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ABSTRACT: In this study, an analytical investigation is carried out to assess the impact of magnetic field-dependent
(MFD) viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over
a horizontally elongating sheet, while taking into account the effects of ohmic dissipation. By applying similarity
transformations, the original nonlinear governing equations with partial derivatives are transformed into ordinary
differential equations. Analytical expressions for the momentum and energy equations are derived, incorporating the
influence of MFD viscosity on the Jeffrey fluid. Then the impact of different parameters is assessed, including magnetic
viscosity, magnetic interaction, retardation time, Deborah number, and Eckert number, on the velocity and temperature
profiles in the boundary layer. The findings reveal that an increase in magnetic viscosity leads to a decrease in the
local Nusselt number, thereby impairing heat transfer. Moreover, a higher retardation time enhances the local Nusselt
number by thinning the momentum and thermal boundary layers, while a higher Deborah number decreases the local
Nusselt number due to the reduction in fluid viscosity.

KEYWORDS: Analytical solution; heat transfer; Jeffrey fluid; magnetic field-dependent viscosity; magnetohydrody-
namics

1 Introduction
In recent years, interest in the flow behavior of non-Newtonian fluids has increased, particularly in

boundary layer flows caused by a stretching surface with heat transfer. This interest stems from their
wide-ranging engineering and industrial applications, such as the cooling of metallic plates, glass blowing,
continuous casting and filament extrusion, polymer or rubber sheet, and the aerodynamic extrusion of plastic
sheets, where the rate of cooling has a significant impact on the quality of the final product [1–3]. It is widely
recognized that Newton’s viscosity law is insufficient for characterizing the flow behavior of complex fluids,
which cannot be studied using a single governing equation that relates stress to the rate of deformation [4,5].
This limitation has prompted the investigation of various constitutive models in the literature [6–9].

The Jeffrey fluid, a non-Newtonian model, enhances the Newtonian framework by incorporating time
derivatives to account for relaxation and retardation times. This model is commonly applied to complex
fluids, such as polymer melts, blood, suspension systems, lubricants, mud, slurries, and certain biological
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fluids like synovial fluid, where the flow exhibits viscoelastic behavior [10–12]. The integration of magneto-
hydrodynamics (MHD), Jeffrey fluid dynamics, and ohmic dissipation enhances heat transfer, flow behavior,
and energy efficiency in electrically conducting non-Newtonian fluids across applications in metallurgy,
lubrication, biomedical systems, space science, energy generation, and environmental engineering [13–15].
Various numerical studies have explored the intersection of MHD and Jeffrey fluid heat transfer, analyzing
the effects of different physical factors, including Joule heating [16], viscous dissipation [17], heat sources and
sinks [18], entropy generation [19], thermal radiation [20], chemical reactions [21], activation energy [22],
porous media [23], nanoparticles [24], and inclined plates [25], among others [26–29]. Apart from these
numerical studies, considerable interest has been directed towards the analytical investigation of the MHD
Jeffrey fluid boundary layer problem, which provides valuable mathematical insight into the governing
equations and their solutions. For instance, Alsaedi et al. [30] analytically examined the two-dimensional
MHD flow of Jeffrey fluid with convective boundary conditions and chemical reactions on a stretching sheet,
employing the Gamma function to obtain solutions. Ahmed et al. [31] analytically investigated convective
heat transfer in magnetohydrodynamic (MHD) Jeffrey fluid flow over an extending surface, accounting for
Joule and viscous dissipation, internal heat generation/absorption, and radiative heat transfer using confluent
hypergeometric functions. Hayat et al. [32] performed an analytical study on MHD stagnation-point flow
of Jeffrey fluid over a heated stretched sheet using the homotopy analysis method, noting dual behavior
in the velocity ratio. Turkyilmazoglu [33] analytically investigated MHD slip flow and heat transfer at a
stagnation point flow of Jeffrey fluid over deformable surfaces, focusing on the existence and uniqueness of
solutions while emphasizing magnetic interaction. Kumar et al. [34] analytically investigated the influence
of Joule heating on mixed convection MHD flow of an incompressible Jeffrey fluid, incorporating power-law
heat flux and suction, through the homotopy analysis method. Nisar et al. [35] analytically analyzed steady
free convective flow of electrically conducting Jeffrey fluid over a stretching surface, utilizing the Adomian
Decomposition Method for approximate solutions.

Magnetic-field-dependent (MFD) viscosity describes the impact of magnetic fields on fluid flow
by altering viscosity through interactions with charged particles. Accurate models incorporating MFD
viscosity are essential for optimizing conducting fluid flows in plasma physics, engineering, astronomy,
and industry [36]. The effects of MFD viscosity on heat transfer and fluid flow were studied in various
contexts [37,38]. The effect of MFD viscosity on the Casson fluid boundary layer over a stretching sheet
was numerically investigated [39], and an analytical study on second-grade fluid boundary layer flow over
a stretching sheet was conducted by Ganesh et al. [40]. However, investigations into the effect of MFD
viscosity on Jeffrey fluid flow in any physical setting were not reported either numerically or analytically in
the literature.

To address this gap, the present analytical study focuses on examining the heat transfer behavior of
Jeffrey fluids on a horizontally stretched sheet with MFD viscosity and ohmic dissipation, with potential
applications in plasma physics, material processing, energy systems, and biomedical engineering, where
controlling fluid behavior under magnetic fields is essential for optimizing heat transfer, enhancing flow sta-
bility, and improving system efficiency. The mathematical model incorporates both energy and momentum
equations, accounting for the effects of MFD viscosity. These equations are solved analytically, providing
new insights into the interaction between MFD viscosity and the flow. The heat equation is analyzed
under two boundary conditions: prescribed heat flux (PHF) and prescribed surface temperature (PST). The
study examines the influence of fundamental parameters, including the Deborah number, Eckert number,
retardation time, magnetic viscosity, and magnetic interaction, on crucial physical characteristics such as
velocity, skin friction, temperature distribution, and the local Nusselt number.
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The primary objective of this study is to explore the following:

• Determining whether an analytical solution for Jeffrey fluid is possible with magnetic field-dependent
viscosity and Joule heating.

• Examining the impact of magnetic field-dependent viscosity on the velocity and temperature profiles of
Jeffrey fluid.

• Analyzing the behavior of PST and PHF cases in the temperature profile under the influence of magnetic
field-dependent viscosity.

• Investigating the behavior of skin friction and the local Nusselt number in the presence of magnetic
field-dependent viscosity.

2 Problem Structure
Assume the steady, laminar, two-dimensional boundary layer motion of an incompressible MHD Jeffrey

fluid flowing past a stretching surface parallel to the reference plane y = 0. The magnetic field strength B0 is
applied normally to the sheet. For small magnetic Reynolds numbers, the induced magnetic field is supposed
to be minimal compared to the applied magnetic field. The stretched sheet has a velocity of u∗ = dbx (where
b is a constant and d = 1 for stretching sheet). The flow is restricted to y > 0. In the Cartesian coordinate
system, the x and y axes are aligned parallel and perpendicular to the sheet, in this order (see Fig. 1). The
constitutive relation for a Jeffrey fluid is stated as (see [2,4]).

τ∗ = A− Ip, (1)

A = η∗

λ1 + 1
(λ2 (∇ ⋅ V +

∂R1

∂t
)R1 + R1) , (2)

R1 = (∇V)t∗ + (∇V) . (3)

Figure 1: Physical configuration of Jeffrey fluid over a stretching sheet
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The problem formulation explicitly considers the influences of MFD viscosity and Ohmic dissipation
while neglecting viscous dissipation and thermal radiation effects. The equations governing the present
problem for velocity and temperature field subject to boundary layer approximation are given by the
following equations (see [10,31]):

∂v∗

∂y
+ ∂u∗

∂x
= 0, (4)

v∗ ∂u∗

∂y
+ u∗ ∂u∗

∂x
= η∗

ρ
1

λ1 + 1
(∂2u∗

∂y2 + λ2 (v∗ ∂3u∗

∂y3 + u∗ ∂3u∗

∂x∂y2 −
∂u∗

∂x
∂2u∗

∂y2 +
∂u∗

∂y
∂2u∗

∂x∂y
)) − σB2

0
ρ

u∗, (5)

u∗ ∂T̃
∂x
+ v∗ ∂T̃

∂y
= κ

ρcp

∂2T̃
∂y2 +

σB2
0u∗2

ρcp
. (6)

This fluid flow consists of the corresponding boundary conditions (see [31])

u∗ = xbd , v∗ = vw , at y = 0, lim
y→∞

u∗ = 0, (7)

T̃ = T̃w = T̃∞ + A0 (
x
l
)

2
at y = 0, lim

y→∞
T̃ = T̃∞ (PST Case ) , (8)

− κ (∂T̃
∂y
)

w
= qw = E0 (

x
l
)

2
at y = 0, lim

y→∞
T̃ = T̃∞ (PHF Case ) . (9)

The viscosity of the Jeffrey fluid is characterized by a linear variation with the magnetic field, as
referenced in [38–40].

η∗ = (B0 ● δ + 1) μ, (10)

where B0 = B0x ex + B0y e y with B0x = B0y = B0 and δ = δx ex + δy e y with δ = δy = δx , indicating the
isotropic variation in viscosity due to the magnetic field.

The Eq. (10) can be simplified to

η∗ = (1 + δ∗) μ,

where δ∗ = δ B0.
The similarity variable is defined as (see [2,3,40])

η =
√

b
ν

y, ψ (x , y) =
√

bν xF (η) ,

Θ = T̃ − T̃∞
T̃w − T̃∞

(PST case ) , G = T̃ − T̃∞
T̃w − T̃∞

(PHF case ) ,
(11)

u∗ = ∂ψ
∂y
= bxFη (η) , v∗ = −∂ψ

∂x
= −
√

bν F (η) . (12)

The velocity components are defined in Eq. (12) and naturally satisfy the requirements given in Eq. (4).
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3 Analytical Solution of Momentum Equations
Using the non-dimensional similarity variable Eqs. (11) and (12) in the PDE Eq. (5), the following ODE

equation is obtained (see [9])

(λ1 + 1) (−QFη − (Fη)
2 + FFηη) + (δ∗ + 1) (Fηηη + (−FFηηηη + (Fηη)

2) β) = 0, (13)

with the boundary conditions

F (0) = − vw√
bν
= S , Fη (0) = d , at η = 0,

lim
η→∞

Fη (η) = 0,
(14)

where β = λ2b is the Deborah number behaves in three different ways: when β < 1, it behaves like a fluid;
when β = 1, it behaves like a viscoelastic fluid; and when β > 1, it behaves like a solid.

Applying the boundary conditions (14), the exact solution to Eq. (13) is found as follows:

F (η) = S + (d − de−αη

α
) , (15)

by substituting Eqs. (15) into (13), the following cubic algebraic equation is obtained

α3 + (1 + βd)
βS

α2 − (1 + λ1)
(1 + δ∗) β

α − (Q + d) (1 + λ1)
(1 + δ∗) βS

= 0, (16)

upon solving Eq. (16), three expressions for α are derived

α1 = l + p
3 × 2 1

3
− 2 1

3 m
3p

, (17)

α2 = l +
(i
√

3 + 1)m
3p × 2 2

3
−
(−i
√

3 + 1) p
2 1

3 × 6
, (18)

α3 = l +
(−i
√

3 + 1)m
3p × 2 2

3
−
(i
√

3 + 1) p
2 1

3 × 6
, (19)

where

l = −(1 + βd)
3βS

, m = −9l 2 − 3 (1 + λ1)
(1 + δ∗) β

,

n = 54l 3 + 27 l (1 + λ1)
(1 + δ∗) β

+ 27(1 + λ1) (Q + d)
(1 + δ∗) βS

, p = (n +
√

4m3 + n2)
1
3 .

(20)

The skin friction coefficient, C f is defined (see [5,6]) as

C f =
τw

1
2

ρu2
w

, where τw =
η∗

1 + λ1
(∂u∗

∂y
+ λ2 (u∗ ∂2u∗

∂x∂y
+ v∗ ∂2u∗

∂y2 ))
y=0

. (21)

Using the similarity variables Eqs. (11) and (12) in Eq. (21). The skin friction is obtained as
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(λ1 + 1)C f d2Re
1
2
x

2
= (δ∗ + 1) (β (−F (0) Fηηη (0) + Fηη (0) Fη (0)) + Fηη (0)) . (22)

where Rex =
bx2

ν
represents the local Reynolds number.

4 Analytical Solution of Energy Equations

4.1 Heat Transfer in the Prescribed Surface Temperature (PST) Case
The energy PDE in Eq. (6) and PST boundary conditions are converted into a non-dimensional ODE

and non-dimensional boundary condition using Eqs. (11) and (12) as follows:

Θηη + Pr FΘη − 2 Pr FηΘ = −Pr Ec1QF2
η , (23)

Θ (0) = 1 and Θ (∞) = 0. (24)

Upon introducing the new variable ξ = − e−ηα Pr
α2 into Eqs. (23) and (24), we get

2dΘ + (−ξd − a#
0 + 1)Θξ + ξΘξξ = −

Ec1α2d2Qξ
Pr

, (25)

Θ(−Pr
α2 ) = 1 and Θ (0) = 0. (26)

where a#
0 =

Pr d
α2 +

Pr S
α

.

The analytical solution of Eq. (25), subject to the boundary condition (26), is expressed in terms of the
confluent hypergeometric function as a function of ξ as

Θ (ξ) =

⎛
⎜⎜⎜⎜
⎝

1 + Ec1 Pr d2

α2
Q

2 (2 − a#0)

M (a#0 − 2, 1 + a#0, −Pr
α2 d)(−Pr

α2 )
a# 0

⎞
⎟⎟⎟⎟
⎠

ξa#
0 M (a#

0 − 2, 1 + a#
0, ξd)

+ (−Ec1α2d2

Pr
Q

2 (2 − a#0)
ξ2) . (27)

Upon replacing the variable ξ with η, we get

Θ (η) = (−C1 + 1) e−a#
0 αη ×

M (a#
0 − 2, 1 + a#

0, −Pr d
α2 e−αη)

M (a#0 − 2, 1 + a#0, −Pr d
α2 )

+ C1e−2αη . (28)

The dimensionless gradient of the wall temperature for the PST case is given by Θη (0) is

Θη (0) = (1 − C1)
⎛
⎜⎜⎜
⎝

Pr d
α

a#
0 − 2

1 + a#0
×

M (a#
0 − 1, 2 + a#

0, −Pr d
α2 )

M (a#0 − 2, 1 + a#0, −Pr d
α2 )

− a#
0α
⎞
⎟⎟⎟
⎠
− 2C1α. (29)
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where C1 = −
Ec1 Pr d2Q

2α2 (2 − a#0)
, and M is the Confluent Hypergeometric function [40] defined by

M (ã, b̃, x) = 1 +
∞
∑
n=1

(ã)n xn

(b̃)n n!
,

(ã)n = ã0 (1 + ã0) (2 + ã0) , ⋅ ⋅ ⋅ , (n − 1 + ã0) ,
(b̃)n = b̃0 (1 + b̃0) (2 + b̃0) , ⋅ ⋅ ⋅ , (n − 1 + b̃0) .

The local Nusselt number, as defined in [31,40], is Nu1 for PST case

Nu1 =
xqw

κ (T̃w − T̃∞)
, Where qw = −κ (∂T̃

∂y
)

y=0
. (30)

Using the similarity variables in Eqs. (11), (30) yields the following equation:

Nu1 Re−(
1
2 )

x = −Θη (0) . (31)

4.2 Heat Transfer in the Prescribed Surface Heat Flux (PHF) Case
The energy PDE in Eq. (6) and PHF boundary conditions are converted into a non-dimensional ODE

and non-dimensional boundary condition using Eqs. (11) and (12) as follows:

Gηη + Pr FGη − 2 Pr FηG = −Pr Ec2QF2
η , (32)

Gη (0) = −1 and G (∞) = 0. (33)

Substituting ξ into Eqs. (32) and (33) yields

2dG + (−ξd − a#
0 + 1)Gξ + ξGξξ = −

Ec2α2d2Qξ
Pr

, (34)

Gξ (−
Pr
α2 ) = −

α
Pr

and G (0) = 0. (35)

The analytical solutions of Eqs. (34) with (35) are expressed in terms of ξ and η as

G (ξ) =

⎛
⎜⎜⎜⎜⎜
⎝

− α
Pr
− Ec2d2Q
(2 − a#0)

((a#
0 − 2

1 + a#0
) dM (a#0 − 1, 2 + a#0, −Pr

α2 d) + a#0M (a#0 − 2, 1 + a#0, −Pr
α2 d)(−α2

Pr
))(−α2

Pr
)
−a# 0

⎞
⎟⎟⎟⎟⎟
⎠

× ξa#
0 M (a#

0 − 2, 1 + a#
0, dξ) − Ec2α2d2

Pr
Q

2 (2 − a#0)
ξ2, (36)

G (η) = C2e−a#
0 αη M (a#

0 − 2, 1 + a#
0, −Pr d

α2 e−αη) + C1e−η2α . (37)

The dimensionless gradient of the wall temperature for the PHF case is given by

G (0) = C2M (a#
0 − 2, 1 + a#

0, −Pr d
α2 ) + C1 . (38)
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where

C2 =
(−1 + 2C1α)

(−αa#0M (a#0 − 2, 1 + a#0, −Pr
α2 d) + (a#

0 − 2
1 + a#0

) d Pr
α

M (a#0 − 1, 2 + a#0, −Pr d
α2 ))

The local Nusselt number is defined (see [31,40]) as Nu2 for PHF case

Nu2 =
x ( ν

b
) qw

κ (T̃w − T̃∞)
, Where qw = E0 (

1
l 2 )y=0

. (39)

Using the similarity variable and the PHF boundary condition in Eq. (39) yields the following equation:

Nu2 Re−(
1
2 )

x = 1
G (0) . (40)

5 Results and Discussion
To verify the analytical expressions, the outcomes of Fηη (0) are compared with those presented

by Dalir [8] and listed in Table 1 for different values of β and λ1, without considering MFD viscosity
and ohmic dissipation. Table 1 presents the relevant data, indicating a high level of agreement between
the outcomes. The impacts of several key parameters on velocity and temperature profiles, namely the
magnetic viscosity parameter (δ∗), magnetic interaction parameter (Q), retardation time (λ1), Deborah
number (β = λ2b), Eckert number (Ec = Ec1 = Ec2), and Prandtl number (Pr), are presented through
graphical representations of the velocity and temperature profiles. Throughout the study, the parameters were
maintained at fixed values: d = 1, λ1 = 0.5, δ∗ = 0.5, β = 0.5, Q = 1, S = 2, Ec = 2, and Pr = 3 based on the
previous literature [8,34]. The subsequent sections will elaborate on the obtained results.

Table 1: Comparison values of Fηη (0) for several values of β and λ1 when δ = Q = Ec = 0, S = 0.00001, d = 1 and
Pr = 0.71

F ηη (0) for Various β∶ λ1 = 0.2 F ηη (0) for Various λ1∶ β = 0.2

β Dalir [8] Present result λ1 Dalir [8] Present result
0.4 −0.92582010 −0.9258233 0.4 −1.08012345 −1.0801287
0.6 −0.86602540 −0.8660276 0.6 −1.15470054 −1.1547068
1.0 −0.77459667 −0.7745983 1.0 −1.29099445 −1.2910027
1.4 −0.70710678 −0.7071082 1.4 −1.41421356 −1.4142228
1.6 −0.67936622 −0.6793673 1.6 −1.47196014 −1.4719694
2.0 −0.63245553 −0.6324561 2.0 −1.58113883 −1.5811500
2.4 −0.59408853 −0.5940891 2.4 −1.68325082 −1.6832631
2.6 −0.57735027 −0.5773509 2.6 −1.73205081 −1.7320640
3.0 −0.54772256 −0.5477230 3.0 −1.82574186 −1.8257569
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5.1 Results for the Momentum Equation Solution
The boundary constraints stated in Eq. (14) are used to determine the precise solution to the dimen-

sionless momentum equation. This solution contains an unknown parameter, denoted as α, which needs
to be identified to resolve Eq. (13). By substituting Eq. (15) into expression (13), the momentum expression
transforms into a cubic polynomial equation (see Eq. (16)) with respect to α. According to the fundamental
theorem of algebra, solving for α yields three solutions for Eq. (13), denoted as α1 , α2 and α3. It is vital to
emphasize that only positive values of α offer physically relevant solutions to this problem [5,33,40].

Fig. 2 depicts the physically viable solution α corresponding to the momentum equation in relation to
the suction parameter (S). It is observed that only one of the values α1 , α2 and α3, considered α1 provides
a meaningful solution. Therefore, there is only one solution to the momentum equation for the current
problem. The solution α1 was employed to obtain exact answers to both the momentum and heat energy
equations. Furthermore, Fig. 2a shows that the α1 value increases as the λ1 increases. From Fig. 2b,c, it is also
noted that the α1 value drops as the β and δ∗ increase. The impact of the Q is shown in Fig. 2d; as the Q
increases, so does the α1 value.

Figure 2: (a) Impact of λ1 on α as a function of S; (b) Impact of β on α as a function of S; (c) Impact of the δ∗ on α as
a function of S; (d) Impact of Q on α as a function of S
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5.2 Analysis of the Velocity Profile
The velocity profile of the Jeffrey fluid for various values, considering the combined effects of λ1, β, and

Q with δ∗, is graphically illustrated in Fig. 3a–c, respectively. Fig. 3a presents a comparative analysis of the λ1
and the δ∗. It is observed that the fluid’s velocity decreases with an increase in λ1, which is attributed to the
thinning of the momentum boundary layer. Conversely, the fluid’s velocity rises with an increase in the δ∗,
highlighting the magnetic field’s influence on the fluid’s viscosity. The physical reason for the thinning effect
due to increased λ1 can be linked to the structural changes in the fluid’s molecular level interaction. As the λ1
increases, the fluid molecules experience a delayed viscous response to applied stress, allowing them more
time to align and stretch along the flow direction, which reduces the overall resistance, thins the momentum
boundary layer, and decreases the velocity.

Figure 3: (a) Impact of δ∗ and λ1 on Fη (η). Where colours show δ∗ variation and different types of lines show λ1
variation; (b) Impact of δ∗ and β on Fη (η). Where colours show δ∗ variation and different types of lines show β
variation; (c) Impact of δ∗ and Q on Fη (η). Where colours show δ∗ variation and different types of lines show Q
variation

Fig. 3b displays the effects of the β and the δ∗ on the velocity profile. An increase in the β enhances
both the fluid velocity and the momentum boundary layer thickness. Since the β is related to the stretching
parameter b, it indicates that a higher β corresponds to a greater rate of stretching of the sheet, which in
turn reduces the fluid’s resistance to motion. This results in higher fluid mobility within the boundary layer
near the surface, leading to increased velocity and boundary layer thickness. Furthermore, the increase in
magnetic viscosity parameter also boosts the fluid’s velocity, compounding with the effects of the β.
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The combined impact of the Q and the δ∗ on the velocity profile is shown in Fig. 3c. An increase in
the Q results in a reduction of the velocity distribution. This decrease in the velocity profile is due to the
Lorentz magnetohydrodynamic drag force, which acts perpendicular to the magnetic field and inhibits the
flow, whereas an increase in the δ∗ enhances the fluid velocity.

5.3 Results on the Skin Friction Coefficient
The local skin friction coefficient is illustrated in Fig. 4 for various values of λ1, β, and δ∗. The x-axis

represents the Q, and the y-axis represents the local skin friction coefficient. The skin friction coefficient
decreases as Q rise, while it increases with the increase of λ1 (Fig. 4a). This occurs because the fluid takes
longer to reach its equilibrium state; thus, the increased movement within the fluid generates more friction,
leading to a higher skin friction coefficient. Fig. 4b illustrates the influence of the β on the local skin friction
coefficient. It is observed that a rise in the β results in a diminish in the local skin friction coefficient. This
is because the β is directly proportional to the rate of stretching of the sheet, and a higher β decreases the
resistance to fluid motion, thereby reducing the local skin friction coefficient. The impact of the δ∗ on the
local skin friction coefficient is shown in Fig. 4c. An increase in the δ∗ leads to a decrease in the local skin
friction coefficient. The relationship between local skin friction coefficient and various parameters, including
λ1, β, δ∗, and Q, is tabulated in Table 2. The computed numerical values of these physical quantities are
systematically presented in a tabular format, providing a quantitative perspective that will be useful for
future reference.

Figure 4: (a) Impact of λ1 on the skin friction C f Re1/2
x as Q on the x-axis; (b) Impact of β on the skin friction C f Re1/2

x

as Q on the x-axis; (c) Impact of δ∗ on the skin friction C f Re1/2
x as Q on the x-axis
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Table 2: Numerical values of −Fηη (0) and −C f Re1/2
x for various values of λ1 , β, δ∗ and Q

Parameters Values −F ηη (0) −C f Re1/2
x

λ1 0.5 1.2807764 7.1231056
1.0 1.4902246 6.6841592
1.5 1.6758708 6.3868189

β 0.2 1.6939948 6.3612823
0.5 1.2807764 7.1231056
0.8 1.0859694 7.6833449

δ∗ 0.5 1.2807764 7.1231056
1.0 1.1007362 7.6339316
1.5 0.9787451 8.0868658

Q 1.0 1.2807764 7.1231056
2.0 1.4142136 8.2426407
3.0 1.5265672 9.2405162

5.4 Analysis of the Temperature Profile
The temperature profile is analyzed under two separate boundary conditions: the PST and PHF cases.

In this context, PST and PHF are represented by different symbols Θ (η) and G (η). The temperature profile
incorporates the effects of ohmic dissipation, introducing the δ∗ and Q into the non-dimensional energy
equation. Fig. 5 illustrates the combined effects of λ1 and the δ∗ on the temperature profile for the PST case
in Fig. 5a and the PHF case in Fig. 5b. As the λ1 increases, the temperature profile decreases, which occurs
because higher λ1 thins the thermal boundary layer, reducing the temperature. However, an increase in the
δ∗ raises the temperature due to the influence of the magnetic field in the fluid, affecting both the PST and
PHF cases.

Figure 5: (a) Impact of δ∗ and λ1 on Θ (η). Where colours show δ∗ variation and different types of lines show λ1
variation; (b) Impact of δ∗ and λ1 on G (η). Where colours show δ∗ variation and different types of lines show λ1
variation
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Fig. 6 illustrates the combined effects of the β and the δ∗ on the temperature profile for both boundary
conditions. A rise in the β and δ∗ leads to higher temperature profiles (Fig. 6a,b). This effect is due to the
intensified motion of fluid particles, which thickens the thermal boundary layer. The enhanced fluid motion
slightly raises the temperature at the sheet surface, particularly as the β increases. Additionally, the rise in the
δ∗ promotes smoother fluid flow, further increasing the thermal boundary layer thickness and temperature.

Figure 6: (a) Impact of δ∗ and β on Θ (η). Where colours show δ∗ variation and different types of lines show β
variation; (b) Impact of δ∗ and β on G (η). Where colours show δ∗ variation and different types of lines show β variation

Fig. 7 shows the temperature profile for the PST and PHF cases, considering the effects of the Q and δ∗.
In both Fig. 7a,b, the profiles show an increase in temperature for the PST and PHF cases, due to the effect of
the magnetic field. An increase in Q causes the expansion of the flow region in both scenarios. This expansion
results from the resistive Lorentz force induced when a transverse magnetic field interacts with an electrically
conducting fluid, reducing fluid velocity in the flow region and enhancing the temperature distribution.

Figure 7: (a) Impact of δ∗ and Q on Θ (η). Where colours show δ∗ variation and different types of lines show Q
variation; (b) Impact of δ∗ and Q on G (η). Where colours show δ∗ variation and different types of lines show Q
variation

Fig. 8a,b presents the temperature distribution for the PST and PHF cases, respectively, along with the
effects of the Eckert number and δ∗. A higher Eckert number results in an expanded thermal boundary
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layer, increasing the significance of dissipative energy and broadening the temperature profile. Additionally,
energy dissipation causes a sharper temperature gradient in the PST case and a rise in wall temperature in the
PHF case. Energy dissipation from electrical resistance generates a larger temperature field and an increase
in the Eckert number. Notably, there is a considerable temperature overshoot as the Eckert number increases,
reflecting the relationship between the flow’s kinetic energy and the enthalpy difference in the boundary layer.
Internal friction heating between fluid molecules, combined with ohmic heating, which converts mechanical
and electrical energy into thermal energy, heats the fluid in the stretching sheet flow. A higher δ∗ and Eckert
number produces more thermal energy, resulting in a higher temperature of the stretched sheet and a thicker
thermal boundary layer.

Figure 8: (a) Impact of δ∗ and Ec on Θ (η). Where colours show δ∗ variation and different types of lines show Ec
variation; (b) Impact of δ∗ and Ec on G (η). Where colours show δ∗ variation and different types of lines show Ec
variation

5.5 Local Nusselt Number and Dimensionless Temperature Results
Fig. 9 shows the variation of the local Nusselt number for different parameters, including λ1, β, and

δ∗. Fig. 9a shows that as the λ1 grows, so does the local Nusselt number. As retardation time grows, the fluid
has more time to absorb heat, resulting in a larger temperature differential at the surface and consequently a
higher local Nusselt number, which decreases with Q.

Fig. 9b demonstrates the behavior of the local Nusselt number in relation to the Q for different values
of the β. It has been noted that an increase in the β results in a decrease in the local Nusselt number. Fig. 9c
illustrates that as δ∗ increases, the local Nusselt number decreases, thereby enhancing heat transfer within
the boundary layer. Fig. 10 depicts the relationship between 1

G(0) which is a local Nusselt number for the PHF
case and the Q. Fig. 10a demonstrates that when λ1 increases, the 1

G(0) value rises significantly since it is the
reciprocal of the temperature profile in the PHF case (η = 0). Fig. 10b,c shows the 1

G(0) values drop when the
β and δ∗ rise, respectively. This small drop is caused by the magnetic field. An increase in the Q increases
the Lorentz force, which opposes fluid motion and reduces the temperature gradient, hence decreasing the

1
G(0) value due to the Lorents force. Table 3 shows the non-dimensional temperature profiles for the PST and
PHF cases, along with the local Nusselt numbers for both cases, under different parameters such as λ1, β, δ∗,
Q, Eckert number, and Pr.
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Figure 9: (a) Impact of λ1 on domain local Nusselt number Nu1 Re−(1/2)x as a function of Q; (b) Impact of β on domain
local Nusselt number Nu1 Re−(1/2)x as a function of Q; (c) Impact of δ∗ on domain local Nusselt number Nu1 Re−(1/2)x
as a function of Q

Figure 10: (Continued)
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Figure 10: (a) Impact of λ1 and Q on 1
G(0) ; (b) Impact of β and Q on 1

G(0) ; (c) Impact of δ∗ and Q on 1
G(0)

Table 3: Numerical values of Θη (0) , G (0) , Nu1 Re−(1/2)x and Nu2 Re−(1/2)x for various values of λ1 , β, δ∗ , Q , Ec and
Pr

Parameters Values Θη (0) G (0) Nu1 Re−(1/2)x Nu2 Re−(1/2)x

λ1 0.5 −5.2370225 0.3998210 5.2370225 2.5011191
1.0 −5.4156244 0.3727043 5.4156244 2.6830921
1.5 −5.5413498 0.3532163 5.5413498 2.8311264

β 0.2 −5.5523059 0.3514982 5.5523059 2.8449645
0.5 −5.2370225 0.3998210 5.2370225 2.5011191
0.8 −5.0221945 0.4318190 5.0221945 2.3157850

δ∗ 0.5 −5.2370225 0.3998210 5.2370225 2.5011191
1.0 −5.0405438 0.4291067 5.0405438 2.3304227
1.5 −4.8766114 0.4532263 4.8766114 2.2064031

Q 1.0 −5.2370225 0.3998210 5.2370225 2.5011191
2.0 −3.6654081 0.6217406 3.6654081 1.6083878
3.0 −2.2557324 0.8215185 2.2557324 1.2172580

Ec 2.0 −5.2370225 0.3998210 5.2370225 2.5011191
4.0 −3.4144466 0.6579909 3.4144466 1.5197778
6.0 −1.5918708 0.9161608 1.5918708 1.0915114

Pr 3.0 −5.2370225 0.3998210 5.2370225 2.5011191
5.0 −8.2148024 0.3547709 8.2148024 2.8187205
8.0 −12.6049861 0.3281504 12.6049861 3.0473835

6 Conclusion
The present analytical investigation studied the impact of MFD viscosity on the Jeffrey fluid flow with

ohmic dissipation over a stretching surface, using defined boundary conditions. The velocity and temperature
profiles for the PST and PHF cases were examined, and the non-dimensional differential equations were
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solved through the use of a confluent hypergeometric function. The study examined various physical
parameters, including the δ∗, Q, λ1, β, Eckert number, and Pr, with detailed graphical discussions of their
impact on thermal behavior. The main conclusions are as follows:

• The study employs similarity transformations to convert nonlinear partial differential equations into
ordinary differential equations, and obtained the unique solution to momentum equations, which are
solved analytically using a confluent hypergeometric function.

• The velocity of the Jeffrey fluid decreases with increasing retardation time and magnetic interaction
parameter, as a thinner velocity boundary layer develops. Conversely, higher magnetic viscosity and
Deborah number enhances fluid velocity due to reduced resistance.

• The local skin friction coefficient rises with retardation time, but decreases with Deborah number,
magnetic interaction parameter, and magnetic viscosity, suggesting complex interactions between fluid
movement and these parameters.

• The increased retardation time lowers the temperature distribution due to the thinning of the thermal
boundary region, whereas higher magnetic interaction, magnetic viscosity, and Deborah number elevate
the temperature in both PST and PHF cases.

• An increase in retardation time increases the local Nusselt number, indicating improved heat transfer,
while increases in magnetic viscosity and Deborah number generally decrease the Nusselt number.

• This work not only enhances the understanding of Jeffrey fluid behavior in MFD environments but also
provides analytical solutions for comparing future numerical and analytical works on the impacts of
MFD on Jeffrey fluid boundary layer flow.
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Nomenclature
A Extra stress tensor
A0 and E0 Constants whose value depend on the properties of the fluid
B0 Strength of magnetic field
b Linear stretching rate constant
C f Skin friction coefficient
cp Specific heat capacity at constant pressure (Jkg−1K−1)
d Constant
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Ec1 and Ec2 (Ec1 = b2 l 2

A0 c p
and Ec2 = κb2 l 2

E0 c p

√
b
ν ) Eckert number

κ Thermal conductivity of the fluid (Wm−1K−1)
l Characteristic length
M Kummer’s function (or) Confluent hypergeometric function
p Pressure
Pr (= μc p

κ ) Prandtl number
Q (= σ B2

0
bρ )Magnetic interaction parameter

qw Heat transfer rate at the surface flux (Wm−2)
R1 Rivlin-Ericksen tensor
Re1/2

x (= b1/2 x
ν1/2 ) local Reynolds number

S Suction and blowing parameter as S > 0 and S < 0, respectively
T̃ Temperature (K)
T̃∞ Temperature away from the sheet (K)
T̃w Wall temperature of the sheet (K)
u∗ and v∗ velocity components in the x and y directions (ms−1)
uw Stretching velocity (ms−1)
vw Permeability of the stretching sheet
x and y System of coordinates (m)
Greek Symbols
α Solution domain
β (= λ2b) is the Deborah number
δ∗ (= δB0)Magnetic viscosity parameter
η Similarity variable
λ1 Ratio of relaxation to retardation times
λ2 Relaxation time
μ Viscosity of the fluid (kgm−1s−1)
ν Kinematic viscosity (m2s−1)
ρ Density of the fluid (kgm−3)
σ Electrical conductivity (Sm−1)
τ∗ Cauchy stress tensor
Θ Non-dimensional temperature

Superscript
t∗ Transpose

Subscripts
w Quantities at wall
x Differentiation with respect to x
y Differentiation with respect to y
∞ Quantities at free stream
η Differentiation with respect to η

Abbreviations
MFD Magnetic field dependent
MHD Magnetohydrodynamics
PST Prescribed surface temperature
PHF Prescribed heat flux
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