluid flow at both inclined flat and cylindrical surfaces,
a comparative study of heat and mass transfer characteristics in a Casson immobility point flow is
investigated. Flow is influenced by MHD, thermal radiation, Joule heating, variable thermal conduc-
tivity, mixed convection, viscous dissipation and chemical reaction. The corresponding equations are
resolved by employing Keller Box method. Numerical calculations are analyzed, and the following
observations are noted:

• A decrement in velocity graphs was witnessed for progressive estimates of Casson, Magnetic
parameters and the reverse trend is observed for higher observations of velocity ratio parameter.

• Increment in temperature graphs witnessed for incremental estimates of the Eckert number,
Joule heating, thermal conductivity parameter, and heat generating parameter. The opposite
trend is noted for the Prandtl number.

• Concentration graphs decline for the Schmidt number, Chemical reaction.

• The magnitude of friction drag rises as the curvature argument increases.

• Nusselt number reduces in magnitude with enhanced observations of changeable thermal
conductivity parameter.

• In the present investigation, a comparative study is carried out between two surfaces flat and
cylindrical, by considering Casson fluid flow and this work can be expanded for other non-
Newtonian fluids.
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