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ABSTRACT

An attempt is made to analyse some lubrication characteristics of rigid cylindrical asymmetric rollers under
adiabatic and isothermal boundaries with rolling and sliding motion lubricated by a non-Newtonian incompressible
Bingham plastic fluid under the behaviour of line contact. Here the lower surface is considered to move quicker
than that of the upper surface; and the Roelands viscosity model is considered and assumed to depend upon the
fluid pressure and the mean film temperature. The governing equations for fluid flow such as equations of motion
with continuity and the momentum energy equation are solved using Runge-Kutta forth order and MATLAB
is employed to solve these equations. Through graphs and tables for Newtonian and non-Newtonian fluids, the
several crucial bearing characteristics including velocity, pressure, viscosity, mean temperature, load and traction
are examined and a significant change is observed among them. The findings presented here are qualitatively
consistent with the existing literature.
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Nomenclature

h Film thickness
h0 Minimum film thickness
p Hydrodynamic pressure
TFh Traction force
u Fluid velocity in x-direction
U1, U2 Velocities of the surfaces
v Fluid velocity in y-direction
x1 Point of maximum pressure
x2 Point of cavitation
α Pressure coefficient
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1 Introduction

Modelling and study of fluid flow in thin gaps play a key role in classical lubrication theory.
Examples of thin gaps where fluid can flow include the space between a bearing’s ball and raceway,
a seal’s contacting surfaces, the space between an eye and a contact lens, and the spaces in our joints
[1]. Lubrication modeling is essential for predicting the lubricant state, friction coefficient, and failure
risk under different lubrication regimes. The Reynolds equation can precisely describe the full film
lubrication for a smooth surface [2]. Hydrodynamic lubrication is a technique for lowering wear and
friction on fluid-rubbing surfaces, and its purpose is usually to append a suitable fluid with the aim of
penetrating the contact area among the moving surfaces and forming a thin film of fluid. By producing
a fluid layer between the surfaces that are rubbing, lubricant isolates the contacting mating surfaces.
Metal-to-metal contact is decreased by the fluid film [3]. The main purpose of developing lubrication
theory is to determine oil pressure distributions that help researchers improve the mechanical design
of bearings [4].

Bearings are constantly subjected to incredibly high loads, top speeds, and severe sliding condi-
tions. High-pressure aging occurs within the fluid film due to the impact of high stress on intensive
contact processing. In the pressure-peak regime, the material properties of the fluid, especially its
viscosity, are not constant but change continuously with the pressure and temperature [5]. They
studied a roller bearing problem lubricated by an incompressible non-Newtonian power-law fluid for
an extremely loaded rigid system, including temperature effects. A noticeable change in pressure and
mean temperature was observed. Further, Sajja et al. [6] investigated some lubrication characteristics
of non-symmetric rollers lubricated by incompressible power-law fluids, including thermal effects, and
notable changes were observed in temperature and pressure.

The most crucial characteristic of a lubricant is its viscosity, which is measured as the amount
of resistance to fluid flow. When the viscosity is excessively high, friction losses and operating
temperature increase along with lubricant thickness. A lubricant will be thinner and have insufficient
load carrying capacity if its viscosity is too low. It can be difficult to choose the lubricant’s ideal
viscosity when all of these things are taken into account [7]. Since viscosity decreases as lubricant
temperature rises, it is essential to increase the lubricant viscosity index by using high-molecular
weight polymers in order to stop temperature-related viscosity changes [8]. For heavily loaded rigid
cylindrical line contact with cavitation, Prasad et al. [5] investigated thermal hydrodynamic lubrication
by incompressible power law lubricants. The influence of rolling/sliding ratio on pressure, temperature,
viscosity, load and tractions are investigated using the rolling ratio and the assumption that the
lubricant’s consistency/viscosity varies with pressure and the mean film temperature under isothermal
boundaries. Prasad et al. [9] analyzed a hydrodynamic lubrication problem considering heat energy
equation with convection and application of journal bearing, assuming the viscosity as a function
of pressure and mean temperature. With increasing power density and the use of lower viscosities, the
operating conditions of mechanical elements tend to be more severe, requiring an understanding of the
effects of surface roughness and surface irregularities on lubricating performance, durability increases
oil efficiency [10].

Many fluids used in the latest engineering exhibit rheological efforts. Hence investigators are
particularly interested in the dynamics of non-Newtonian fluids, which are most useful in industry. The
impacts of both cavitation and non-Newtonian behavior are extensively studied using computational
fluid dynamics and fluid-structure interaction methods based on real-world physical models [11].
Because of its simplicity and capacity to calculate pressure loss in turbulent flow, the Bingham plastic
model is commonly used to represent the flow properties of many types of mud. The most popular
rheological model utilized in the drilling business is the Bingham plastic fluid [12]. Using a model
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where the material behaves as a solid when the shear stress magnitude is smaller than a specific yield
stress, the flow of a Bingham plastic fluid is described. When the internal stress of the material is
greater than the yield stress, the material acts like a liquid [13]. The non-Newtonian Bingham plastic
fluid flow characteristics are used to show the passage of fluids, specifically fluids, for a long time
and the development of melts and slurries in molds [14]. Additionally, they pointed out a model of the
behavior of Bingham-like fluids that exhibited yield stress. Examining grease speculatively using the
Bingham model and returning to Milne [15], he studied basic 1-D plain bearings and plain bearings
and concluded that a rigid “core” might be attached to both surfaces. To determine if the performance
of the grease in the ball-on-disk test is typical of real bearings. Kanazawa et al. [16] evaluated the
frictional behavior of several grease formulations in rolling bearings and single-contact ball-on-disc
rigs. The study used specially formulated greases with systematically different formulations in order
to isolate the impact of base oil viscosity and thickening on grease frictional performance. According
to the modified Reynolds equation for non-Newtonian fluid and its numerical solution by the finite
difference method, Kouider et al. [17] presented the impact of non-Newtonian fluid behavior on the
hydrodynamic properties of journal bearings. We present the fluctuations of some hydrodynamic
properties, including pressure, load, and flow rate. They also came to the conclusion that the L/D
ratio, eccentricity ratio, and type of lubricant all have an impact on the hydrodynamic properties of
the journal bearing.

Not much work has been carried out by the researchers from this field taking into account
asymmetric roller bearings with viscosity as a function of pressure and temperature. Hence in
the present work, the attention has been focused on analyzing some non-Newtonian lubrication
properties of non-symmetric roller bearings lubricated by an in-compressible Bingham plastic fluid
under cavitation. The effects of the rolling and sliding behavior on pressure, load, and traction are
investigated using rolling ratios. Roelands viscosity is here considered that takes into account the fluid
pressure and the mean film temperature.

2 Theoretical Model

The system is described in this study in such a way that both moving surfaces have the same radius
but different speeds. The upper surface is made to move at more speed than that of the lower surface.
Fig. 1 depicts the entire flow configuration.

Figure 1: Lubrication of asymmetric rollers
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2.1 Mathematical Formulation
According to common presumptions [18], the following equations, such as continuity and

momentum, which regulate the flow of incompressible fluids, are taken into consideration:
∂u
∂x

+ ∂v
∂y

= 0 (1)

dp
dx

= ∂τ

∂y
(2)

where “p” and “τ” stand for the lubricant pressure and shear stress, respectively. According to
Sasaki et al. [19], the constitutive relation for Bingham plastic fluid can be considered as follows:

τ = ±τ0 + μ
∂u
∂y

(3)

where ‘μ’ is the viscosity [20] of the fluid taken by

μ = μ
0
e

[
[ln(μ0)+9.67]

[
(1+ p

pr )
z
(

T0−t0
Tm−t0

)S0 −1

]]
(4)

where t0 = 1380 and the relation for the thickness of the film is to be

h = h0 + x2

2R
(5)

R denotes the radius of the equivalent cylinder.

2.2 Boundary Conditions
The following boundary conditions are assumed for both the upper and lowers surfaces in this

problem:

u = U1 at y = h; v = U1

dh
dx

(6)

u = U2 at y = −h; v = −U2

dh
dx

(7)

p = 0 at x = −∞ (8)

p = 0 and
dp
dx

= 0 at x = x2 (9)

where U1 and U2 are velocities of the surfaces as shown in Fig. 1.

Applying the above boundary conditions, Eq. (2) is solved to get the fluid velocity expression as
below:

u =
(

U1 + U2

2

)
+

( y
2h

)
(U1 − U2) +

(
3

(
y2 − h2

)
(U1 + U2) (h − h1)

4h3

)
(10)

By integrating the velocity in the space between the surfaces as shown below, it is possible to
determine the “volume flux” or “Q” for the flow of fluid:

Q =
∫ h

−h

udy = h (U1 + U2) − 2h3

3μ

dp
dx

(11)
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At the point of maximum pressure, the volume flux can be taken as

Q (−x1) = (U1 + U2) h1 (12)

where h1 = 1 + x1
2 is the film thickness at x = −x1.

2.3 Reynolds Equation
Pressure Reynolds equation can be obtained by solving the Eqs. (1) & (2) using the boundary

conditions as given below:
dp
dx

=
(

3μ (U1 + U2) (h − h1)

2h3

)
(13)

2.4 Dimensionless Scheme
The following is the dimensionless scheme for this problem:

x = x
R

; p = p
pr

; h = h
h0

; y = y
h0

; T = T
t0

; Tm = Tm

t0

; h1 = 1 + x2
1

μ0 =
(

RU1μ0

prh2
0

)
; τ0 =

(
Rτ0

prh0

)
; wx =

(
2wx

Rpr

)
; wy =

(
2wy

Rpr

)
;

μ = μ0e

[[
ln

(
μ0prh2

0
RU1

)
+9.67

][
(1+p)z

(
T0−1
Tm−1

)S0 −1

]]

Making use of the above dimensionless technique, the expression for velocity and pressure
Reynolds equation are obtained in dimensionless form as follows:

u =
⎡
⎣

⎛
⎝

(
h + y

)
+ U

(
h − y

)
2h

⎞
⎠ +

⎛
⎝3

(
y2 − h

2
) (

1 + U
) (

h − h1

)
4h

3

⎞
⎠

⎤
⎦ (14)

d p
d x

=
⎛
⎝3μ

(
1 + U

) (
h − h1

)
2h

3

⎞
⎠ (15)

Applying the outlet condition of Eq. (9) to Eq. (15) immediately gives

x2 = x1 (15a)

2.5 Heat Fluid Flow Equation
The heat flow equation [6] for the problem with usual assumptions may be considered as

k
(

∂2T
∂y2

)
+ τ

(
∂u
∂y

)
= 0 (16)

The boundary conditions are

T = Th at y = h ,
∂T
∂y

= 0 at y = −h (17)
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The temperature of the lubricant can be obtained by integration of Eq. (15) gives

T = Th −
(τ0

k

) [(
U1 − U2

4h

) (
y2 + 2hy − 3h2

) +
(

(U1 + U2) (h − h1)

4h3

) (
y3 − 3h2y + 2h3

)]

−
(μ

k

)
⎡
⎢⎢⎢⎣

(
(U1 − U2)

2

8h2

) (
y2 + 2hy − 3h2

) +
(

3 (U1 + U2)
2
(h − h1)

2

16h6

) (
y4 + 4h3y − 5h4

)
+

(
(U1 − U2) (U1 + U2) (h − h1)

4h4

) (
y3 − 3h2y + 2h3

)
⎤
⎥⎥⎥⎦

(18)
The lubricant mean temperature ‘Tm’ may be defined as

Tm = 1
2h

∫ h

−h

T dy (19)

Tm = Th +
(τ0

k

) [(
2 (U1 − U2) h

3

)
−

(
(U1 + U2) (h − h1)

2

)]

+
(μ

k

)[(
(U1 − U2)

2

3

)
+

(
9 (U1 + U2)

2
(h − h1)

2

10h2

)
−

(
(U1 − U2) (U1 + U2) (h − h1)

2h

)]

(20)
Now the dimensionless form of temperature and mean temperatures are obtained as follows:

T = Th − (
PR Et

)
[ηA1 (x) + μA2 (x)] (21)

Tm = Th + PR Et [ηA3 (x) + μA4 (x)] (22)

where A1 (x) =
⎡
⎣((

1 − U
)

4h

) (
y2 + 2hy − 3h

2
)

+
⎛
⎝

(
1 + U

) (
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)
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⎞
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2
y + 2h

3
)⎤
⎦

A2 (x) = [B1 (x) + B2 (x) + B3 (x)]
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(((
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)2

8h
2
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2
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⎛
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) (
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3
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2
(
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⎠
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⎦
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A4 (x) =
⎡
⎢⎣

((
1 − U

)2

3

)
+

⎛
⎜⎝9

(
1 + U

)2
(

h − h1

)2

10h
2

⎞
⎟⎠ −

⎛
⎝

(
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) (
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) (
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)
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⎞
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⎤
⎥⎦

γ = prU1h2
0

KRt0

=
(

cph2
0pr

KU1R

) (
U 2

1

t0cp

)
= PR Et, η =

(
Rτ0

h0pr

)

2.6 Load and Traction [6]
Load capacity is one of the important characteristics since it produces an accurate evaluation of

the bearings’ effectiveness. Therefore, the x-component of the load Wx per unit length of the cylinder
is given by integrating the pressure over the film thickness as follows:

Wx = −
∫ h

−h

p dh (23)

The load Wx in the dimensionless form is given by

W x =
∫ x2

−∞
x2 dp

dx
dx (24)

Similarly, the normal load Wy can be obtained as

Wy =
∫ x2

−∞
p dx (25)

The dimensionless normal load Wy is given by

W y = −
∫ x2

−∞
2x

dp
dx

dx (26)

W =
√

W
2

x + W
2

y (27)

By integrating the shear stress ‘τ ’ throughout the full length, it is also possible to determine the
traction forces TFh at the surfaces.

TFh− = −
∫ x2

−∞
τy=−h dx and TFh+ = −

∫ x2

−∞
τy=h dx (28)

Tractions in the dimensionless form are

TFh = −
∫ x2

−∞

⎡
⎣τ 0 +

(
μ

2h

) ⎡
⎣(

1 − U
) +

⎛
⎝3

(
1 + U

) (
h − h1

)
h

⎞
⎠

⎤
⎦

⎤
⎦ dx (29)

TFh− = −
∫ x2

−∞

⎡
⎣τ 0 +

(
μ

2h

) ⎡
⎣(

1 − U
) −

⎛
⎝3

(
1 + U

) (
h − h1

)
h

⎞
⎠

⎤
⎦

⎤
⎦ dx (30)

3 Results and Discussion
3.1 Methodology of Numerical Solution

The Reynolds and the energy equations are coupled through μ and contain unknown x1. The
actual process followed for numerical computation is briefly explained below.
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First of all, an initial value of x is assigned, i.e., the point of minus infinity is replaced by a large
but finite negative value. An arbitrary guessed value of x1 is chosen. These values of x and x1 are
substituted in the Reynolds and energy Eq. (15) by prescribing μ0 and p = 0 at x = −∞ to obtain p
at the next step of x. MATLAB software, along with ode-45 tool was used to evaluate this p. The new
values of x, x1 and p values are substituted in the energy equation which again yields Tm as a solution.
These Tm x and x1 are used to calculate p as a new solution at another adjacent value of x. The process
is repeated till x = x2 = x1. If the computed value of p at x = x2 satisfied the condition p = 0, then the
assumed arbitrary value of x1 was correct. Otherwise, another value of x1 is assigned and the whole
process is repeated so long as p vanishes at x = x2. Thus x1 is computed along with the pressure p and
mean temperature Tm. Further details can be seen in Prasad et al. [18]. The algorithm followed in this
work corresponding to the numerical method is shown in Fig. 2.

Figure 2: Flow chart representing numerical process

The following values are used in this problem for numerical computations: U1 = 400, R = 3, h0 =
4 × 10−4, pr = 1.962 × 108, 1.0 ≤ s0 ≤ 1.5, 0 ≤ z ≤ 0.8.
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3.2 Velocity Profile
Figs. 3–5 display the velocity of the fluid for the regions: before-after and at the pressure-peak

point, respectively. The curves in the first two graphs resemble parabolas with upward and downward
pointing vertices in the areas before and after the maximum pressure point. A backflow is present
close to the inlet, as indicated by the vertices below the line y as presented in Fig. 3. ‘Reverse flow’ was
also shown by Prasad et al. [21]. The backflow stops as the fluid advances. A similar kind of behavior
was also done by Prasad et al. [22]. However, it can be shown in Fig. 5 that the velocity profile appears
to be linearly increasing at the location of the greatest pressure [21].
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3.3 Pressure Profile
The pressure distributions are qualitatively estimated and shown in Figs. 6–8. Figs. 6 and 7 show

that pressure rises with rolling ratio Ū for both Newtonian and non-Newtonian fluids. This shows
that sliding cases experience more hydrodynamic pressure than that of pure rolling. Prasad et al. [5],
Prasad et al. [23], Sajja et al. [6], Prasad et al. [24] and Revathi et al. [25] all reported similar kinds
of behavior. Fig. 8 shows the lubricating pressure for the sliding case at various values of yield stress
parameter τ0 (τ0 = 0 shows Newtonian) and these two coincide each other. However, these differences
can be observed by zooming the figure. This implies that non-Newtonian pressure is more than that
of Newtonian.
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Further, the cavitation points where the pressure and pressure gradient becomes zero are calculated
numerically presented in Table 1 for both Newtonian and non-Newtonian cases. The cavitation points
are increasing as rolling ratio Ū increases for both ‘Newtonian and non-Newtonian’ cases.
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Table 1: Cavitation points

U τ 0 = 0 τ 0 = 1

1.0 0.47329568 0.47386085
1.1 0.47331170 0.47395656
1.2 0.47335691 0.47402527
1.3 0.47338151 0.47406435
1.4 0.47339432 0.47410537
1.5 0.47340527 0.47411882

3.4 Viscosity (μ) Profile
The lubricant ‘viscosity’ μ is computed numerically and presented in Figs. 9–13 for different

values of Ū, τ0 and s0. The lubricant viscosity for different values of τ0 are computed for pure rolling
and rolling/sliding cases and presented in Figs. 9 and 10, respectively. It is seen from the figure that
the viscosity increases with increasing values of yield stress parameter τ0. Figs. 11 and 12 show the
viscosity profiles for different values of rolling ratio parameter Ū for Newtonian and non-Newtonian
cases, respectively. It can be observed from these two figures that viscosity increases with rolling ratio
parameter Ū. Since the pressure increases with Ū, hence viscosity also increases. The similar kind of
behavior was also explained by Sajja et al. [6]. The viscosity profiles for different values of viscosity-
temperature index s0 for sliding case is presented in Fig. 13. One can observe that viscosity decreases
as viscosity-temperature index s0 increases.
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Figure 12: Non-Newtonian viscosity vs. x
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Figure 13: Sliding viscosity vs. x

3.5 Mean Temperature (Tm) Profile
The lubricant mean temperature Tm is computed numerically and presented in Figs. 14–18 for

different values of Ū, τ0 and s0. The mean temperature Tm for many values of Ū is computed for
Newtonian and non-Newtonian fluids and presented in Figs. 14 and 15. Fig. 14 shows that the mean
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temperature is increasing with Ū for the Newtonian case. This demonstrates that the temperature
in the sliding case is higher than in the case of pure rolling. This kind of behavior can also be
seen in Sajja et al. [6], Prasad et al. [22], Prasad et al. [24], Gadamsetty et al. [26], Lee et al. [27],
Lanka et al. [28]. The mean temperature for dissimilar values of Ū for the non-Newtonian cases is
presented in Fig. 15 which shows a just reversed trend. Figs. 16 and 17 show the mean temperature
for different values of τ0 for pure rolling and rolling/sliding cases and it is evident that the mean
temperature drops as τ0 rises. Further, the mean temperature for dissimilar values of s0 for sliding
case is shown in Fig. 18. One can observe that the mean temperature coincides as s0 increases. This
implies that the effect of s0 is not significant on temperature.
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Figure 14: Newtonian mean temperature vs. x
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Figure 16: Mean temperature profile
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Figure 18: Sliding mean temperature vs. x

3.6 The Load and Traction
The non-dimensional load in both the x and y directions are numerically determined for various

values of Ū and τ0, and displayed in Table 2. The tables demonstrate that for both Newtonian
and non-Newtonian instances, load increases with rolling ratio in both directions. These results are
in strong agreement with previous results of Sajja et al. [6], Prasad et al. [21], Prasad et al. [22],
Gadamsetty et al. [26], Prasad et al. [29].

Table 2: Load values

τ 0 = 0 τ 0 = 1

Ū Wx (× 10−6) Wy (× 10−6) Wx (× 10−6) Wy (× 10−6)

1.0 2.02824347 2.03423551 2.02761402 2.03327981
1.1 2.12963706 2.13591947 2.12899380 2.13488600
1.2 2.23099336 2.23754766 2.23040634 2.23653583
1.3 2.33237085 2.33920755 2.33185950 2.33824106
1.4 2.43376123 2.44088675 2.43331625 2.43994629
1.5 2.53515274 2.54256765 2.53481714 2.54171216

Traction forces are presented in Tables 3–4 for both the surfaces for various values of τ 0 and Ū.
For a fixed value of Ū, the traction forces increase with τ 0 on both the top and bottom surfaces.
Additionally, Table 3 shows the growth in traction forces at the lower surface and implies that
traction forces increase velocity. These results are quite similar to those reported by Prasad et al. [29];
Prasad et al. [22]; Prasad et al. [21]. Table 4 shows the traction values at the upper surface. Both the
surfaces approach the same traction when Ū moves towards unity [30].
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Table 3: Traction at lower surface

Ū τ 0 = 0
(×10−6

)
τ 0 = 1

1.0 2.02956022 4.580000202
1.1 2.29473242 4.580000229
1.2 2.55970122 4.580000255
1.3 2.82478575 4.580000282
1.4 3.08994078 4.580000308
1.5 3.35510210 4.580000335

Table 4: Traction at upper surface

Ū τ 0 = 0
(×10−6

)
τ 0 = 1

1.0 2.02956022 4.580000202
1.1 1.96714120 4.580000196
1.2 1.90451878 4.580000190
1.3 1.84201210 4.580000183
1.4 1.77957590 4.580000177
1.5 1.71714600 4.580000171

4 Conclusions

A very useful non-Newtonian Bingham plastic fluid model is used to explore the lubricating
properties of rolling/sliding rigid line contact of asymmetric rollers problem. Roelands viscosity model
is here employed to study such system for various values of the sliding parameter Ū and yield stress
parameter τ0. The governing equations such as continuity, momentum and energy equations are solved
for pressure, mean temperature, load and traction. The results of this study may be used to prove the
following points:

• The velocity of the lubricant is found to be free from τ 0.

• Lubricant velocity decreases linearly at the pressure-peak point.

• The pressure increases with Ū and τ 0.

• Points of pressure-peak shift towards the center line of contact as Ū increases.

• Cavitation points move towards right as rolling ratio Ū increases.

• Viscosity increases with rolling ratio Ū for both ‘Newtonian and non-Newtonian’ fluids. The
same kind of trend exists for the yield stress as well.

• The temperature Tm for sliding is higher than that of pure rolling.

• Temperature Tm decreases as s0 increases.

• Load increases with rolling ratio Ū. However, the traction forces have no such fixed trend. More
traction force occur due to more speed of the surfaces and the yield stress also exhibits the same
pattern.
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