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ABSTRACT: An experimental investigation of the dynamics of the interface between two low-viscosity fluids with
high density contrast oscillating in a fixed vertical slotted channel has been conducted. It has been found that as
the amplitude of the liquid column oscillations increases, parametric oscillations of the interface are excited in the
form of a standing wave located in the channel plane. In particular, depending on the interfacial tension, the standing
waves have a frequency equal to that of liquid piston oscillations (harmonic response), or half of the frequency
of oscillations of the liquid column in the channel (subharmonic response). The detected type of instability has a
gravitational-capillary nature and is analogous to Faraday waves. The analysis of the overcritical dynamics of wave
oscillations indicates that interfacial tension plays a crucial role in determining the type of parametric instability.
At high interfacial tension, only synchronous (harmonic) wave modes are observed, and the threshold of the wave
excitation is determined by the amplitude of piston oscillations of the liquid column. In this case, the oscillation
acceleration does not play a role and has a small value in the threshold of the synchronous mode response. In the
case of weak surface tension, subharmonic oscillations are observed. The threshold for the development of these
oscillations is determined by the dimensionless acceleration of the oscillating liquid column and remains almost
constant with variations in the dimensionless frequency of oscillations. At moderate values of interfacial tension (in
the region of moderate dimensionless frequencies), a synchronous wave mode emerges in the stability threshold of the
oscillating interface. As the dimensionless acceleration is increased further, a subharmonic mode is excited. The growth
of subharmonic oscillations occurs against the background of harmonic wave oscillations, with the oscillations of the
interface representing a combination of two standing waves.
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1 Introduction

The dynamics of multiphase systems in oscillating force fields is currently a topic of great scientific
and practical interest. This interest is motivated by the prevalence of multiphase systems in both natural
and engineered contexts. Specific attention is given to the generation and suppression of various types of
instabilities at interfaces between media in containers of different geometry. The dynamics of the interface
depends on the properties of the contacting phases, the geometry of the containers, and the nature of
the external influence. If a two-liquid system is selected for use as a multiphase system, the observed
dynamics will be largely dependent on how the fluids are moving within the container. In slotted channels,
Hele-Shaw cells, which in laboratory experiments serve as the prototype for porous media, the viscous
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interaction of oscillating fluids with channel walls is dependent on the dimensionless oscillation frequency
w=Q d*/v, where Q = 27f is the radian frequency of the fluid oscillations, d is the channel thickness, v is
the kinematic viscosity.

In the case of fluids with a high viscosity contrast (w; ~ 1, w, >> 1), the Saffman-Taylor instability
can occur when a high-viscosity fluid is displaced by a low-viscosity one. This instability manifests as the
penetration of low-viscosity “fingers” into the viscous fluid [1,2]. The Saffman-Taylor instability can occur at
the interface of immiscible and miscible fluids. In the case of immiscible fluids, the scale of the instability
is determined by surface tension [3,4]. In the context of miscible fluids, the wave number of perturbations
is attributed to the combined effects of molecular and hydrodynamic diffusion, which are influenced by
the joint action of convection (destabilization) and dissipation (stabilization) [5,6]. In [7-9], a novel type of
oscillatory finger instability which takes place within a fraction of the oscillation cycle was documented. The
oscillatory viscous fingering in rectangular, conical, and cylindrical cells has been experimentally studied
in [7-9], respectively. These studies show that the different character of motion of fluids of different viscosities
in a slotted channel (viscous/non-viscous oscillations) is the primary cause of this phenomenon. The studies
also relate to the case of extremely high viscosity contrast (w; ~ 1, w, >> 1), with one of the fluids making
viscous oscillations in accordance with Darcy’s law and the other making non-viscous oscillations. It should
be noted that in instances where the dimensionless frequencies are relatively similar in magnitude, the
Saffman-Taylor oscillatory instability does not occur.

It is of particular interest to consider the limiting case of w; >>1, w, >> 1, in which flows of both fluids are
inviscid, and inertial effects may be observed due to contrasting densities. The excitation of standing waves
at the interface between two fluids of different densities in the presence of piston oscillations in a vertical
slotted channel was experimentally found in [10,11]. Excitation of harmonic waves (when the frequency of
oscillations coincides with that of the liquid column) and subharmonic waves with a frequency of half that
of the oscillations were observed. The present study is designed to clarify the nature of this difference and the
role of surface tension. The paper presents the findings of a research study examining the effect of varying
surface tension on the dynamics of oscillating fluids. The phenomenon under investigation is new but has
common roots with the known and systematically studied phenomenon of parametric oscillations of the
interface in a cavity which is known as Faraday waves.

In this context, it is worthwhile to consider a brief description of Faraday waves. The phenomenon of
wave excitation at the interface between fluids in cavities undergoing vertical harmonic oscillations has been
documented in detail in [12-14]. This type of instability is known in the literature as “Faraday waves’, a term
inspired by Faraday’s initial observations of standing waves on the surface of mercury [15,16]. Initially, the
phenomenon of standing waves, or ripples, was observed at the free surface of fluids. Subsequent research
efforts were directed toward the examination of the interface dynamics of a pair of fluids within containers
under harmonic vertical oscillations [17] and Faraday waves in non-Newtonian fluids [18,19]. It is possible to
excite a standing wave characterized by oscillations at a frequency synchronous with that of an external force
(a harmonic response) [10,20,21] or a wave with a frequency that is a multiple of the external frequency (a
subharmonic response) [22,23]. Faraday ripples are manifested in the formation of gravity-capillary standing
waves at the interface of fluids under the effect of an oscillating force field, typically of an inertial nature.
The dispersion relation for gravity-capillary waves developing at the interface between low-viscosity fluids of
different densities in an infinite container undergoing vertical oscillations is presented in [24]. A dispersion
relation that takes into account energy dissipation in viscous boundary layers that emerge near the interface
is presented in [25]. Nevertheless, for the low-viscosity fluids under consideration in this paper, the impact
of the supplementary term derived in [25] is insignificant and does not result in a prominent effect on the
interface dynamics.
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In contrast, interfacial tension is a crucial factor affecting the dynamics of the interface between fluids.
Recently, it was demonstrated the importance of the out-of-plane curvature, whose contribution has been
neglected so far in the literature [26].

The proximity of the side walls in slotted channels can have a considerable impact on the oscillating
fluid surface profile [27]. New theoretical and experimental data on the effect of capillary forces including
dissipation in Stokes boundary layers on the excitation of Faraday ripples at the free surface of the fluid in a
vertical Hele-Shaw cell subjected to vertical oscillations are presented in [28]. The study demonstrates that
incorporating the out-of-plane interface curvature and dissipation in the boundary layers near the cell side
walls results in an increase in the stability threshold and frequency detuning while the natural frequencies
of the wave oscillations are shifted downward.

In contrast with the classical formulation, which describes the development of Faraday waves at the
interface between fluids in an oscillating cavity, the present study examines the dynamics of the interface
oscillating in a fixed vertical slotted channel. The objective of the study is to investigate the threshold and
overcritical dynamics of the interface between two fluids, with a particular focus on the effect of surface
tension, and to determine the control parameters of the problem.

To the best of the authors’ knowledge, this is the first study of the influence of tension at the interface
between two fluids on a new phenomenon—the oscillatory excitation of a parametric wave at the interface
between two low-viscosity fluids in a narrow gap. It is found that an increase in interfacial tension leads to
transition from subharmonic waves to harmonic ones, existing simultaneously at the intermediate values of
interfacial tension. The applied interest of the conducted research lies in the possibility of oscillatory control
of the interphase boundary in slot channels in order to intensify heat and mass transfer.

2 Experimental Technique

The dynamics of an oscillating interface between two low-viscosity immiscible fluids of different
densities in a vertical flat slotted channel is experimentally investigated. The experiments are conducted
within a rectangular channel with dimensions of width L = 7.5 cm, height H = 11.5 cm, and gap width
d =0.23 cm (Fig. 1). The experiments are conducted with three pairs of fluids with different surface tension
coefficients. All experiments were carried out at an ambient temperature of 23 + 1°C. The characteristics of
the fluids at this temperature are given in Table 1.
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Figure 1: Sketch of the slotted channel
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Table 1: Fluids properties

# Fluid v, cSt p, g/lcm’ p=pilp o, mN/m

1 Silicone oil PMS-0.65 0.85 0.77 0.42 2.3
Fluorinert FC-40 2.40 1.85

2 Water + Surfactant 1.00 1.00 0.54 20
Fluorinert FC-40 2.40 1.85

3 Water 1.00 1.00 0.54 51
Fluorinert FC-40 2.40 1.85

The channel is filled with a pair of fluids, with their interface positioned at the mid-height level of the
slotted channel. The denser fluid (Fluorinert FC-40) is located in the lower part of the channel while the less
dense fluid (water, water with the addition of a surfactant, silicone oil PMS-0.65) is located in the upper part.
The fluid-filled channel is connected to a hydraulic circuit that provides oscillatory motion of the interface
due to harmonic changes in the flow rate of the fluid pumped through the channel. The oscillating motion
of the liquid in a closed circuit is set by a push-pull pump. The volume of fluid pumped through the channel
varies by the law Q = Qp cos Qt, where Q is the amplitude of the pumped fluid volume, Q = 27f is the
radian frequency. To ensure uniform piston oscillations of the liquids in the gap, pressure equalization of the
pumped liquids at the upper and lower ends of the channel is provided by special expansion chambers. A
detailed description of the hydraulic circuit and the cavity construction can be found in [9].

Let us briefly review the experiment technique which is similar to that used in reference [11]. In the
absence of oscillations, the denser fluid occupies a stable position in the lower part of the channel while the
less dense fluid occupies the upper part. The interface between the fluids remains undisturbed and horizontal.
The digital generator ZETLab is used to set the frequency of oscillations with an accuracy 0.01 Hz and to
increase the amplitude of fluid oscillations in a stepwise manner. The oscillation frequency f varies within
the range of 2-14 Hz while the peak-to-peak displacement A; of the liquid column ranges from 0 to 1 cm. The
latter is measured with an accuracy 0.1 mm by the oscillation peak-to-peak displacement of light-scattering
particles which visualize the piston oscillations of the liquid column outside the viscous boundary layers
at a distance of approximately 4 cm from the interface. The oscillating interface is recorded at each step of
the experiment through the transparent channel wall using a FUJIFILM X-E4 camera at 120 fps. The video
sequence is converted into a series of photos for further image processing.

To obtain contrast images of the interface, the slotted channel is illuminated with a green laser or a
collimated white light source mounted behind the slotted channel. In the experiments conducted with fluid
pairs #1 and #2 (see Table 1), light-scattering particles with a diameter of 40 um and a density of 1.02 g/cm’
were added to the upper fluid to visualize the currents that arise near the interface. Blue food coloring is
added to the less dense fluid in the experiments conducted with Fluorinert FC-40 and water (#3 in Table 1).

When the channel is vertical, the interface and the liquid column oscillate vertically. At small amplitudes
of fluid oscillations, the interface oscillates symmetrically with respect to the initial position undergoing a
shift to the upper fluid and lower one at the same distance. The interface is observed to be horizontal and
undisturbed. Once a critical value of the oscillation amplitude is reached, the interface becomes unstable to
the excitation of parametric oscillations. The interface oscillates at a frequency equal to that of the piston
oscillations of the liquid column (synchronous response) or at a frequency that is half that of the oscillations
of the liquid column (subharmonic response). The observed instability is a novel phenomenon. In contrast
with the classical scenario, we consider an oscillating interface in a fixed slotted channel.
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3 Experimental Results

A synchronous response is observed in experiments conducted with the fluid pair Fluorinert-water
whose interfacial tension coefficient is ¢ = 51 mN/m (Fig. 2). To ensure the clarity of the experimental
results, the width of all photos of the interface presented in the paper is aligned with the width of the slotted
channel (L = 7.45 cm). A harmonic standing wave is excited at the oscillating interface in a threshold manner
synchronized with the piston oscillations of the liquid column. The excitation of instability is soft and is
believed to occur when the contact line undergoes a disruption marking the transition from meniscus to
piston oscillations. The profile of the interface in the phases of its maximum displacement into the upper
and lower fluid at increasing piston oscillation amplitude is illustrated in Fig. 2. It can be noted that the
shape of the interphase boundary depends on the phase of the oscillatory process. In the phase of maximum
displacement of the interface into the upper liquid (Fig. 2a,c,e), the interface profile can be described as a
series of peaks, with a constant distance between neighboring peaks. In the opposite phase of the oscillatory
process, when the interface is maximally shifted downward (Fig. 2b,d,f), the shape of the standing wave also
changes to the opposite.

(a) (b)

(©) (d)

(€) ®

Figure 2: Profile of the Fluorinert-water interface in the phases of its maximum displacement to the upper (a, ¢, ) and
lower (b, d, f) fluids: A; = 0.22 cm (a, b), A; = 0.24 cm (¢, d), A; = 0.31 cm (e, f); 0 = 51 mN/m, f = 5.40 Hz

The spatial wave period A (the distance between neighboring standing wave peaks) is significantly
greater than the channel thickness and is dependent upon the frequency of the fluid oscillations. An increase
in the amplitude of piston oscillations results in an increase in the amplitude of the interface oscillations
in the peaks of the standing wave while the spatial period A remains almost unchanged. No evidence of
hysteresis is found. A detailed description of the technique for determining the instability threshold is given
in [10].
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Experiments with the fluid pair Fluorinert-silicone oil (surface tension coefficient ¢ = 2.3 mN/m)
demonstrate a subharmonic response, as described in [11]. Once the critical value of the amplitude of piston
oscillations is reached, a standing wave forms at the interface. This frequency is precisely half that of the
fluid oscillations in the slotted channel (Fig. 3). In the maximum displacement phase, the interface takes the
form of a sinusoid. Through a period of piston oscillations of the liquid, the hills and troughs of the wave
are reversed. The excitation of the standing wave with a hysteresis is observed at small amplitudes of liquid
column oscillations.

(c)

Figure 3: Photos of the interface between Fluorinert and silicone oil PMS-0.65 in the phase of maximum
upward displacement of the interface at different amplitudes of piston oscillations: A; = 0.25, 0.26 and 0.31 cm (a-c),
0=23mN/m,f=775Hz

Fig. 3 shows the profile of the interface in the phase of its maximum displacement into the upper
fluid. Fig. 3 illustrates that an increase in the amplitude of piston oscillations at a definite oscillation frequency
results in an augmented height of the standing wave peaks while the number of peaks remains unaltered.
An increase in the oscillation frequency results in an increase in the number of peaks which in turn leads
to a decrease in the standing wave length A. The change in standing wave length with frequency occurs in a
discrete manner. It is revealed that the number of standing wave wavelengths m, fitted along the width of the
channel, adjusts to its width. For this pair of fluids (#1 in Table 1), waves with m = 1.5-6.5 are experimentally
detected. Notably, there are standing wave displacement antinodes on the cavity narrow side walls in all
experiments. A similar configuration of standing wave nodes and antinodes was identified in the study of
classical Faraday waves in slotted channels of finite width [29]. Parametric oscillations result in the excitation
of the time-averaged flows in the vicinity of the oscillating interface. These flows take the form of a system of
counter-rotating vortices with their rotation axes oriented perpendicular to the cell plane. The photos (Fig. 3)
show the tracer particles suspended near the interface illuminated by the green laser.
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In experiments with a pair of fluids whose surface tension coefficient has an intermediate value
o = 20 mN/m (Fluorinert-water with surfactant), both synchronous and subharmonic oscillations are
identified (Fig. 4). With an increase in the amplitude of the oscillations of the liquid column, instability
manifests itself in the threshold occurrence of a harmonic standing wave that performs synchronous
oscillations with the column: Fig. 4 shows the profile of the interphase boundary in opposite phases of liquid
column oscillations Qt = 0 (Fig. 4a) and Qt = 7 (Fig. 4b). It is evident that after half an oscillation cycle, in
addition to the interface displacement, the phase of the standing wave becomes reversed. As the amplitude
increases, a threshold is reached where subharmonic oscillations of the interface are excited at a frequency
that is half that of the external forced oscillations (Fig. 4c—f).

() (b)

(¢) (d)

() (®

Figure 4: Synchronous (harmonic) (a, b) and subharmonic (c-f) wavy oscillations of the interface between Fluorinert
and water with surfactant at different phases of the oscillation cycle: A; = 0.61 (a, b) and 0.76 cm (c—f), 0 = 20 mN/m,
f=8.00 Hz

Fig. 4c-f illustrates the evolution of the oscillating interface over time in the supercritical region. Here,
the phase in which the fluid and the interface are maximally shifted upward is selected as the zero phase of
the oscillation cycle (Fig. 4¢). During the first part of the oscillation cycle, the curved interface maintains its
shape and moves downward into the lower fluid (Fig. 4d). During the second part of the oscillation cycle of
the fluid, the phase of the standing wave oscillations is reversed (Fig. 4¢). During the second cycle of the liquid
column oscillation, the dynamics of the interface is preserved (Fig. 4¢,f), and the standing wave returns to its
original shape and position as in Fig. 4c. The data demonstrate that the wave length A increases significantly
in the presence of subharmonic oscillations. At the threshold of subharmonic oscillations, their amplitude
is high, and the subharmonic mode is the dominant phenomenon, though it does not entirely suppress the
synchronous mode. Fig. 4c—fillustrates that the synchronous mode manifests as small-scale patterns against
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the background of large-scale patterns induced by subharmonic oscillations. Fig. 5 illustrates the transition
from synchronous interface oscillations to subharmonic oscillations, accompanied by a notable increase in
the standing wave length with rising amplitude of oscillations at a fixed frequency of piston oscillations.
Hereinafter, the error bars of the measured parameters are not shown in the graphs if they are smaller than
the symbols. Our findings indicate that in both synchronous and subharmonic modes, the amplitude of the
standing wave increases with the amplitude of the fluid oscillation at a fixed frequency while the wavelength
remains unchanged. The letters in Fig. 5 correspond to photos (a) and (c) in Fig. 4. No evidence of hysteresis
is observed in the dependence of the standing wave length on the amplitude of piston oscillations.
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Figure 5: Dependence of the standing wave length A on the amplitude of piston oscillations A; of the interface between
Fluorinert and water with surfactant at f = 8.00 Hz. The letters correspond to photos (a, ¢) in Fig. 4

As mentioned above, for both synchronous and subharmonic responses, the excitation of the standing
wave occurs in a threshold manner. Furthermore, it is demonstrated that synchronous oscillations of the
interface can be induced by fluid oscillations at amplitudes that are relatively small. It is presumed that the
threshold of the wave is related to the disruption of the contact line and the transition from meniscus to
piston oscillations.

Fig. 6 illustrates the dependence of the threshold value of the peak-to-peak displacement A; on the
oscillation frequency for three pairs of fluids. It can be observed that at the threshold of synchronous
mode excitation, 4A; is independent of frequency and takes a constant value of 0.16 + 0.03 cm across the
entire frequency range studied for the two pairs of fluids (dashed line in Fig. 6). In contrast to the soft
excitation of synchronous oscillations, subharmonic mode excitation in the case of 0 = 20 mN/m has
finite-amplitude character.

The critical value of the fluid peak-to-peak displacement at ¢ = 2.3 mN/m [11] decreases monotonically
with increasing oscillation frequency (Fig. 6). The solid lines on the graph correspond to the law A; ~ f =%,
The physical meaning of the obtained dependence is that the threshold is determined by the oscillatory
acceleration, which decreases with frequency according to the law A; f 2 ~ f 7%, Note that the wave-length of
the excited wave decreases with frequency. It is in agreement with the classical case of vibration excitation of
Faraday ripples [17], when the vibration acceleration is decisive. In this scenario, finite-amplitude excitation
is observed only in the low-frequency range. For frequencies above 8 Hz, the soft excitation of oscillations
without hysteresis is revealed (see [11]).
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Figure 6: Dependence of the threshold value of the fluid peak-to-peak displacement A; on the oscillation frequency f.
The solid lines correspond to the law A; ~ £%; the dashed line corresponds to A; = 0.16 cm

4 Analysis

In the overcritical region, a change in the oscillation frequency of the liquid column results in a change
in the number of peaks and, consequently, a change in the standing wave length. As the frequency of
oscillation increases, the standing wave length decreases in a discrete manner (Fig. 7). In other words, there
are narrow ranges of frequencies at which the wavelength remains unchanged. This discrete transition from
one number of waves m to another also affects the threshold of instability onset, as demonstrated by the step-
like dependence of the peak-to-peak displacement on the oscillation frequency in the threshold of parametric
oscillations excitation (Fig. 6). The findings indicate that the synchronous and subharmonic oscillations of
the interface are of gravity-capillary nature.

The classical example of such waves are Faraday waves [15,16]. The dispersion relation for gravity-
capillary waves that are generated at the interface between two low-viscosity immiscible fluids of different
densities in a deep channel, in the absence of side walls, is as follows [24]:

_ 3
Q2 - gkPr P2, ok

w > (1)
P11t P2 P11t P2

where k = 277/) is the wavenumber, Q),, is the radian frequency of the wave oscillations (Q,, = Q for the
synchronous response; (), = Q/2 for the subharmonic response). Fig. 7 presents a comparison between
the experimental data on the standing wave length and the theoretical model proposed by Benjamin
et al. [24]. The graph illustrates the results of standing wave length measurements as a function of the wave
oscillation frequency in the context of both synchronous and subharmonic responses. The lines on the graph
correspond to the dispersion relation (1), calculated for three different pairs of working fluids, considering
their characteristics.
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Figure 7: Dependence of the standing wave length A on the wave oscillation frequency f,, in experiments with pairs of
fluids with different surface tensions. Letters correspond to photos (a, ¢) in Fig. 4

The results of experiments demonstrate that one of the parameters that govern the instability of the
oscillating interface in the slotted channel is the surface tension o. An increase in the surface tension
has a stabilizing effect preventing the excitation of subharmonic oscillations. Instead, synchronous wave
oscillations develop at the threshold of instability. Synchronous wave oscillations are gravity-capillary waves
analogous to Faraday waves which oscillate at the frequency of the external force.

If the capillary wavelength X.,, = \/26/g (p1 — p2) is selected as the unit of length and the parameter
\/Acap/ g is selected as the unit of time, then the dispersion relation (1) will take the following form:

1
Q2= k" + k7 )

here, O = Qy\/Acap/Ag A = (p1— p2) / (p1 + p2) is the Atwood number, k* = 2mtA 4, /A is the dimension-
less wavenumber. A comparison of experimental data with the classical dispersion relation for the oscillations
of the interface between inviscid fluids [24] is presented in Fig. 8. The qualitative agreement between the
experimental data and the theoretical model suggests that the oscillations of the interface can be classified as
gravity-capillary waves. The subharmonic oscillations are observed at small dimensionless frequencies Q*
(small wave numbers k*) corresponding to gravitational waves when the surface tension is negligible. By
contrast, synchronous standing waves appear in the capillary wave region (large values of Q* and k*).

The results of the experimental investigation are in good agreement with the theoretical data for the
pair of low-viscosity fluids in the case of low surface tension ¢ = 2.3 mN/m (Fig. 8). An increase in the
surface tension to ¢ = 20 mN/m results in not only a shift of experimental data to the region of large
dimensionless frequencies but also a notable reduction in the wave number of the observed waves (in this
instance, synchronous) in comparison to the theoretical curve. The gap between the experimental data and
the theoretical predictions widens as the interfacial tension increases up to o = 51 mN/m in the region of
high dimensionless frequencies where capillary effects are significant (Fig. 8).
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Figure 8: Dependence of the dimensionless wave number k* on the dimensionless frequency Q* in experiments with
various fluid pairs

In the case of synchronous interface oscillations, experimental wavelengths differ from the predictions
of the theory [24] which can be explained by the qualitative difference between the problem under
consideration and the case of an infinite interface. It is important to note that even in the approximation of
inviscid fluid oscillations, the contact lines on the channel walls begin to play a significant role. In the classical
problem concerning inviscid gravity-capillary waves in a channel of finite width, the effect of capillary forces
at the contact line between the fluid and the side walls of the slotted channel is not considered. It is commonly
accepted that the contact angle between the fluids and the channel wall is 90° (see for example reference [30]).
In this context, it is of interest to study the excitation of wave oscillations at the interface in a Hele-Shaw cell
in the classical setting whereby the instability is initiated at the static interface by an oscillating force field.

Recent research studies [26,27,31,32] concentrated on the experimental and theoretical investigation
of the fluid interface dynamics in vibrating Hele-Shaw cells. The theoretical model [24] assumes that the
fluid motion in the channel obeys Darcy’s law which allows us to use a two-dimensional formulation of the
problem after averaging over the thickness of the Hele-Shaw layer. This does not meet the specified criteria
for the present research. This approach fails to consider the impact of the contact angle on the profile of the
interface as well as the thickness (8 = \/2v/Q << d) of the Stokes boundary layers that occur in the vicinity
of the slotted channel sidewalls. While the aforementioned results are not directly applicable to the present
research, the cited studies suggest that considering dissipation and additional curvature of the interface in
the plane perpendicular to the side walls of the slotted channel results in a transformation of the dispersion
relation and a notable reduction of the wave number. It could be reasonably assumed that the observed
decrease in the wave number of the standing wave and the transition from synchronous to subharmonic
wave oscillations at an increase in the surface tension is explained by this phenomenon.

The experimental results indicate that the peak-to-peak displacement of the piston oscillations plays
a pivotal role in the emergence of instability. Fig. 9 illustrates experimental results in the dimensionless
parameter plane Q*, T, where T = bQ%/g is the dimensionless oscillatory acceleration, by = A/2 is the
amplitude of piston oscillations, and g is the acceleration of gravity. In the region of small dimensionless
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frequencies, where the dimensionless acceleration I' monotonically decreases with increasing dimensionless
frequency O, the development of a subharmonic mode is observed (region I in Fig. 9). In the region
Q* > 0.8, the development of a synchronous mode of oscillations is observed. The threshold dimensionless
acceleration I' increases with increasing Q* (region I in Fig. 9) due to the fact that the excitation threshold is
characterized by a constant value of the liquid column oscillation amplitude (Fig. 6). The upper boundary of
the region Il is a result of the finite range of amplitudes of fluid oscillations. Of particular interest in the graph
are the data obtained for the fluid pair #2. At small dimensionless accelerations, a synchronous wave mode
develops (filled rhombuses in Fig. 9), and a transition from synchronous to subharmonic mode is observed
with increasing dimensionless acceleration (empty rhombuses in Fig. 9). The dimensionless acceleration O*
in the dispersion relation [24] is calculated through the oscillation frequency of the wave Q,,. Consequently,
the transition is accompanied by a shift to the region of lower frequencies Q*. As illustrated in Fig. 9, the
threshold value of T is observed to be higher in the case of 0 = 20 mN/m than in the case of ¢ = 2.3 mN/m. This
phenomenon can be understood not only in terms of the development of subharmonic oscillations against
the background of synchronous oscillations but also due to the effect of surface tension. As shown in [11], the
stability threshold increases with increasing out-of-plane curvature and strengthening of capillary effects in
the plane perpendicular to the side walls of the channel.

Pord8 g T \§
&, mN/m
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Figure 9: Dependence of the critical dimensionless oscillatory acceleration I' on the dimensionless frequency (*

It should be noted that currently the attention of scientists is drawn to the influence of vibrations
on different systems with interfaces [33,34] as well of various complicating factors on the behavior of
the interphase boundary (including the wave dynamics): rotation, temperature nonuniformity, rheological
properties of liquids, electric field and shear stresses [35,36]. The latter are important in applied terms. The
influence of these factors on the new type of instability studied in the work could be a promising task.

5 Conclusion

A systematic experimental investigation of the oscillatory dynamics of the interface between two low-
viscosity fluids of different densities oscillating in a normal direction relative to the interface within a
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vertical slotted channel is conducted. In the case of small oscillation amplitudes, the interface remains
horizontal. It is demonstrated that an increase in the oscillation amplitude results in the threshold excitation
of parametric oscillations of the interface in the form of a standing wave in the plane of the channel. The
excitation of oscillations is observed at a frequency equal to that of the piston oscillations of the liquid
column (synchronous response) or at a frequency that is twice less than the frequency of the liquid column
oscillations (subharmonic response). The detected type of instability is gravity-capillary. The wavelength-
frequency dependence is only qualitatively consistent with the classical dispersion relation for low-viscosity
fluids in a wide and deep basin. The impact of sidewalls coupled with the unique shape of the interface
which oscillates in the form of a tongue with an almost fixed contact line results in a reduction in the
natural frequency of oscillations. The excitation thresholds of standing waves and their overcritical dynamics
are analyzed for three pairs of fluids with different surface tension coefficients. It is demonstrated that
the surface tension plays a pivotal role. In experiments conducted with fluids whose surface tension is
relatively high, only a synchronous wave mode (0, = Q) is observed. The instability develops when the
contact line is disrupted and the transition from the meniscus to piston oscillations occurs. In experiments
conducted with a pair of fluids with a relatively low surface tension, subharmonic oscillations are observed
(Q,, = Q/2). In the region of dimensionless frequencies Q* > 0.8, at moderate values of interfacial tension
(0 =20 mN/m), a synchronous wave mode develops at the stability threshold. However, a further increase in
dimensionless acceleration results in a transition from synchronous to subharmonic mode. The development
of subharmonic oscillations occurs against the background of a synchronous standing wave, and the interface
oscillations are a superposition of two standing waves.

The article presents the results of first study of the influence of tension at the interface between two
liquids on a new phenomenon—the oscillatory excitation of parametric waves at the interface between two
liquids in vertical slotted channels. It is found that, an increase in interfacial tension leads to transition
from subharmonic waves to harmonic ones. At the intermediate values of interfacial tension, both harmonic
and subharmonic waves manifest themselves simultaneously. The discovered phenomenon has important
practical significance, in particular, in terms of intensifying heat and mass transfer in a two-fluid system in
slotted channels, and requires further investigation.
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Abbreviations

A Atwood number
b Amplitude of piston oscillations, cm
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d Channel thickness, cm

f Oscillation frequency, Hz

fw Frequency of the wave interface oscillations, Hz

g Acceleration of gravity, cm/s*

H Channel height, cm

k Wave number, 1/cm

k* Dimensionless wave number

L Channel width, cm

m Number of standing wavelengths fitting across the channel width

t Time, s

Q Volume of liquid pumped through a channel, cm?

Qo Amplitude value of pumped liquid volume, cm?

r Dimensionless oscillation acceleration

) The Stokes boundary layer thickness, cm

A Peak-to-peak displacement of the piston fluid oscillations, cm

A Wavelength, cm

Acap Capillary wavelength, cm

v Kinematic viscosity of the fluids, cSt

p Fluid relative density

p1 Density of the less dense fluid, g/cm®

P2 Density of the denser fluid, g/cm’

p3 Density of light-scattering particles, g/cm’

o Surface tension, mN/m

w Dimensionless frequency of oscillations

Q Radian frequency liquid column oscillations, 1/s

Q, Radian frequency of the standing wave oscillations, 1/s

* Dimensionless radian frequency of wave oscillations
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