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ABSTRACT: Airfoil structures play a crucial role across numerous scientific and technological disciplines, with
the transition to turbulence and stall onset remaining key challenges in aerodynamic research. While experimental
techniques often surpass numerical simulations in accuracy, they still present notable limitations. This paper begins by
elucidating the fundamental principles of transition, dynamic stall, and airfoil behavior. It then provides a systematic
review of six major experimental methodologies and examines the emerging role of artificial intelligence in this domain.
By identifying key challenges and limitations, the study proposes strategic advancements to address these issues, offering
a foundational framework to guide future research in airfoil structures and related fields.
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1 Introduction
Throughout human history, continuous innovations in mechanical structures have enabled us to

explore, research, and develop uncharted territories [1,2]. The airfoil structure, renowned for its unique
hydrodynamic properties and high-efficiency performance [3–5], has found widespread application
across diverse fields, including aerospace [6,7], ocean engineering [8,9], civil engineering [10,11], vehicle
engineering [12,13], energy power engineering [14,15], chemical engineering [16,17], and biomedical engi-
neering [18,19]. Its excellent hydrodynamic properties and broad application potential make the airfoil
structure a crucial element for technological innovation in many fields, further advancing economic [20,21],
societal [22,23], and scientific [24,25] development.

In recent years, research on transition and dynamic stall phenomena in wing structures has gained
significant attention. As illustrated in Fig. 1, the intensity of these research hotspots has been steadily
increasing. Transition and dynamic stall can lead to airfoil structure failure [26–29], resulting in significant
negative impacts such as economic losses and casualties, as depicted in Fig. 2.

Given the importance of these phenomena, their study is crucial. Traditional experimental methods
are often hindered by high costs [30,31]. Consequently, researchers have predominantly turned to numer-
ical simulation techniques [32–34]. Common numerical simulation methods and turbulence models are
shown in Fig. 3. However, numerical methods come with their own challenges, including computational
errors [35,36], results validation challenges [37,38], and issues with model convergence [39,40]. Thus, it is
vital to develop sustainable experimental methods that are more cost-effective, accurate, and efficient.

To advance the field, this paper provides a comprehensive review of relevant research. It begins
with definitions of transition, dynamic stall, and airfoil structure. The paper then examines six primary
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experimental techniques. Additionally, it explores the potential applications of artificial intelligence in this
domain. Through this review, the paper identifies key limitations and challenges within the field and offers
developmental suggestions to address these issues. This paper aims to serve as a valuable guide for the future
development of the field. The flowchart outlining the structure of this paper is illustrated in Fig. 4.

Figure 1: The number of published results about “TS = (Airfoil AND (Experiment OR Test) AND (Dynamic stall OR
Transition))” in the Web of Science and CNKI, from 2003–2023

Figure 2: Areas of application of the structure of airfoils and the negative effects caused by dynamic stalling and
transition
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Figure 3: Common numerical simulation methods and turbulence models

Figure 4: Flowchart of the article
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2 Fundamental Concepts

2.1 Transition
Transition refers to the change in fluid flow from laminar to turbulent. The transition phenomenon of

an airfoil fundamentally occurs when fluid perturbations cannot be effectively attenuated or suppressed by
the laminar flow structure in the boundary layer. When external disturbances (such as surface roughness,
airflow pulsations, or changes in the angle of attack) or inherent instabilities (such as high Reynolds number)
induce small perturbations in the fluid flow, and these perturbations cannot be dissipated by the fluid’s
viscous effects or other inherent mechanisms, they gradually amplify within the boundary layer. This leads
to the transformation of laminar flow into turbulence, thereby triggering the transition phenomenon. In
essence, transition is a process where the flow pattern undergoes a dramatic change due to the instability
of the fluid’s internal structure in response to external perturbations. The flow transitions from a smooth,
orderly laminar state to a chaotic, turbulent state [41–44]. The flow progression from laminar to turbulent
flow is illustrated in Fig. 5. In order to demonstrate the fundamental concepts of the transition process, three
common transition models are selected here for derivation.

Figure 5: The progression of flow from laminar to turbulent flow

(1) Michel transition criterion
The Michel Transition Criterion is an empirical method for predicting the transition from laminar to

turbulent flow in a boundary layer [45]. This criterion is an empirical model used to describe the transition
of the boundary layer from laminar to turbulent flow, primarily based on the Reynolds number and fluid
perturbation excitation. It posits that when the Reynolds number exceeds a critical threshold, the boundary
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layer undergoes a transition to turbulence. This criterion highlights the importance of velocity gradients
and instabilities in the transition process, suggesting that external perturbations (such as surface roughness
or flow disturbances) induce small perturbations in the boundary layer, which gradually amplify and lead
to turbulence. Proposed by the German fluid mechanist Wolfgang O. Michel in the 1930s, this criterion is
expressed through the following formula.

Reθ ,tr = 1.174(1 + 22400
Rex ,tr

)Re0.46
x ,tr (1)

In this context, Reθ ,tr denotes the momentum thickness Reynolds number at the transition point, while
Rex ,tr represents the local Reynolds number based on the flow direction. The formula applies within the
Reynolds number range of 0.1 × 106 ≤ Rex ≤ 40 × 106 [46].
(2) γ-Reθ transition model

The γ-Reθ transition model is a widely utilized model for predicting the transition of flow from laminar
to turbulent states. Proposed by Menter et al. [47]. In 2006, the core of this model is to accurately capture
the transition process within the boundary layer.

The γ-Reθ transition model describes the transition from laminar to turbulent flow by incorporating the
Reynolds number (Re), the turning Reynolds number (Reθ), and the transition factor (γ). The core principle
of the model is that, as the Reynolds number increases, the Reθ of the boundary layer also increases. When
a critical threshold is reached, the flow transitions to turbulence. The transition factor γ governs both the
location and timing of this transition, reflecting changes in the flow’s stability. The intermittency factor, γ, is
a value between 0 and 1 that indicates the percentage of turbulent regions within the boundary layer [48,49].
It describes this transition by introducing two sets of equations: one for the intermittency factor (γ) and
another for the transition momentum thickness Reynolds number (R̃eθ t). The transport equation for γ is as
follows:

∂ (ργ)
∂t

+
∂ (ρU jγ)

∂x j
= Pγ1 − Eγ1 + Pγ2 − Eγ2 +

∂
∂x j
[( μt

σ f
+ μ) dγ

dx j
] (2)

where Pγ1 and Pγ2 are the generating terms of γ. Eγ1 and Eγ2 are the dissipation terms of γ. μ is the laminar
viscosity coefficient. μt is the turbulence viscosity coefficient. σf is a constant of the turbulence model
(generally taken as 1.0) [50]. Uj is the flow velocity component.

Pγ1 = Ca1FlengthρS [γFonset]Cγ3 (3)
Eγ1 = Ce1Pγ1γ (4)
Pγ2 = Ca2ρΩγFturb (5)
Eγ2 = Ce2Pγ2γ (6)

where S is the mode of strain rate, Ω is the mode of vorticity, Flength is the empirical relational coefficient
controlling the length of the transition zone, Fturb restricts the action of Pγ2 to the laminar boundary layer
only, and Fonset is used for triggering pγ1 as a function of the vorticity Reynolds number ReV . The constants
are defined as follows: Ca1 = 2, Ce1 = 1, Ca2 = 0.06, Ce2= 50, and Cγ3 = 0.5 [51].

Fonset1 =
Rev

CReθ c
, c = 2.193 (7)
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Rev =
ρy2S

μ
(8)

Fonset =min (max (Fonset1 , Fonset1
4) , 2.0) (9)

Fonset3 =max(1 − (RT

2.5
)

3
, 0) (10)

RT =
ρk
μω

(11)

Fonset =max (Fonset − Fonset3, 0) (12)

Fturb = e−(
RT

4 )
4

(13)

where y is the distance from the wall along the outer normal direction, k is the turbulent kinetic energy, ω is
the specific dissipation rate of the turbulent kinetic energy, and Reθ c is the Reynolds number of the critical
momentum thickness at the position where the intermittency factor begins to increase within the boundary
layer. The local transition criterion is given by Rev

CReθ c
. When this ratio exceeds one, the intermittency factor γ

starts to increase [52].
The length of the transition region is controlled by Flength and Reθ c ,which determine the onset position

of transition in the generation term and dissipation term of the γ transport equation, respectively [53]. Their
specific forms are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Flength = 398.189 × 10−1 + (−119.270 × 10−4) R̃eθ t + (−132.567 × 10−6) , R̃eθ t̃ ≤ 400
Flength = 263.404 + (−123.929 × 10−2) R̃eθ t + (194.548 × 10−5) R̃eθ t

2

+(−101.695 × 10−8) R̃eθ t
3, 400 ≤ R̃eθ t ≤ 596

Flength = 0.5 − (R̃eθ t − 596.0) × 3.0 × 10−4, 596 ≤ R̃eθ t ≤ 1200
Flength = 0.3188, 1200 ≤ R̃eθ t

(14)

{
Reθ t = R̃eθ t − (396.035 × 10−2 + D1R̃eθ t + D2R̃eθ t

2 + D3R̃eθ t
3 + D4R̃eθ t

4), R̃eθ t ≤ 1870
Reθ t = R̃eθ t − [593.11 + (R̃eθ t − 1870.0) × 0.482], R̃eθ t ≥ 1870

(15)

where D1 = −120.656 × 10−4, D2 = 868.230 × 10−6, D3 = −696.506 × 10−6, D4 = 174.105 × 10−12.
The transport equation for the transition momentum thickness Reynolds number is expressed as

follows:

∂
∂t
(ρR̃eθ t) +

∂
∂x j
(ρUi R̃eθ t) = Pθ t +

∂
∂x j
[σθ t (μ + μt)

∂R̃eθ t

∂x j
], σθ t = 2.0 (16)

where Pθ t represents the processes involved in the generation and consumption of the momentum thickness
Reynolds number.

Pθ t = 0.03 ρ
t
(Reθ t − R̃eθ t) (1.0 − Fθ t) (17)

t = 500μ
ρU 2 (18)



Fluid Dyn Mater Process. 2025;21(4) 703

where Fθt is the transition factor, which indicates the probability or degree of occurrence of a transition.

Fθ t =min
⎛
⎝

max
⎛
⎝

Fw ake e(−
y
δ )

4
, 1.0 − (

γ − 1
50

1.0 − 1
50
)

2⎞
⎠

, 1.0
⎞
⎠

0.03 ρ
t
(Reθ t − R̃eθ t)(1.0 − Fθ t) (19)

where fwake is the trailing function, which represents the impact of the trailing zone.

Fw ake = e−(
Reω
1E+5 )

2
(20)

Reω =
ρωy2

μ
(21)

δ = 50Ωy
U

δBL (22)

δBL =
15
2

θBL (23)

θBL =
R̃eθ t μ

ρU
(24)

(3) γ-transition model
The γ-transition model is another numerical approach used to simulate laminar-to-turbulent transition

processes. The method is fundamentally based on quantifying the transition from laminar to turbulent flow
by defining the start and end points of the transition, typically determined by the critical Reynolds number
or other flow parameters. At the core of the model is the use of a γ function, which represents the flow’s
transition state and captures the nonlinear characteristics of the flow as it shifts from laminar to turbulent.
By calculating the propagation of disturbances in the boundary layer, the γ-transition model can predict
the transition process. It is often used in conjunction with turbulence models, such as the k-ε model, to
enhance the accuracy of flow analysis. Compared to the γ-Reθ transition model, the γ-transition model is
more simplified, requiring only the transport equation for the intermittency factor (γ) to be solved, without
the need for the additional transport equation for the Reynolds number of momentum thickness at the start
of the transition (R̃eθ t) [54–56]. The Reθ model, due to its explicit use of the velocity vector, is not Galilean
invariant. This is an advantage of the γ model, which is instead Galilean invariant.

The transport equation for the intermittency factor:

∂ (ργ)
∂t

+
∂ (ρU jγ)

∂x j
= Pγ − Eγ +

∂
∂x j
[( μt

σ f
+ μ) dγ

dx j
] (25)

where:

Pγ = FlengthρS (1 − γ) Fonset (26)
Eγ = Ca2ρΩγFturb (Ce2γ − 1) (27)

Fonset1 =
ReV

CReθ c
, C = 2.2 (28)

Fonset2 =min (Fonset1 , 2.0) (29)

Fonset3 =max(1 − (RT

3.5
)

3

, 0) (30)
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Fonset =max (Fonset2 − Fonset3, 0) (31)

Fturb = e−(
RT

2 )
4

(32)

RT =
ρd2

w S
μ

(33)

ReV =
ρd2

wU
μ

(34)

2.2 Dynamic Stall
Conventional dynamic stall is an aerodynamic stall phenomenon caused by a rapid change in the angle

of attack under non-constant aerodynamic conditions. When the angle of attack of an airfoil increases
rapidly, the pressure distribution on the airfoil changes drastically, resulting in a sudden drop in aerodynamic
forces and producing significant aerodynamic changes. Dynamic stall not only affects the aerodynamic
performance of the vehicle but also can cause structural vibration and noise problems [57–60]. Fig. 6 shows
an example of a dynamic stall.

Figure 6: Examples of dynamic stalls
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(1) Beddoes-Leishman model
The Beddoes-Leishman model is one of the most widely used dynamic stall models. It divides the

entire dynamic stall process into three stages: attached flow, separated flow, vortex shedding, and coupling
between flow separation and vortex shedding [61–63]. The Beddoes-Leishman model is used to describe
the aerodynamic properties of an airfoil during dynamic stall, integrating both steady aerodynamic theory
and dynamic effects. The model applies conventional aerodynamic theories of constant lift and drag at
small angles of attack, while accounting for vortex separation and dynamic stall phenomena at larger
angles of attack. During the dynamic stall process, the airflow experiences non-steady conditions, such
as instantaneous changes in angle of attack and windward velocity, leading to fluctuations in lift and
aerodynamic loads. The model also incorporates the hysteresis effect to simulate the time delay in the
aerodynamic response of the airfoil, particularly during the transition from steady flow to stall. This model
enables accurate prediction of the aerodynamic performance and stability of dynamically loaded systems,
such as rotor blades, under high-speed motion or rapid changes in angle of attack. Fig. 7 shows a schematic
of the generic Leishman-Beddoes type dynamic stall model and its different modules.

Figure 7: Schematic representation of a generic Leishman-Beddoes-type dynamic stall model and its different modules:
I) attached flow module; II) separated flow module; III) vortex shedding module; IV) coupling module between flow
separation and vortex shedding

In the attached flow phase, the aerodynamic forces of the airfoil can be modeled by superposition of the
step responses. Total normal force coefficient corresponding to the nth step CP

Nn
are composed of a non-cyclic

flow term C1
N and a cyclic flow term CC

N :

CP
Nn
= C1

Nn
+ CC

Nn
(35)

where:

C1
Nn
= 4 Kα TI

M
(△an

△t
− Dn) (36)

CC
Nn
= CNα (an − Xn − Yn) (37)

where CNa is the slope of the static normal force coefficient, M is the Mach number, TI is a time constant
expressed as the ratio of the chord length of the airfoil to the local speed of sound, Δαn and Δt are the
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variations in the angle of attack and the time step, respectively. Xn, Yn and Dn are the defect functions
describing the variations of the aerodynamic coefficients in non-constant flow conditions, and Ka is a time
constant related to the Mach number.

In the separation flow phase, airflow on the upper surface of the airfoil begins to separate, leading to
nonlinear changes in the lift and drag coefficients. The effects of separation flow in this phase are modeled
using the Kirchhoff model and a separation point prediction model [64]. The relationship between the
normal and tangential static separation points is also considered.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fNn = [2
√

CNn

CNα (αn − α0)
− 1]

2

fTn = [
CTn

CNα (αn − α0) tan (αn)
]

2 (38)

where α0 is the zero-lift angle of attack, and F denotes the separation point position, which is related to the
wing angle of attack.

Considering the hysteresis of the leading edge pressure response [65], the effective angle of attack needs
further correction:

C′Nn
= CP

Nn
− DPn (39)

where DPn is a defect function.
The effective angle of attack:

α′n =
C′Nn

CNα

+ α0 (40)

By introducing the time constant Tf , the additional effect due to separation, based on the delay in the
boundary layer, is captured using the first-order hysteresis technique according to the dynamic splitting
point. This approach results in the determination of dynamic normal force coefficients and tangential force
coefficients.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′′Nn =

2U △ t
c

f ′Nn
+ f ′′Nn+1Tf

Tf +
2U △ t

c

f ′′Tn =

2U △ t
c

f ′Tn
+ f ′′Tn+1 f f

Tf +
2U △ t

c

(41)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C f
Nn
= CNα sin (αn − α0)(

1 +
√

f ′′Nn−1

2
)

2

C f
Tn
= CNα (αn − α0) tan α

√
f ′′Tn−1

(42)

The vortex shedding phase accounts for the aerodynamic effects of leading-edge vortex generation
and transport. The vortex-induced increment in the normal force coefficient Cvn can be calculated as the
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difference between the non-constant circulation normal force and the non-constant normal force predicted
by the Kirchhoff theoretical approximation.

Cvn = CC
Nn
− C f

Nn
(43)

where the vortex normal force coefficient and vortex tangential force coefficient:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cv
Nn
=
(Cv(n) − Cv(n−1)) + Tv Cv

N(n−1)

Tv +
2U △ t

c
Cv

Tn
= Cv

Nn
α′n (1 − τv)

(44)

where A is the time constant.
The total normal and tangential force coefficients are obtained by summing the contributions from the

attached flow, separated flow, and dynamic vortex phases.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

CD yn
N = CI

Nn
+ C f

Nn
+ Cv

Nn

CD yn
T = C f

Tn
+ Cv

Tn

(45)

Normal and tangential force coefficients can be converted to lift and drag coefficients.

⎧⎪⎪⎨⎪⎪⎩

CD yn
L = CD yn

N cos αn + CD yn
N sin αn

CD yn
D = CD yn

Tn
sin αn + CD yn

T cos αn + CD0
(46)

The Beddoes-Leishman (B-L) model has evolved through several versions, each aimed at enhancing the
accuracy and adaptability of dynamic stall predictions. The initial B-L model (1988) was simple and practical
but lacked a detailed description of the complex flow field. The 1994 revision improved dynamic effect
considerations, enabling more accurate simulation of stall characteristics for low-speed vehicles and rotors,
though it still relied heavily on experimental data. The 2000 version further refined the simulation of the stall
process and airflow separation, increasing the model’s adaptability but also its computational complexity. The
post-2005 development integrated CFD data to improve the accuracy and reliability of the stall and airflow
separation simulations. However, this enhancement came at the cost of greater computational intensity and a
continued reliance on extensive experimental validation. Across all versions, while the accuracy of the model
has improved, so too has the computational complexity and dependency on experimental data.

(2) ONERA model
The ONERA model is another important dynamic stall model developed by the Centre d’Études

Aéronautiques (CERA), particularly suitable for applications such as rotor blades and wind turbines. It
provides a comprehensive description of an airfoil’s aerodynamic characteristics across different flight phases
by combining first- and second-order transfer functions. This approach enhances the accuracy and reliability
of dynamic stall simulations [66–70].

The method is based on the hysteresis effect, nonlinear characteristics, and transfer function of the
dynamic response of the airflow. It simulates the complex interaction between airflow and airfoil by
considering rapid changes in the airfoil’s angle of attack and the effects of airflow hysteresis, particularly
the stall phenomenon under large angles of attack and unsteady airflow conditions. The model incorporates
nonlinear correction terms to describe the variations in lift, drag, and moment, with the model parameters
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calibrated using experimental data. This enables the accurate prediction of the transition process from steady
lift to stall for the airfoil.

In the ONERA dynamic stall model, a set of differential equations describes the non-stationary
characteristics of the airfoil during the dynamic stall process. The model coefficients are not set arbitrarily but
are derived from well-designed wind tunnel experiments with small amplitude oscillations, ensuring their
accuracy through a rigorous discrimination process.

In the linear region of the airfoil, before the angle of attack reaches the stall angle, the ONERA model
uses a first-order transfer function to approximate aerodynamic load changes, maintaining accuracy in
this phase. As the airfoil enters the stall region, where flow separation becomes more pronounced and
aerodynamic changes become complex, the ONERA model employs a second-order transfer function to
capture the significant time delays and over-increases associated with these nonlinear features.

Coefficient of lift:

CL = CL1 + CL2 (47)

First-order transfer function:

ĊL + λ̂CL1 = λ̂α̂θ + (λ̂ŝ + δ̂) θ̇ + δ̂θ̈ (48)

Second-order transfer function:

C̈L2 + η̂ĊL2 + ω̂2CL2 = −ω̂2[△ CL + ê ∂△ CL

∂θ
θ̇] (49)

2.3 Airfoil Structure
An airfoil is a streamlined object that, when oriented at the optimal angle, can deflect oncoming fluid as

it moves through it [71–73]. Therefore, studying the transition and dynamic stall problems of airfoils is crucial
for the design and application of airfoil structures. These structures are broadly classified into six categories
based on their geometries: Symmetrical Airfoil [74,75], Cambered Airfoil [76,77], Flat Plate Airfoil [78,79],
Biconvex Airfoil [80,81], Thin Airfoil [82,83], and Thick Airfoil [84,85]. Fig. 8 shows the geometry of the six
airfoil structures.

Figure 8: Geometry of six common airfoil structures
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As shown in Tables 1–3, different airfoil geometries exhibit varying behaviors in transition and dynamic
stall phenomena. Symmetrical airfoils demonstrate consistent performance during angle of attack changes,
with stable transition positions and smooth dynamic stall. Asymmetrical airfoils tend to experience transi-
tion more readily on the upper surface, with a higher propensity for dynamic stall at high angles of attack.
Flat plate airfoils are sensitive to changes in the angle of attack, showing forward transition and pronounced
dynamic stall at high angles of attack. Hyperbolic airfoils maintain stable transition positions at high speeds
but are prone to stall at low speeds and high angles of attack. Thin airfoils exhibit significant forward
transition and are prone to flow separation at high angles of attack. Thick airfoils enhance structural strength
but experience forward transition, maintaining laminar flow for a longer duration at high angles of attack
but suffering a sharp lift drop when stall occurs.

Table 1: Different airfoil geometry characteristics

Airfoil type Geometric features
Symmetrical Airfoil Symmetry of upper and lower surfaces
Cambered Airfoil Upper surface curvature is greater than lower surface
Flat Plate Airfoil Flat structure
Biconvex Airfoil Convex curved shape on both upper and lower surfaces

Thin Airfoil Very thin airfoils with low curvature
Thick Airfoil Thicker airfoils, often used to add structural strength

Table 2: Different airfoil transition characteristics

Airfoil type Flow field characteristics Transition process
Symmetrical Airfoil At zero angle of attack, the airflow above

and below the airfoil is symmetrical.
Transitions usually occur on the upper

surface of the airfoil, especially at medium
to high angles of attack.

Transitions tend to occur at high angles of
attack, especially just before the flow stalls.
The transition point usually occurs at the

centre and rear of the airfoil due to the
sharp drop in pressure on the upper surface

of the flow.
Cambered Airfoil The upper surface is usually more curved

than the lower surface, which means that
the flow velocity is higher on the upper
surface and lower on the lower surface.

Because of the accelerated airflow on the
upper surface, this tends to result in
transition at lower angles of attack.

At lower angles of attack, transition usually
occurs at the front of the upper surface.

As the angle of attack increases, the
transition point is gradually shifted

backwards and may eventually occur in the
centre or at the rear of the airfoil.

Flat Plate Airfoil Due to the lack of curvature, the transition
characteristics of flat plate airfoils are more

pronounced.

Transition usually occurs at low angles of
attack because the airflow readily separates

and becomes turbulent on the upper surface
of the airfoil. Transition occurs at the rear of

the entire upper surface of the airfoil and
extends rapidly over the entire surface.

Biconvex Airfoil Both the upper and lower surfaces have
large curvature, so the airflow accelerates on

the upper surface and flows at a lower
velocity on the lower surface. Due to the

acceleration of the upper surface, the flow
tends to separate and transitions.

Transitions usually occur at the rear of the
upper surface. At high angles of attack, the
transition moves forward and causes flow

instability. The airflow may become
turbulent at the rear or centre of the airfoil.

(Continued)
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Table 2 (continued)

Airfoil type Flow field characteristics Transition process
Thin Airfoil The aerodynamic profile is very smooth and

the air flow is more stable. Due to the small
thinness of the airfoil, the airflow can easily
undergo acceleration and flow separation

on its upper surface.

The aerodynamic profile is very smooth and
the air flow is more stable. Due to the small
thinness of the airfoil, the airflow can easily
undergo acceleration and flow separation

on its upper surface.
Thick Airfoil Transitions generally occur at higher angles

of attack, usually on the upper surface, and
gradually move towards the rear of the

airfoil as the angle of attack increases. Thin
airfoil transitions are usually sudden and

violent.

Transition usually occurs at lower angles of
attack, especially at high Reynolds numbers,
and is usually found in the middle or rear of
the upper surface. Transition may result in

earlier separation of the flow.

Table 3: Different airfoil transition dynamic stall characteristics

Airfoil type Critical angle of attack Dynamic responses Mechanical characteristics
Symmetrical Airfoil The critical angle of

attack is usually low.
When the angle of attack
increases to the critical

value, the airflow
separates, resulting in a

stall phenomenon.

In a dynamic stall, a symmetrical
airfoil produces rapid vortex

separation and a large vibration
response. Since there is no pressure
difference between the upper and

lower surfaces, the resulting vibration
is smoother, but recovery from stall is

slower.

Lift and drag can fluctuate
dramatically, especially at

high angles of attack, and the
resulting vortices will affect
the stability and control of

the airfoil.

Cambered Airfoil The greater curvature of
the upper surface delays

the onset of stall,
resulting in a slightly

higher critical angle of
attack than for

symmetrical airfoils.

Curved airfoils typically experience
strong vortex separation and

reattachment during dynamic stalls
when the angle of attack changes,

leading to large fluctuations in
dynamic lift. After a dynamic stall,
there may be a brief stabilisation

region, however, if overly intense, it
may still lead to large aerodynamic

vibrations.

Due to the better lift
performance of the curved

airfoil, its dynamic response
is more resilient, but it is also

subject to large pitching
moment variations.

Flat Plate Airfoil The critical angle of
attack is low. Once the

critical angle of attack is
reached, the airflow
undergoes a violent

separation and rapidly
enters a stall condition.

Lift and drag can change drastically,
showing significant oscillations and
instability. Especially when the angle

of attack changes rapidly at high
angles of attack, airflow separation
and large wake vortices are likely to

occur.

Oscillations can be severe,
with large lift variations and

poor stability.

Biconvex Airfoil A higher critical angle of
attack delays the onset of

stall.

Lift and moment changes are
smoother, but the process of vortex

separation and pressure recovery can
be longer, resulting in a stronger
nonlinear response. Its recovery

process after stall is relatively smooth,
but there are still large pressure

fluctuations.

Compared to other airfoil
types, the aerodynamic

characteristics of the
biconvex airfoil are more

stable at high angles of
attack, providing greater

stability and control, but its
dynamic response may lead

to some slower recovery.

(Continued)
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Table 3 (continued)

Airfoil type Critical angle of attack Dynamic responses Mechanical characteristics
Thin Airfoil Has a low lift coefficient,

but due to its small
thickness, there is a
smoother airflow

separation process before
stall. The critical angle of

attack is usually high.

The aerodynamic response is flatter.
The dynamic response is smaller due
to the smaller wing thickness, but the

processes of vortex separation and
airflow reattachment can be more

rapid, leading to stronger short-term
aerodynamic fluctuations.

Due to the lower lift
coefficient, thin airfoils are
more likely to enter a fast

stall during a stall, but their
recovery is poor in dynamic

environments.

Thick Airfoil Has a high critical angle
of attack and maintains a

stable lift output at
higher angles of

approach.

The dynamic response is usually more
violent, especially due to the greater

thickness, which may lead to
unsteady wake vortices.

Recovery from a stall is
usually slow, especially
during a dynamic stall,
which produces large

fluctuations in torque and
pressure and exhibits a more

pronounced non-linear
behaviour.

3 Advances in Experimental Research

3.1 Wind Tunnel Experiment
Experimental wind tunnels, as ducted experimental apparatus, simulate the flow of gases around vehi-

cles or objects by artificially generating and controlling airflow. This allows for measuring the effects of airflow
on the entity and observing physical phenomena [86–89]. Wind tunnel experiments are indispensable tools
in studying dynamic stall and boundary layer transition of airfoils. It provides a controlled flow environment
that enables precise adjustment of flow velocity, pressure and other parameters, helping researchers to
observe and analyse the details of transition and dynamic stall.

Wind tunnel experiments play a crucial role in simulating the dynamic behavior of airfoils and studying
aerodynamic characteristics during dynamic stall by precisely controlling airflow parameters. Additionally,
they are essential for investigating boundary layer transition in hypersonic vehicles, providing critical data
for thermal protection design and performance optimization through high-resolution testing techniques
[90–92].

Raus et al. measured the aerodynamic and acoustic properties of the NACA0012 airfoil by varying the
angle of attack in an anechoic wind tunnel. Fig. 9 illustrates a schematic of the experimental setup points. The
flow deviation in the open jet wind tunnel necessitated corrections to the effective angle of attack. However,
verifying these corrections presented challenges. Additionally, capturing the complex relationship between
dynamic stall and noise in this experimental setup proved to be difficult [93].

Li et al. combined wind tunnel experiments with advanced Particle Image Velocimetry (PIV) techniques
to accurately measure and visualize the aerodynamic performance and flow characteristics of a wind turbine
airfoil under dynamic stall conditions. This approach provides valuable insights into the effectiveness of
plasma aerodynamic drives in controlling dynamic stall and improving aerodynamic efficiency [94].

Mayer et al. used a temperature-controlled anechoic wind tunnel with Kevlar walls in their study of the
aeroacoustics properties of oscillating airfoils in pre-stall and post-stall states. This setup minimized flow
deflection and enabled accurate far-field noise measurements. However, the Kevlar wall test section required
specific wind tunnel calibration due to its unique characteristics [95].
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Figure 9: Schematic of the experimental setup points. Red dots and blue dots show the positions where only the steady-
state surface pressure is measured and the positions where both the steady and fluctuating wall pressures are measured,
respectively. The green dot shows the position of the far-field microphone. Pink areas show the positions of the tripping
tape

Zhang et al. used a wind tunnel experiment combined with force balance to measure phase-averaged
and instantaneous aerodynamic loads on a pitching wing. Fig. 10 shows a schematic of the wind tunnel test
section. However, the experimental setup is sensitive to errors and requires careful calibration [96].

Figure 10: Schematic of the wind tunnel test section
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Li et al. used a low-speed wind tunnel to investigate the effects of dust and turbulence on a vertical
axis wind turbine (VAWT) related to dynamic loading and efficiency in an urban environment. Fig. 11 shows
a schematic of the experimental wind tunnel. While the wind tunnel experiments were conducted in a
controlled setting, this may not fully replicate the complex and variable conditions experienced by VAWTs
in urban environments [97].

Figure 11: Schematic of experimental wind tunnel

Amandolese et al. used the S4 wind tunnel to study the effects of dynamic stall on wind turbine blades.
Their wind model, based on a spectral description of turbulence, focuses on larger turbulence scales relative
to the airfoil chord. However, this approach may not fully account for the effects of smaller turbulence scales,
which can also impact aerodynamic performance [98].

Wang et al. conducted experiments on the unsteady vortex flow field of a typical rotor blade under
dynamic stall conditions using advanced PIV techniques in an open return wind tunnel. Fig. 12 illustrates
the experimental schematic and experimental flowchart. In this setup, lasers and CCD cameras were
synchronized by a computer system to measure the velocity of the flow field around the rotor blade, capturing
high-quality data for analysis. This comprehensive approach provided valuable insights into the aerodynamic
characteristics and behavior of leading-edge vortices (LEVs) under dynamic stall conditions [99].

To study the dynamic stall phenomenon in a vertical axis wind turbine (VAWT), Aboelezz et al.
modified a low-speed wind tunnel by constructing and installing a test bed in the exit section. The test
stand consists of a tower for holding the wind turbine, incorporating essential components such as torque
transducers, braking systems, and pulleys. This experimental setup provides a controlled environment with
comprehensive measurement capabilities, load variations, reduced fluctuations, dynamic measurements,
and performance enhancements. These advantages make it an effective and reliable setup for evaluating the
performance of guided blade airfoil wind turbines [100].

Phillips et al. investigated the use of sweep jets to control aerodynamic loads and prevent dynamic
stalls during rapid surface deflections on the NACA 0021 wing. They employed dynamic pressure sensors in
conjunction with a PSI system to synchronize flap deflection and pressure readings, ensuring accurate mea-
surement of the flap deflection angle over time. Additionally, smoke lines were used for flow visualization,
aiding in the confirmation of vortices and flow patterns around the flap [101].

Ikami et al. utilized cntTSP to measure the boundary layer transition of an oscillating airfoil in a low-
speed wind tunnel. cntTSP is a flow visualization technique that combines temperature-sensitive paint (TSP)
with carbon nanotubes (CNTs), which act as sprayable temperature sensors. The CNTs serve as a thin internal
electrical heater for the TSPs. This technology allows for the visualization of boundary layer transition
movements on moving airfoils, providing a clear depiction of the transition dynamics [102].
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Figure 12: (a) Schematic of experiment. (b) Flowchart of experiment

Quinn et al. present a new multi-purpose wind tunnel designed to generate both low- and high-
turbulence conditions, facilitating advanced studies in the biomechanics and aerodynamics of animal
flight. Fig. 13 shows the structure of the wind tunnel. The tunnel is powered by a low-noise 18-blade axial fan,
minimizing acoustic interference in the test section. A seamless honeycomb and multiple fine mesh screens
are used to straighten and reduce turbulence in the airflow before it enters the test section. The design and
capabilities of this facility make it an invaluable tool for comparative biomechanical studies, aiding in the
understanding of the dynamics of simulated airfoil structures of various species [103].
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Figure 13: The closed-circuit wind tunnel uses flow conditioning to decrease turbulence and can operate in both open-
and closed-jet configurations. The components of the wind tunnel are shown by color. A large diameter fan drives air
through a series of flow conditioning elements, then through a contraction into the test section (pink). A heat exchanger
and temperature probes (red) are used to regulate temperature in the tunnel. Airspeed is measured using static pressure
ports in the stilling chamber and contraction (orange). The turning vanes and sidewalls shown in light blue and purple
are filled with mineral wool to attenuate fan noise

Grogger et al. described the development, construction, and evaluation of a cost-effective open-circuit
wind tunnel designed for avian flight experiments, capable of achieving the flow and turbulence levels
necessary to study large birds such as the northern white-headed ibex. This research resulted from close inter-
disciplinary collaboration between engineers with expertise in fluid dynamics and biologists with experience
in bird behavior and physiology, highlighting the importance of interdisciplinary collaboration [104].

Brunner et al. utilized a wind tunnel to study the transition from laminar to turbulent flow, the change
in stall type from trailing edge to leading edge, and the behavior of flow separation and reattachment
at different Reynolds numbers. Their findings showed that the presence of laminar separation bubbles
can delay turbulent separation compared to natural transition flow. However, achieving high Reynolds
numbers without disproportionate compressibility effects in a controlled laboratory environment remains a
challenge [105].

To establish a dynamic aerodynamic evaluation model for large-scale wind turbines, an accurate
experimental design is essential. To achieve the dynamic oscillatory motion of the airfoil, Li independently
designed and built the experimental platform. A wind tunnel was used to simulate the real free-flow
environment, and the dynamic stall test rig provided precise oscillatory motion of the airfoil. The motion
control system achieved a stable angle of attack and oscillatory speed by precisely controlling the motor
position. The DTC Initium pressure acquisition system enabled high-frequency collection of pressure signals
from the airfoil surface, while the IFA system measured and recorded velocity and temperature signals from
the flow field [106].

The advantage of these systems is that they provide accurate and reliable experimental data, facilitating
the study of the dynamic stall characteristics and flow control mechanisms of wind turbine airfoils.

3.2 Particle Image Velocimetry
Particle image velocimetry (PIV) is a transient, multipoint, contactless hydrodynamic velocimetry

technique. It achieves accurate measurement of the velocity distribution in the flow field by scattering
tracer particles within the flow, illuminating these particles with a pulsed laser sheet, recording continuous
images of the particles with a high-speed camera, and subsequently obtaining flow velocity vectors at
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each point through image analysis techniques. PIV combines flow visualization and image processing
techniques, providing powerful flow measurement capabilities [107–110]. PIV is capable of simultaneously
capturing transient changes in the entire flow field and accurately depicting complex flow structures, such as
propulsion, vortex separation, and dynamic stalling processes at transition points, which makes it suitable
for the dynamic study of a wide range of flow states. Fig. 14 shows an example of PIV.

Figure 14: An example of PIV

In dynamic stall studies of airfoils, PIV is widely used to measure and analyze the non-stationary vortex
field characteristics of airfoils during the dynamic stall process [111,112]. In airfoil transition studies, PIV plays
a crucial role in understanding the transition mechanism and exploring effective methods to control the
transition process. It measures the susceptibility of the boundary layer to external turbulence perturbations
and tracks the growth path of these perturbations within the boundary layer [113,114]. These studies not
only help improve the performance of airfoil structures but also provide valuable experimental data and
theoretical support for the development of fluid dynamics.

Adatrao et al. explore the challenge of quantifying uncertainty in particle image velocimetry (PIV)
due to systematic errors, which are often overlooked by existing methods that primarily focus on random
errors. They propose a new approach using design of experiments (DOE) and analysis of variance (ANOVA)
to identify key experimental factors contributing to uncertainty in PIV measurements. To evaluate this
method, both planar and stereo PIV measurements were performed, as shown in Fig. 15. The proposed DOE
approach effectively quantifies both random and systematic uncertainty in PIV measurements, providing a
more comprehensive understanding of measurement reliability [115].

A study by Saaid et al. investigated the use of tomographic particle image velocimetry (Tomo-PIV) to
analyze the fluid dynamics of the left ventricle (LV) with different prosthetic heart valves. Fig. 16 shows an
example of the Tomo-PIV. The aim was to demonstrate the feasibility of capturing three-dimensional flow in
a compliant LV model and to compare the flow fields generated by different prosthetic valves under identical
conditions. However, the Tomo-PIV hardware and software are more complex and expensive than 2D PIV
or multiplanar scanning setups, which may pose a significant barrier to widespread adoption [116].



Fluid Dyn Mater Process. 2025;21(4) 717

Figure 15: (a) Planar PIV measurements. (b) Stereo PIV measurements

Figure 16: An example of the Tomo-PIV

Balducci et al. used particle image velocimetry (PIV) and particle tracking velocimetry (PTV) tech-
niques to study the evolution of the flow field downstream of the prosthetic heart valve, especially in the
beginning of the ascending aortic branch. These techniques are crucial for a comprehensive assessment of
the effective stresses on hemocytes, with PIV providing information on the intensity of the stresses and PTV
offering insights into the timing of the pressure application. Although high spatial and temporal resolution
can be achieved using high-speed cameras, limitations remain. The minimum spacing between velocity
vectors measured by PIV is slightly less than 1 mm, which, despite the high resolution, may not capture all
the fine details of the flow field [117].

Soodt et al. utilized stereoscopic scanning PIV to experimentally study transitional bronchial veloc-
ity distributions. Their measurements revealed a complex three-dimensional velocity distribution in the
bronchial bifurcation, highlighting the presence of vortices and shear layers during the respiratory cycle. This
study underscores the need for advanced measurement techniques to capture the intricate flow dynamics in
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the respiratory system. The use of stereoscopic scanning particle image velocimetry (PIV) to capture three-
dimensional, time-resolved velocity fields is a sophisticated technique that can also be applied to the study
of flow around airfoils, providing detailed insights into flow behavior [118].

Van Hooff et al. experimentally analyzed transitional flows in a ventilated enclosure using a reduced-
scale water-filled model to study forced mixed ventilation driven by a transitional aircraft jet. Flow
visualization and PIV measurements were conducted for time-gap Reynolds numbers between 800 and 2500
to develop and validate a CFD model of the indoor flow. This methodology offers a comprehensive approach
to studying transitional flows in forced mixing ventilation. The combination of downscaled experiments,
PIV measurements, and flow visualization provides valuable data for the development and validation of CFD
models [119].

Lang et al. used Laser Doppler Anemometry (LDA) and Stereo Particle Image Velocimetry (SPIV) to
investigate controlled transition development processes in laminar separation bubbles. Their study showed
that the combined use of LDA and SPIV to study controlled transition development, driven primarily by 2D
Tollmien-Schlichting wave amplification, provides a detailed understanding of the unsteady and 3D rupture
of the separating shear layer. The results are in good agreement with Linear Stability Theory (LST) and
Direct Numerical Simulation (DNS), highlighting the minor role of stable 3D disturbances in the transition
process [120].

The combined use of LDA and stereo PIV offers detailed visualization of the fluid dynamics, including
the onset of 3D vortex structures and the breakdown of turbulence in the separated boundary layer,
contributing to a better understanding of transition mechanisms. However, LDA-related measurement times
can be long, especially in water, which may hinder the resolution of small structures when high temporal
resolution is required. Additionally, LDA and PIV setups are complex and costly, posing further challenges.

Zhang et al. used a PIV system to capture detailed flow characteristics around a hydrofoil, employing a
laser beam sheet and a high-resolution camera. They developed a new velocity field calculation method to
minimize static mask errors and improve the accuracy of the PIV analysis. The PIV measurements provided
detailed insights into the flow characteristics around pitching hydrofoils, revealing the dynamic behavior of
cavitation modes and their effect on the flow field [121].

Chen et al.’s study using particle image velocimetry (PIV) explores the effect of anisotropic porous walls
on the turbulent boundary layer, with a particular focus on the phenomenon of amplitude modulation (AM)
and its impact on reducing skin friction. In airfoil design, controlling boundary layer transitions is essential
to optimizing lift and minimizing drag. Techniques such as surface roughness, vortex generators, and porous
materials are often explored to effectively manage this transition. This study has significant implications for
understanding transition phenomena in airfoil structures and for improving airfoil performance through
innovative boundary layer control methods [122].

3.3 Molecular Tagging Velocimetry
Molecular Tagging Velocimetry (MTV) is an advanced fluid velocimetry technique that uses molecules

as tracers to determine fluid velocity through laser excitation and tracking the movement of these molecules
within the fluid. MTV technology provides high-resolution and high-precision velocity measurements
without interfering with the flow field, making it suitable for a wide range of fluid types, including both gases
and liquids [123–126]. MTV is capable of providing transient flow field data that accurately reflect dynamic
flow changes, especially the microstructure and vortex characteristics within the boundary layer. In addition,
it can be applied in different environments, avoiding the interference of traditional methods and providing
high-precision quantitative flow information, which in turn provides key support for theoretical studies and
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numerical simulations, overcoming the limitations of traditional experimental methods in the analysis of
transient flows and complex aerodynamic phenomena.

MTV technology is pivotal in researching dynamic stall and airfoil transition. Dynamic stall, charac-
terized by significant hysteresis in the lift and pitching moment coefficients of an airfoil under oscillatory
motion, affects the structure stability and performance. MTV allows precise measurement of velocity distri-
bution and fluid dynamics around the airfoil, offering insights into dynamic stall mechanisms. Additionally,
MTV provides essential velocity profile data for studying the transition from laminar to turbulent flow in
airfoil boundary layers, influencing flow field characteristics. These studies optimize airfoil structure design
and support fundamental fluid dynamics research [127–129].

Hrynuk et al. employed the MTV (Molecular Tagging Velocimetry) technique, inspired by the fins of
humpback whales, to investigate the impact of leading-edge nodules on the dynamic stalling of airfoils. Their
study concluded that these nodules significantly influence the formation of dynamic stall vortices (DSV), as
well as secondary vortex dynamics and convective velocity. While MTV offers high-resolution data, it also
has limitations, including the need for precise synchronization and the potential for molecular diffusion to
affect the accuracy of velocity measurements [130].

Albrecht et al. investigated the aerodynamic characteristics of the NACA-0012 airfoil in viscous shear
flow, highlighting differences in lift and stall characteristics compared to a fixed airfoil. The study utilized
single-component Molecular Tagging Velocimetry (1C-MTV) to capture high-resolution flow measurements
near the airfoil’s surface. The accuracy of 1C-MTV is influenced by several factors, including encoder
resolution, airfoil motion through image capture delays, and mechanical vibration. Although these factors
are minimized, they can still result in sub-pixel displacement errors [131].

Bohl et al. explored the relationship between wake structure and the kinematics of wing flaring,
emphasizing the significance of unsteady aerodynamics in the design of micro air vehicles. They used
Molecular Tagging Velocimetry (MTV) to analyze the vortex field behind a NACA-0012 airfoil, aiming to
enhance the understanding of thrust generation and force estimation inaccuracies. A hollow NACA-0012
airfoil was constructed, its motion controlled as harmonic oscillations, and the velocity and vorticity fields
were accurately measured using MTV. The study successfully quantified the mean and fluctuating velocity
and vorticity fields, correlating them to the distinctive spatial arrangement of the vortex array [132].

Elsnab et al. explored the use of single-component Molecularly Labeled Velocimetry (1C-MTV) to
measure high-resolution wall-legal guide distributions in turbulent wall flows, addressing the challenges
associated with noise and spatial resolution [133]. Fig. 17 shows a schematic of the experimental facilities.

Figure 17: Schematic of the experimental facility

Olson et al. utilized one-component Molecular Tagging Velocimetry (1C-MTV) to study laminar
separation bubbles (LSBs) above the SD7003 airfoil at low Reynolds numbers. This study underscores
the complexities involved in accurately characterizing LSBs over low Reynolds number airfoils, including
measurement accuracy and sensitivity to various factors [134].

Bohl et al. investigated the noise generated during blade vortex interactions in a helicopter rotor,
emphasizing the importance of understanding the dynamics of a concentrated vortex core for noise control
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and aerodynamic performance. The study employed Molecularly Labeled Velocimetry (MTV) to track the
fluid velocity vector in the vortex core in detail, avoiding the complications of particle seeding. However, the
study used stereo MTV applied to a limited number of z positions in the x-y plane, which may constrain the
detailed analysis of vortex dynamics downstream of the vortex [135].

Fort et al. introduced a new technique called two-dimensional micro-Molecular Tagging Velocimetry
(μMTV) to measure wall shear stress in high Reynolds number flows, overcoming the limitations of tradi-
tional methods such as Particle Image Velocimetry (PIV). This method uses Molecular Tagging Velocimetry
(MTV) and a novel dye to achieve high-resolution flow characterization away from facility walls [136].

Andrade et al. discuss the use of Molecular Tagging Velocimetry (MTV) as a non-invasive technique
for measuring high-velocity flow rates, particularly under supersonic conditions. Despite challenges such
as reflections and weak signal-to-noise ratios, they found that MTV is a viable method for characterizing
high-speed flow rates. They recommend future upgrades to the laser components to enhance the signal-
to-noise ratio and maintain stable energy output, which will further improve the accuracy of MTV
measurements [137]. The MTV experimental setup is shown in Fig. 18.

Figure 18: MTV experimental setup

Gevelber et al. utilized krypton tagged velocimetry (KTV) as the primary method for measuring flow
velocities. The KTV-2D method was implemented in a Mach 3 wind tunnel, employing a mixture of krypton
and nitrogen excited by a tunable laser beam to generate images for velocity analysis. This experimental setup
includes advanced laser technology and a dedicated camera system designed to capture high-quality images,
which are subsequently processed to extract velocity data. KTV, as a form of tagged velocity measurement,
effectively avoids the issues associated with particle hysteresis in high-velocity flows [138]. Fig. 19 illustrates
a schematic of the KTV-2D experimental setup.
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Figure 19: Schematic of KTV-2D experimental setup

3.4 Infrared Thermography
Infrared thermography is a non-contact measurement technique that captures infrared radiation

emitted by a target, using an infrared detector to produce corresponding infrared images. These images
directly represent the temperature distribution across various locations on the target’s surface. An infrared
thermography system typically comprises an infrared optical imaging system, an infrared detector, a cooler,
an electronic information processing system, and a display system [139–142]. Fig. 20 illustrates an example
of infrared thermography.

Figure 20: An example of the infrared thermography

Infrared thermography has been widely utilized in studying the dynamic stalling and transition of
airfoils. During dynamic stall, the surface flow state of an airfoil undergoes complex changes, resulting
in local temperature variations. Infrared thermography can monitor this temperature distribution changes
on the surface of an airfoil in real-time, thereby revealing the flow characteristics during the stall process.
Additionally, infrared thermography has been employed to measure the transition position of the airfoil
surface in boundary layer studies. Given that heat exchange in the turbulent boundary layer is significantly
higher than in laminar flow, the transition position is marked by a temperature jump. Infrared thermography
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can accurately capture this temperature change, determining the transition position and providing crucial
data for airfoil design and performance optimization [143–145].

Gardner et al. introduced a novel method for detecting flow separation on helicopter main rotor
blades using infrared thermography, generating stall maps without the complexity of pressure sensors.
The experimental setup involved a sinusoidally tilted airfoil equipped with pressure sensors and a high-
speed infrared camera to capture thermal images during airflow. Differential Infrared Thermography (DIT)
methods were employed to analyze the intensity differences in the thermal images, allowing fluid separation
to be identified by the calculated standard deviation. The study confirmed that the DIT method is effective
under both static and dynamic conditions [146].

Wester et al. investigated the phenomenon of laminar-to-turbulent transition in fluid dynamics. The
study, conducted in a wind tunnel, utilized Differential Image Thermal Imaging (DIT) to measure transitions
at different inflow velocities and angles of attack. The research demonstrated that DIT is a powerful method
for assessing the state of the boundary layer, enabling high-resolution measurements that closely align with
the predictions of infiltration theory [147]. Fig. 21 illustrates the experimental setup.

Figure 21: Experimental setup consisting of a G¨ottingen type wind tunnel, thermography camera shown in red, and
a airfoil mounted on a rotary table

Wolf et al. employed differential infrared thermography (DIT) to measure the unsteady motion of
laminar-to-turbulent transitions in the boundary layer. DIT enhances the detection of transitions in both
static and dynamic cases, providing a reliable alternative to established methods and revealing the complexity
of temperature distribution during pitch oscillations. However, the signal strength of DIT is significantly
lower in dynamic scenarios compared to static ones. This reduced signal strength hinders the accurate
detection of transition points in dynamic conditions [148].

Christian Wolf et al. introduced infrared thermography (IRT) and differential infrared thermography
(DIT) to study the laminar-turbulent transition in the boundary layer (BL) using temperature-sensitive paint
(TSP). Their research demonstrated that IRT and DIT techniques can effectively measure BL transitions.
However, the effectiveness of IRT in detecting the transition location is influenced by factors such as surface
coating and camera technology, which can limit the accuracy and reliability of the measurements [149].

Gardner et al. investigated and analyzed differential infrared thermography (DIT), discovering that it
effectively measures unsteady motion at boundary layer transition locations on unprepared surfaces without
the need for contact. DIT offers a non-contact alternative to traditional methods such as thermal film
anemometry, which require extensive sensor arrays and complex data analysis, making it particularly suitable
for unsteady flow measurements [150]. Fig. 22 illustrates a sketch of the DIT experimental setup.
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Figure 22: Sketch of the DIT experimental setup

3.5 Laser Doppler Velocimeter
The Laser Doppler Velocimeter (LDV) is an instrument that utilizes the laser Doppler effect for high-

precision velocity measurements. By measuring the Doppler shift of reflected or scattered laser light, it
can determine the speed of a moving object. The LDV offers several advantages, including non-contact
measurement, fast dynamic response, a wide measurement range, and high resolution [151–154]. Fig. 23
shows an example of an LDV.

Figure 23: An example of an LDV

In the study of dynamic stall and transition of airfoils, the LDV plays a crucial role. It accurately
measures the velocity distribution on the airfoil surface and in the surrounding flow field, capturing real-
time velocity changes. This capability aids researchers in analyzing the mechanisms of stalling and transition,
understanding their development processes, and assessing their impact on the aerodynamic performance of
the airfoil [155–157].

Simanto et al. conducted experimental studies on tip vortex cavity deformation and fluid dynamics
using high-speed imaging and laser Doppler velocimetry (LDV) measurements. The LDV enabled precise
measurements of the velocity distribution, as well as the size and strength of the vortices, under both
cavitation and non-cavitation conditions [158].
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Le Page et al. present a study on hypersonic front separation using laser-induced fluorescence velocime-
try. Their research reveals inhomogeneous velocity distributions and complex flow structures, offering
valuable insights into hypersonic flow behavior and separation phenomena. The study highlights the
effectiveness of advanced velocimetry techniques in understanding these intricate dynamics [159].

Barnhart designs and develops coherent detection Rayleigh Doppler lidar systems as an alternative
velocity measurement technique for wind tunnels. This research highlights the potential of a Doppler
wind measurement lidar system to provide accurate, non-invasive velocity measurements in wind tunnels.
By addressing many limitations of current technology, this research paves the way for more advanced
aerodynamic testing methods [160].

3.6 Pressure-Sensitive Paint
Pressure Sensitive Paint (PSP) technology is an innovative method that uses optical properties to

measure the pressure and temperature distribution on an object’s surface. By coating the surface with a
special pressure-sensitive paint, a light source such as a laser or UV light excites the paint to emit fluorescent
or phosphorescent light. The pressure distribution on the surface is then calculated by analyzing the
changes in the intensity of the emitted light. PSP technology offers several advantages, including contactless
measurement, a wide detection range, low cost, short preparation time, and the ability to avoid interference
with the flow field by traditional detection techniques [161–165].

PSP technology is particularly valuable in studying the dynamic stall and transition characteristics of
airfoils. By utilizing PSP, researchers can accurately measure real-time changes in pressure distribution on
the airfoil surface during dynamic stall and transition processes. This allows for the effective identification of
high-pressure regions and their dynamic characteristics. When combined with flow visualization methods
such as ripples and shadows, PSP enables a deeper understanding of the physical mechanisms behind these
complex flow phenomena.

4 AI-Based Experimental Method
In the current frontiers of scientific research, AI methods are increasingly being utilized to address

scientific and engineering challenges across various fields [166–170]. Similarly, the integration of AI tech-
niques with experimental research methods for studying the transition and dynamic stalling of wing
structures is exhibiting a trend toward greater diversification and refinement. These combined approaches
not only enhance the accuracy but also improve the efficiency of experiments. For example, in recent years
motion capture has become a powerful tool for experimentation in engineering with the help of artificial
intelligence [171–173]. Artificial intelligence can significantly improve research efficiency and accuracy.
Through machine learning, AI can quickly process and analyse large amounts of experimental data, identify
transition points and dynamic stall regions, and reduce manual intervention. In addition, AI can simulate
multi-scale, non-linear flow characteristics and help design optimal airfoils through optimisation algorithms
to predict performance under different conditions. AI can also automate experimental design and real-time
adjustments to improve experimental precision and efficiency.

Fig. 24 illustrates the main applications and promising AI methods in the experimental study of
airfoil transition and dynamic stall. In the experimental research on dynamic stall and transition of airfoil
structures, various algorithms offer unique advantages, providing multi-dimensional data processing and
analysis methods.



Fluid Dyn Mater Process. 2025;21(4) 725

Figure 24: Main applications and potential artificial intelligence methods in experimental studies of airfoil transitions
and dynamic stalls. (a) Convolutional neural network (CNN). (b) Random forest. (c) Physics-informed neural
networks. (d) Ant colony optimization algorithm (ACO). (e) Particle swarm optimization (PSO). (f) Genetic algorithm.
(g) Reinforcement learning (RL). (h) Artificial neural network (ANN). (i) Generative adversarial network (GAN).
(j) Support vector machine (SVM). (k) Recurrent neural network (RNN). (l) Long short-term memory (LSTM). (m)
Standard Transformer architecture with encoder on the top side and decoder on the bottom side. (n) Diffusion Models
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4.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) excel in analyzing high-resolution images and videos, enabling

the extraction and quantitative analysis of key features from captured surface flow images of airfoils
[174–176]. Lee et al. introduced PIV-DCNN, a sophisticated four-level regression deep convolutional neural
network developed to enhance displacement extraction accuracy in particle image velocimetry (PIV).
This innovative approach leverages network training and outlier replacement techniques, demonstrating
superior performance compared to traditional PIV methods in both synthetic and experimental PIV image
applications [177].

Memari et al. employed a convolutional neural network (CNN) to automatically extract spatial features
from thermal images, enhancing the detection of defects in wind turbine blades. This approach significantly
improves the accuracy and efficiency of the inspection process [178].

Cao et al. combined a convolutional neural network (CNN) with particle image velocimetry (PIV) to
predict flow velocity fields, achieving enhanced spatial resolution and computational efficiency compared to
traditional methods [179].

Zhu et al. introduced an innovative method that integrates a convolutional neural network (CNN)
with particle image velocimetry (PIV) to enhance the volumetric reconstruction of flowing particles. This
approach effectively overcomes the limitations of traditional tomographic reconstruction algorithms, which
often result in coarse reconstructions and are prone to noise and ghost particles. By embedding the geometric
information of the imaging system into the 3D CNN, this method significantly refines the reconstruction
process, leading to improved accuracy, efficiency, and noise resistance [180].

4.2 Random Forests
Random Forests, through the ensemble of multiple decision trees, enhance prediction accuracy and

robustness while identifying important feature variables from experimental data [181–183].
Hadipour-Gudarzi et al. employed a random forest algorithm to process data from wind tunnel tests,

using fabric parameters such as angle of attack and wind speed as input. This approach enabled them to
quickly and accurately estimate the lift and drag coefficients of the membrane airfoil [184].

Zhang et al. propose a hybrid method that combines Random Forest and Compressive Sensing (RF_CS)
to accurately reconstruct transonic buffet aerodynamic noise from sparse data [185].

4.3 Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) combine the strengths of physical laws and neural net-

works, ensuring a natural integration of experimental data with physical models and maintaining physical
consistency [186–188]. Cai et al. propose a method to enhance velocity measurements in particle image
velocimetry (PIV) and particle tracking velocimetry (PTV) for turbulence analysis by utilizing a physically-
informed neural network (PINN). This approach infers the pressure field even when direct pressure data
is unavailable, effectively reducing measurement noise and improving the accuracy of fluid dynamics
experiments [189].

Moreno Soto et al. employed a Physical Information Neural Network (PINN) to improve the recon-
struction of the fluid flow field. By integrating the Navier-Stokes equations with data from particle image
velocimetry and pressure sensors, their approach enhanced accuracy and allowed for the extraction of
additional derived quantities, such as pressure distribution [190].
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4.4 Other Algorithms with Potential
Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) can be utilized for global

optimization of experimental parameters, aiding in the identification of optimal experimental conditions
and ensuring the reliability and reproducibility of results [191,192].

Genetic Algorithms (GAs), by simulating the process of natural evolution, optimize experimental design
and result analysis, thereby improving the adaptability and innovativeness of experimental schemes [193,194].

Reinforcement Learning (RL) can be employed for real-time adjustment of dynamic experimental
conditions, enhancing experimental efficiency and the precision of data acquisition [195,196].

Artificial Neural Networks (ANNs) exhibit unique advantages in handling complex nonlinear data,
making them suitable for nonlinear modeling and prediction of experimental data, thereby enhancing the
understanding of flow characteristics [197,198].

Generative Adversarial Networks (GANs) can generate simulated data similar to the experimen-
tal data distribution, enriching the experimental dataset and facilitating the study of rare or extreme
conditions [199,200].

Support Vector Machines (SVMs) excel in classification and regression analysis, making them
suitable for the classification and pattern recognition of experimental data, especially in small sample
datasets [201,202].

Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) are advan-
tageous in processing time-series data, making them suitable for analyzing time-dependent data in
experiments and capturing the dynamic processes of flow changes. The integrated application of these
algorithms not only enhances the efficiency and accuracy of experimental research on dynamic stall and
transition of airfoil structures but also promotes in-depth understanding and innovative exploration of
complex flow phenomena in this field [203–206].

The Transformer model architecture has made significant advancements in machine learning and artifi-
cial intelligence in recent years. It holds great potential for experimental fluid dynamics studies, particularly
in wing transition and dynamic stall, due to its powerful sequence modeling capabilities, self-attention
mechanism, and flexibility in handling high-dimensional data. The self-attention mechanism allows the
Transformer to capture complex dependencies between different regions in the flow field, making it especially
well-suited for analyzing time-series data and experimental fluid data with disordered inputs. Furthermore,
when combined with reinforcement learning, Transformer models can optimize fluid control strategies,
enhancing the accuracy and efficiency of stall control. Its computational efficiency also reduces the resources
required for traditional numerical simulations, significantly improving simulation performance [207–209].

The Diffusion Model, a probabilistic-based generative model widely used in image generation, natural
language processing, and other fields, also demonstrates considerable potential in experimental fluid dynam-
ics, particularly in airfoil transition and dynamic stall studies. With its unsupervised learning capability and
stepwise denoising process, the Diffusion Model efficiently simulates complex fluid phenomena, captures the
spatial and temporal variations in detail, and generates accurate models of high-dimensional fluid data. Its
ability to generate realistic flow fields allows researchers to gain a more intuitive understanding of changes
in aerodynamic behavior, especially during the non-stationary processes of dynamic stall and transition.
Moreover, the Diffusion Model effectively handles noise and uncertainty in experimental data, optimizing
the reconstruction of fluid scenes and thereby improving prediction accuracy [210,211].
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5 Conclusion

5.1 Limitations and Challenges
Airfoil structures have evolved from their early aerospace applications to become integral components

across a wide range of fields, including civil engineering, chemical engineering, biomedical engineering,
ocean engineering, energy and power engineering, and vehicle engineering. Despite the significant advance-
ments in experimental research technologies, challenges persist, particularly in regard to the high costs of
experiments. Dynamic stall and transition remain pressing issues in airfoil research. Although technological
progress has accelerated the development of experimental methods, current research still faces various
problems and challenges that need addressing.

(1) Airfoil structures are applied in multiple fields, each with different functional requirements for airfoils.
Additionally, research on airfoil structures involves various disciplines. Currently, interdisciplinary
communication and collaboration are insufficient, which limits the potential for innovative thinking
and technological integration.

(2) Experimental equipment and test conditions often differ from the actual environment, making it
difficult to fully reproduce the working conditions encountered in real operations. As a result,
experimental results may deviate from real-world scenarios. For example, when studying the wing
structure of wind power equipment, it is impossible to replicate the presence of dust and other
environmental factors in the laboratory setting.

(3) The challenge of capturing subtle flow phenomena and structural responses with current experimental
equipment limits our ability to fully understand these phenomena in depth.

(4) To study complex systems effectively, it is necessary to integrate various experimental tools and
techniques. However, existing equipment often focuses on specific aspects in isolation, making it
challenging to comprehensively understand the overall behavior of complex systems.

(5) Despite advancements in experimental technology, high-precision equipment remains costly, which
limits its use in a broad range of research applications. This is especially true for equipment capable of
accurately simulating complex flow phenomena.

(6) The massive amount of experimental data has made it a significant challenge to process and analyze
this information efficiently and accurately. Traditional data processing methods may no longer meet
the demands of current research.

(7) Experimental conditions often have limited controllability. For instance, wind tunnel experiments
typically employ scaled-down models, but parameters such as Reynolds number and Mach number
may differ from real-world conditions due to the scaling. This discrepancy can impact the accuracy of
the experimental results.

5.2 Suggestions and Prospectives
In response to these challenges and constraints, several development proposals have emerged based on

the review.

(1) To establish interdisciplinary research teams and cooperation platforms, foster exchanges and collab-
oration across diverse disciplines, and integrate the strengths of various fields in order to holistically
address complex problems.

(2) Development of new materials for the manufacture of experimental equipment, aimed at achieving
cost-effectiveness, efficiency, and enhanced accuracy in experiments.

(3) Actively combining traditional experimental methods with artificial intelligence techniques, leverag-
ing the advantages of AI to achieve efficient and accurate experiments.
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(4) Researching higher precision sensors and detection technologies to enhance the equipment’s ability to
capture subtle phenomena, such as through the research and application of nanotechnology, micro-
electro-mechanical systems (MEMS), and other cutting-edge technologies aimed at improving the
detection accuracy and sensitivity of experimental equipment.

(5) Design and development of equipment that integrates multiple experimental functions, enabling
simultaneous multi-faceted research within a single system, thereby enhancing research efficiency and
comprehensiveness. For instance, the development of a comprehensive experimental platform that
incorporates wind tunnels, flow visualization, vibration analysis, and other functionalities to facilitate
comprehensive research on complex systems.

(6) Develop advanced data processing and analysis techniques, such as machine learning-based data
assimilation, to address the challenges posed by large volumes of experimental data.

(7) By designing more sophisticated control systems to simulate dynamic stall and transition scenarios
that more closely resemble real flight conditions, precise unsteady control can be achieved, including
adjustable vibrations, disturbances, and aeroelastic effects.

(8) By integrating various measurement techniques (such as PIV, pressure sensors, infrared thermography,
etc.), synchronized high-precision measurements of multiple physical quantities, including flow fields,
pressure distribution, and temperature fields, can be achieved to comprehensively describe transition
and dynamic stall phenomena.
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