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ABSTRACT

This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence
the permeability of tight sandstone reservoirs, with a particular focus on the Paleozoic reservoirs in the Qingshi-
mao Gas Field. Using CT scans of natural core samples, a three-dimensional digital core was constructed. The
maximum ball method was applied to extract a related pore network model, and the pore structure characteristics
of the core samples, such as pore radius, throat radius, pore volume, and coordination number, were quantita-
tively evaluated. The analysis revealed a normally distributed pore radius, suggesting a high degree of reservoir
homogeneity and favorable conditions for a connected pore system. However, it was found that the majority
of throat radii measured less than 1 μm, which severely restricted fluid flow and diminished permeability. Over
50% of the pores measured under 100 μm3, further constraining fluid movement. Additionally, 30%–50% of the
pore network was composed of isolated and blind-end pores, which significantly impaired formation connectivity
and reduced permeability. Based on this, the lattice Boltzmann method (LBM) was used for pore-scale flow simu-
lation to investigate the influence mechanism of pore structure characteristics and dynamic-static parameters
such as displacement pressure difference on the permeability performance of the considered tight sandstone reser-
voirs for various pressure gradients (0.1, 1, and 10 MPa). The simulations revealed a strong relationship between
pressure differential and both the number of streamlines and flow path tortuosity. When the pressure differential
increased to 1 MPa, 30 streamlines were observed, with a tortuosity factor of 1.5, indicating the opening of addi-
tional seepage channels and the creation of increasingly winding flow paths.
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Nomenclature
Absorption Information The energy data of X-rays attenuated by a material as they traverse through it.
Projected Data The two-dimensional projection image data generated on the detector following

the passage of X-rays through the object during a CT scan.
Reconstruction Algorithm A computational method that transforms two-dimensional projection data into

three-dimensional images, utilizing techniques such as filtered back projection
and iterative reconstruction algorithms.
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Filter Back Projection Algorithm A widely adopted CT image reconstruction technique that generates a three-
dimensional representation of an object by filtering and back-projecting the
acquired projection data.

Iterative Reconstruction Algorithm A CT image reconstruction technique that progressively refines the image
through iterative optimization processes, aiming to closely approximate the
actual scanned object.

Pixel Noise Random interference in an image, unrelated to the actual signal, which
diminishes image quality and clarity.

Image Edge Discontinuity The abrupt or indistinct boundaries of objects within a digital image.
Gaussian Filter An image denoising algorithm that employs a Gaussian function to smooth the

image and mitigate noise.
Gaussian Kernel Function The mathematical function employed in the Gaussian filter algorithm to regulate

the spatial extent and intensity of the filtering process.
Incised Sphere A sphere entirely enclosed within a geometric shape.
Throat A constricted passageway linking adjacent pores.
Pore Network Model A computational representation that simulates the porous structure of rocks

using interconnected spheres and rods to analyze fluid flow dynamics within the
pore spaces.

Coordination Number The quantity of pores directly connected to a specific pore, indicating the extent
of interconnectivity within the porous network.

Pore Sorting The extent of homogeneity in pore size distribution within a rock. Awell-sorted
rock exhibits predominantly uniform pore dimensions.

Homogeneity The extent to which rock properties exhibit uniformity across spatial dimen-
sions. A homogeneous rock demonstrates consistent characteristics irrespective
of directional orientation.

Isolated Pore A pore that is not connected to any other pore within the rock structure.
Blind Pore A pore that is connected to only one other pore within the rock structure.

1 Introduction

In recent years, unconventional oil and gas resources, such as tight oil, shale oil and shale gas, have
garnered significant attention from researchers due to their substantial recoverable reserves [1–3]. The
Qingshimao Gas Field, situated in the northern region of the Tianhuan Depression and thrust belt on the
western margin of the Ordos Basin, is characterized as a deep-buried, ultra-low permeability tight
sandstone gas field with distinct geological features and reservoir properties. Consequently, when
investigating this field, particular emphasis should be placed on its pore structure and permeability, as
studies in these areas for such gas fields are relatively limited. Tight sandstone reservoirs pose
considerable challenges for pore structure characterization due to their micro- and nano-sized pore throats
and highly heterogeneous nature [4]. The micropore structure of reservoir rocks is intricately linked to the
differential distribution of reservoir productivity and is a critical factor influencing the macro-reservoir
quality and fluid flow dynamics. Therefore, quantitative evaluation and characterization of the reservoir
micropore structure are crucial for maintaining and enhancing oil recovery, as well as for better
understanding and assessing the seepage capacity and hydrocarbon utilization potential of the reservoir
[5]. To comprehensively and intuitively reveal the complex microstructure of sandstone reservoirs,
researchers have conducted extensive studies. The experimental methods primarily include high pressure
mercury intrusion method (HPMI) [6], constant velocity mercury intrusion method (CRMI) [7], gas
adsorption method [8], nuclear magnetic resonance method (NMR) [9], small Angle neutron scattering
method (SANS) and ultra-small Angle neutron scattering method (USANS) [10]. However, conventional

574 FDMP, 2025, vol.21, no.3



techniques often encounter difficulties in accurately characterizing the smallest pore sizes typical of tight
sandstone reservoirs, underscoring the necessity for continued methodological advancements in this field.

Numerous studies have utilized high-resolution scanning equipment to collect core profile images and
obtain pore morphology characteristics for qualitative analysis of rock mineral morphology, pore throat size
distribution, and connectivity. This approach provides intuitive, convenient, and rapid results. Common
methods include scanning electron microscopy (SEM) [11], computed tomography (CT) [12], Fourier
infrared spectroscopy (FTIR) [13], and X-ray diffraction (XRD) [14]. Among these, the high-pressure
mercury method (MIP) offers advantages in sensitivity, reliability, and speed for characterizing porosity
and pore size distribution. However, it is limited to nanometer-to-micron pores. Low pressure gas
adsorption methods (CO2 adsorption, N2 adsorption) are significant techniques for characterizing rock
reservoir pore structures. CT scanning has emerged as a particularly beneficial technique for
characterizing tight sandstone pore structures. Unlike methods restricted to surface analysis or requiring
assumptions about pore geometry, CT scanning generates high-resolution 3D images of the entire core
sample. This enables direct visualization and quantification of pore morphology, connectivity, and spatial
distribution across multiple length scales, including the critical micro- and nano-pore sizes often
inadequately characterized by other techniques [15]. This non-destructive approach preserves the natural
pore structure and provides essential data for understanding pore-scale fluid flow behavior, ultimately
leading to more accurate assessments of reservoir quality and the development of more effective
strategies for hydrocarbon extraction.

Following the establishment of the 3D digital core model, further analysis of the core’s pore structure
characteristics and stratigraphic properties is essential to obtain crucial geological information for oil and
gas development. This necessitates the creation of a pore network model to accurately and
comprehensively characterize the core’s pore structure. The pore network model, extracted or
reconstructed from the digital core model, effectively reflects the actual core pore space [16]. Methods for
establishing pore network models include multi-direction scanning, center axis method, and maximum
sphere algorithm [17]. The multi-direction scanning method constructs the core pore network model by
assessing pores and throats by scanning the core sample in all directions. The center axis method
establishes a realistic pore network model by identifying the central axis of the pore space in the digital
core model, where the axis represents the throat and the intersection of two or more axes represents the
pores. The maximum ball algorithm constructs pore networks by identifying the largest sphere that can fit
within the pore space at each voxel. These maximum inscribed spheres represent pores, while the smaller
spheres connecting them model the throats [18]. This approach effectively captures the complex geometry
of pore spaces, enabling accurate analysis.

This study aims to provide a comprehensive understanding of the relationship between pore structure
and permeability in the Upper Paleozoic natural core of the Qingshimao Gas Field, ultimately
contributing to optimized formation development and enhanced gas recovery. Through an integrated
approach combining micro-CT scanning, digital core technology, pore network modeling, and lattice
Boltzmann method flow simulations, this research quantifies the 3D micro-pore network, establishes
quantitative links between pore characteristics and permeability, and analyzes the impact of pressure
differentials on flow behavior. This multifaceted analysis offers valuable insights for optimizing well
placement, hydraulic fracturing, and production strategies, facilitating efficient and sustainable gas
extraction in the Qingshimao Gas Field and similar tight gas reservoirs.

2 Digital Core Model Construction and Pore Characterization Analysis

To enhance comprehension of the intricate pore structures within the Upper Paleozoic natural cores from
the Qingshimao Gas Field, the development of a digital core model is essential. Analysis of this digital core
model enables a thorough investigation of pore geometry, connectivity, and spatial distribution, thus
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facilitating the examination of how microscopic pore characteristics affect permeability and other fluid flow
properties.

2.1 Digital Core Construction
CT scanning leverages the differential attenuation of X-rays passing through a sample to reconstruct its

three-dimensional structure. The process involves irradiating the sample from multiple angles and measuring
the transmitted X-ray intensity, resulting in a series of two-dimensional projections. These projections encode
the spatial distribution of X-ray attenuation coefficients within the sample. Advanced tomographic
reconstruction algorithms, typically utilizing filtered back-projection or iterative methods, are then applied
to mathematically reconstruct a volumetric representation of the sample from the acquired projection data.
The resulting reconstructed volume maps the spatially varying linear attenuation coefficient, offering a
detailed visualization of the sample’s internal structure.

Initially, authentic core samples from Wells Li 15, Li 23, Li 24, Li 85, and Li 93 were extracted and
positioned in a CT scanner holder. By rotating the sample and the X-ray source, the sample is exposed to
radiation at various angles, generating a series of projected images. These projected images are then
transformed into a 3D core model using a reconstruction algorithm [19]. The reconstruction process can
employ different algorithms, such as the filter back projection algorithm [20] and the iterative
reconstruction algorithm [21]. However, during the conversion from 2D image to 3D analog image, pixel
noise and image edge discontinuity may arise due to internal and external factors. Consequently, it is
essential to preprocess the scanned image, including denoising, enhancing, and filtering, to obtain three-
dimensional volume data of the pore structure that meets the analysis requirements. The Gaussian filter
substitutes the value of the current pixel by calculating the weighted average value of the surrounding
neighborhood. The formula is as follows:

I 0 x; yð Þ ¼ � G x; yð Þ � I xþ i; yþ jð Þð Þ=�G x; yð Þ (1)

where G x; yð Þ represents the Gaussian kernel function, I x; yð Þ is the pixel value of the original image,
I 0 x; yð Þ denotes the pixel value of the filtered image, and i and j are neighborhood indices.

Fig. 1 depicts the three-dimensional digital core image of the natural core from Section 8 of the Li
57 well box, showcasing both the original and processed images following enhancement and filtering
procedures.

Figure 1: 3D Digital core images of the ‘He 8’ section of the Li 57 well. (a) Original image; (b) Processed
image

576 FDMP, 2025, vol.21, no.3



2.2 Core Image Processing
Accurate differentiation between rock matrix and pore space is crucial for the fidelity of digital rock

models derived from CT scans. This segmentation process directly influences the accuracy of subsequent
pore network extraction and petrophysical property predictions. This study examines the effectiveness of
two distinct methods for pore network extraction from 3D digital cores: the watershed algorithm and the
maximum sphere method. The watershed algorithm, a widely utilized image segmentation technique,
divides the image into distinct regions based on grayscale gradients, simulating the topographic flow of
water. By treating pixel intensity as analogous to elevation, the algorithm identifies catchment basins that
delineate pore spaces. Pixels with high gray values are considered high areas, while pixels with low gray
values are regarded as low areas. Consequently, a series of basins form at the junction of elevated and
low-lying areas. The calculation formula of the gradient image grad Ið Þ is as follows:

grad Ið Þ ¼ rIj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqI=qxÞ2 þ ðqI=qyÞ2 þ ðqI=qzÞ2

q
(2)

where rI denotes the gradient vector, qI=qx, qI=qy, and qI=qz represent the rates of gray-level change in
image I along the x, y, and z directions, respectively.

The segmentation boundaries are subsequently constructed by filling these basins during the flow
simulation process. Ultimately, each low-lying area in the image represents a distinct region or object.
The image segmentation results are achieved by assigning adjacent pixels to the same low-lying area, as
illustrated in Fig. 2.

The segmentation boundaries are constructed by filling these basins during the flow simulation.
Ultimately, each low-lying area in the image represents a distinct region or object. Image segmentation
results are achieved by assigning adjacent pixels to the same low-lying area, as illustrated in Fig. 2.
Subsequently, the pore network model is extracted using the maximum sphere method. This method
characterizes the size and location of pores by identifying the largest inscribed sphere, based on the
geometry and distribution of the pores. The process involves scanning each pixel in three-dimensional
space and calculating the spherical space around it to determine the maximum inscribed sphere for each
pixel. The radius of this sphere represents the pore size at the pixel point, while its position indicates the
pore location. The maximum sphere method distinguishes between the rock skeleton and the pore to
separate the pore from the solid phase. For each pixel in the pore phase, the radius and position of its
maximum inscribed sphere are calculated and incorporated into the pore network model. In this model,
spheres represent pores, and rods represent throats, as depicted in Fig. 3.

In the pore network model extracted in this study (Fig. 4), the dimensions of the spherical elements
range from approximately 1.5 to 2 × 10−4 m, while the cylindrical components measure between 2.6 and
5 × 10−5 m.

Figure 2: Schematic diagram of image segmentation principle of watershed method

FDMP, 2025, vol.21, no.3 577



2.3 Pore Structure Characteristic Analysis
The analysis of pore structure characteristics significantly influences our understanding of a reservoir’s

capacity to store and transmit fluids. By examining key parameters such as pore-throat radii, pore volume,
and coordination number, we can gain deeper insights into the factors that control permeability and fluid flow
within the formation. Through detailed analysis of pore characteristics of core samples, a series of
experimental results on pore radius, throat radius, pore volume, and pore coordination number were
obtained, and their effects on formation permeability were evaluated, as illustrated in Fig. 5. The pores of
the core sample are predominantly small, with their radius distribution ranging from 0.05 to 0.15 μm.
This indicates that the formation’s pore structure exhibits a certain degree of fineness, with good pore
sorting. A fine-grained pore structure enhances reservoir performance as small pores better retain fluids
and increase the formation’s effective pore volume. The pore radius of the core sample follows a normal
distribution, suggesting good homogeneity in the reservoir segment. This homogeneity significantly
influences formation permeability, as formations with good homogeneity are more likely to form
connected pore systems, thereby increasing permeability. However, the throat radius distribution is wide
and generally small (<1 μm), resulting in lower formation permeability. The throat, being the passage
between connecting pores, restricts fluid flow when smaller, thereby reducing permeability. This
demonstrates that the size and distribution of throats significantly affect formation permeability, with
larger throats generally corresponding to higher permeability. Additionally, the pore volume of core
samples is generally small, with pores less than 100 μm3 accounting for more than 50%. This also

Figure 3: Schematic diagram of pore network model extracted by maximum sphere method

Figure 4: Schematic diagram of pore network models of Li 57 well. (a) Digital cores and pore network
models combined. (b) Pore network models
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impacts formation permeability, as smaller pore volumes restrict fluid flow, thus reducing permeability.
However, due to the wide distribution of pore volume, a certain proportion of large pores remain, which
provides the formation with some connectivity, thus ensuring a degree of permeability. As a crucial
parameter of pore structure, pore coordination number has a significant effect on formation permeability.
It is observed that isolated pores and blind pores are primary factors affecting formation connectivity,
accounting for approximately 30%–50%. Isolated pores are those unconnected to other pores, while blind
end pores are connected to only one pore. The presence of these pores reduces formation permeability as
they do not provide efficient channels for fluid conduction.

3 Pore Structure Characteristic Analysis

This section utilizes the LBM for pore-scale flow simulation. This technique effectively manages
complex boundary conditions and heterogeneous pore structures with enhanced accuracy. The findings
derived from this approach augment our comprehension of fluid dynamics in porous media, ultimately
contributing to improved recovery efficiency.

Figure 5: Pore and throat geometric parameters analysis results. (a) Pore radius; (b) Throat radius; (c) Pore
volume; (d) Pore connection number
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3.1 Model Construction and Simulation Parameter Settings
In this study, the volume-LBM based on a 3D digital core model was employed for simulation [22]. For

this single-phase flow simulation, the solid matrix was considered an impermeable, stationary phase. A
constant pressure gradient, applied across the inlet and outlet boundaries, acted as the primary driving force
for fluid flow. Utilizing GPU parallel computation, the simulation implemented a streamlined data structure
that solely stored information related to the simulation domain and its immediate boundary conditions.
This optimization approach minimized memory requirements and improved computational efficiency.

This study employs the D3Q19 discrete velocity model [16] to simulate the permeability of 3D digital
rocks, as Fig. 6 shows. The Lattice Bhatnagar-Gros-Krook (LBGK) collision approximation [17], widely
adopted due to its simplicity, is utilized. The fundamental evolution equation [18] can be expressed as:

fa r þ eadt; t þ dtð Þ � fa r; tð Þ ¼ � 1

s
fa � f eqa
� �

(3)

where fa represents the velocity distribution function and α (α = 0, 1, 2,… , 18) denotes the discrete direction;
r signifies the spatial position of the node; ea expresses the vector of discrete direction α; δt denotes the time
step; t represents time; τ indicates the dimensionless relaxation time; and f eqa stands for the equilibrium
distribution function. The relaxation time τ, which represents the average time interval between two
collisions, is related to the fluid viscosity υ and is determined as follows:

s ¼ v

c2sdt
þ 0:5 (4)

The equilibrium distribution function represents the distribution of fluid particles when the system
attains equilibrium. For the D3Q19 model, this equilibrium distribution function can be expressed as:

f eqa ¼ waq 1þ ea � u
c2s

þ ea � u2
2c4s

� u2

2c2s

� �
(5)

where ρ represents the macroscopic fluid density, u denotes the macroscopic velocity, cs ¼ 1=
ffiffiffi
3

p
indicates

the lattice sound velocity and wa, signifies the weight coefficient in the α direction, which is expressed as:

wa ¼
1=3 a ¼ 0
1=18 a ¼ 1; 2; . . . ; 6
1=36 a ¼ 7; 8; . . . ; 18

8<
: (6)

Figure 6: D3Q19 discrete velocity model diagram
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In LBM simulations of fluid dynamics, the iteration process concludes when either the number of
iterations surpasses 10,000 or the relative difference in average velocity between consecutive iterations
falls below 10–10 m/s. This criterion ensures the simulation’s finite execution and terminates the
computation upon reaching a steady-state flow condition.

Subsequently, we extend the single-phase LBM, as outlined earlier, to model two-phase flow in porous
media. Two-phase flow simulations using LBM necessitate the integration of interface tracking and inter-
phase interactions, which are crucial for accurately representing the dynamics between gas and water
phases within the porous structure. To simulate gas-water flow, we employ the Shan-Chen model, which
was selected for its ability to simulate phase separation using a pseudopotential-based approach. This
model introduces a short-range interaction potential between fluid particles, facilitating the simulation of
distinct gas and water phases and the interface between them.

This model posits a non-local interaction between distinct fluid particles, characterized by a potential
function expressed as:

Vk�k x; x0ð Þ ¼ Gk�k x� x0ð Þwk xð Þw�k x0ð Þ (7)

where x0 ¼ xþ eidt denotes the position of the adjacent lattice point at the lattice position x, and wk is a
density-related pseudo-potential function, representing the effective density of component k. Different y
values correspond to distinct equations of state. Gk�k x� x0ð Þ represents Green’s function, which reflects
the interaction strength between fluid phases.

Based on the interaction potential, the formula for calculating the interaction force between class k
particles and their neighboring particles is as follows:

Fk xð Þ ¼ �wk xð Þ
X

�k
Gk�k x; x0ð Þ

X
i
xiw�k xþ eidtð Þei (8)

At the fluid-solid interface, taking into account the wettability of the wall surface, the interaction force
between the fluid and the solid wall can be calculated using the following formula:

Fw xð Þ ¼ �wk xð Þ
X

i
Gwxis xþ eidtð Þei (9)

Among these parameters, Gw characterizes the strength of the interaction between the fluid phase and
the solid wall. Generally, for solid walls, when the fluid is non-wetting Gw > 0 is used; when the fluid is
wetting, Gw < 0 is used. If s xð Þ is used to identify a solid cell point, then s xð Þ ¼ 0, for solid cells and
s xð Þ ¼ 1 otherwise.

3.2 Result Analysis
In the analysis of fluid flow through porous media, two critical parameters are employed to characterize

permeability and flow behavior: the number of streamlines and tortuosity. The number of streamlines
quantifies the average density of flow paths within a unit area, reflecting the connectivity and
permeability of the pore structure. A higher number of streamlines typically indicates a more
interconnected and permeable medium. To determine this parameter, a set of starting points is selected on
the fluid inlet boundary. Numerical integration is then utilized to trace the flow lines in the direction of
the fluid, with the flow rate being updated at each step.

Tortuosity, in contrast, evaluates the extent of meandering or elongation of flow paths in comparison to a
direct trajectory. It quantifies the additional distance fluid particles must traverse due to the intricate and
convoluted structure of the pores. Tortuosity can be numerically expressed as the ratio of the actual path
length of the fluid through the porous medium to the straight-line distance between the entry and exit
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points of the flow. Mathematically, tortuosity (τ) is defined as:

s ¼ L

D
(10)

In the equation, L represents the length of the actual flow path traversed by the fluid between two points,
while D denotes the straight-line distance between these points.

Utilizing the LBM, this study quantifies the number of streamlines and tortuosity under various pressure
differentials, with the results presented in Fig. 7. The findings demonstrate a progressive increase in flow line
quantity as the pressure difference between the inlet and outlet rises. A greater pressure differential activates
more seepage channels, consequently elevating the number of flow lines. This observation suggests that an
increased pressure difference enhances the fluid’s propulsion through the porous medium, facilitating the
formation of additional flow pathways.

The increase in pressure difference corresponds to an elevation in tortuosity, a measure quantifying the
curvature of the fluid’s flow path within the core. At lower pressure differentials, the flow path remains
relatively linear, resulting in reduced tortuosity. As the pressure difference escalates, the flow path
becomes increasingly convoluted, manifesting in higher tortuosity values. For example, at a pressure
difference of 0.1 MPa, the number of streamlines is 22 and the tortuosity is 1.3, indicating a relatively
straightforward fluid flow. When the pressure difference rises to 1 MPa, the number of streamlines
increases to 30 and tortuosity to 1.5, suggesting the activation of additional seepage channels and a more
tortuous flow path.

Moreover, the normalized permeability exhibits an upward trend with increasing pressure difference.
At 0.1 MPa, the normalized permeability is 0.31, rising to 0.45 at 1 MPa, and reaching 1.0 at 10 MPa.
This pattern indicates that as the pressure difference escalates, there is not only an increase in the
number of flow lines and tortuosity but also an enhancement in the medium’s permeability. The
normalized permeability values suggest that at higher pressure differences, the medium becomes more
permeable, facilitating easier fluid passage despite the increased complexity of flow paths. This increase

Figure 7: Flow simulation results under different pressure differences
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in normalized permeability highlights the improved fluid transport efficiency as pressure differences become
more pronounced.

Utilizing the pore-scale gas-water two-phase microsimulation method, this study quantitatively
investigated the micro-gas-water occurrence state and its influence mechanism, with the results presented
in Fig. 8. During natural gas charging, gas initially enters larger pores due to their higher permeability
compared to smaller pores. However, at positions where the throat radius decreases, gas forms a flow
around the throat, unable to penetrate smaller pores and displace the primary water. This process results
in the formation of capillary water, a phenomenon where gas and water coexist within pores. At the
macroscopic level, this manifests as the presence of gas and water within the same layer.

Furthermore, the intensity of hydrocarbon generation significantly influences the microscopic
distribution of gas and water in the test production area. The hydrocarbon generation process produces
substantial quantities of natural gas, which subsequently enters the pore system. Typically, these
hydrocarbon generation reactions occur in or around mineral particles between rock pores, with larger
pores often situated in the central part of the rock’s pore network. Consequently, an increase in
hydrocarbon generation intensity results in a greater influx of gas into the macropores, thereby altering
the microscopic distribution of gas and water.

Increased charging pressure may enhance the permeability and diffusion rate of the fluid. When gas is
injected into the rock at elevated pressures, its fluidity and penetrative capacity are augmented, facilitating its
entry into small pores and cemented regions, as Fig. 9 shows. This process results in greater water
displacement by gas, consequently increasing gas saturation. Higher pressure enables more profound
contact between gas and water, intensifying the gas’s displacement effect on water, thereby further
enhancing gas saturation.

Figure 8: Evolution of gas-water microscopic distribution during the transition from water saturation to gas-
driven displacement
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3.3 Discussion
This research presents a comprehensive examination of pore structure characteristics and flow

simulation outcomes, which can be effectively applied to practical reservoir engineering applications for
optimizing natural gas extraction strategies.

(1) Reservoir Evaluation and Zonation Based on Pore Structure

The study demonstrates that the core samples are predominantly composed of small pores, with the pore
radius distribution concentrated within the 0.05–0.15 μm range, displaying an unimodal distribution. This
observation indicates favorable pore selectivity and suggests that the reservoir exhibits good
homogeneity, as evidenced by the normal distribution of pore radii. In practical applications, analogous
pore structure analyses can be utilized for the zonation and management of various reservoir sections.
Reservoirs characterized by homogeneity and advantageous pore selectivity may be prioritized for
development, as they are likely to exhibit enhanced permeability and more uniform fluid flow.

(2) Optimization of Fracturing Techniques to Enhance Permeability

The research indicates that the throat radii are predominantly small (<1 μm), resulting in low
permeability. In practical production scenarios, fracturing techniques can be optimized, such as through
the implementation of multi-stage fracturing or micro-pore fracturing, to enhance throat connectivity. This
strategy can effectively increase the reservoir’s permeability, improve fluid mobility, and consequently
enhance natural gas recovery.

(3) Increasing Injection-Production Pressure Differential to Enhance Flow Channels

The LBM simulation results indicate that an increase in the injection-production pressure differential
markedly amplifies the impact of reservoir pore structure on flow channels. A higher pressure differential
facilitates the opening of additional flow channels, augments the quantity of streamlines, and enhances
the tortuosity of flow paths. In practical applications, elevating the injection-production pressure
differential, especially in reservoirs characterized by intricate pore structures and low permeability, can
potentially enhance natural gas flow efficiency and expedite extraction rates.

(4) Optimization of Gas Injection Processes to Increase Gas Saturation

The simulation results further demonstrate that increased injection pressures during natural gas charging
enhance fluid permeability and diffusion velocity, leading to greater water displacement by gas and
consequently higher gas saturation. This insight suggests that gas injection processes in reservoir
engineering can be optimized by modulating injection pressures to achieve elevated gas saturation and

Figure 9: Changes in gas-water microscopic distribution and gas saturation under different charging
pressures
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more efficient water displacement. Such an approach has the potential to contribute to improved ultimate gas
recovery rates.

(5) Utilizing Pore Coordination Number to Optimize Reservoir Management

The pore coordination number emerges as a crucial factor influencing reservoir permeability, particularly
given that isolated and blind-end pores adversely affect reservoir connectivity. Drawing from experimental
analysis, reservoir management strategies can be optimized by integrating pore coordination number
assessments, with emphasis on regions exhibiting lower pore coordination numbers. These areas may
necessitate more intensive enhancement techniques, such as the introduction of supplementary
displacement agents or heightened fracturing density, to augment connectivity and permeability.

4 Conclusion

(1) This study conducted an experimental analysis of the pore characteristics in core samples, examining
the influence of pore radius, throat radius, pore volume, and pore coordination number on reservoir formation
permeability. The research employed micro-CT to obtain two-dimensional images, which were subsequently
reconstructed into three-dimensional models using digital rock technology. The maximum ball method was
applied to extract the pore network model, enabling quantification of micropores and three-dimensional
visualization of shale interlayers. Flow simulations were performed using the LBM to analyze the effects
of pressure differentials and pore structure on the permeability and flow channels within geological
reservoirs.

(2) The experimental findings reveal that the core samples predominantly comprise small pores, with
pore radii distributed between 0.05–0.15 μm. This unimodal distribution within a narrow radius range
indicates favorable pore selectivity. The normal distribution of pore radii in the core samples suggests
good reservoir homogeneity. However, the throat radii exhibit a broad distribution and are generally small
(<1 μm), resulting in low permeability. Pore volumes are typically small (<300 μm3), with over 50% of
pores having volumes less than 100 μm3. The pore coordination number, a crucial parameter of pore
structure, significantly influences the permeability of geological formations. Isolated and blind-end pores,
which constitute approximately 30%–50% of the total, are primary factors affecting the connectivity of
reservoir formations.

(3) The experimental analysis and numerical simulation results using the LBM method revealed that an
increase in inlet-outlet pressure differential significantly enhances the influence of the reservoir pore structure
on flow channels. Higher pressure differentials result in the opening of additional flow channels, leading to an
increase in the number of streamlines and the tortuosity of flow paths. Furthermore, during the natural gas
charging process, elevated charging pressures enhance fluid permeability and diffusion speed, resulting in
more extensive water displacement by gas, consequently increasing gas saturation.

This study conducted experimental and numerical analyses to examine the influence of reservoir pore
structure on permeability, highlighting the crucial roles of pore radius, throat radius, and pore
coordination number in fluid flow dynamics. Future research directions could explore the modulation of
pressure differentials during injection and production processes, as well as the refinement of fracturing
techniques to substantially enhance flow efficiency in reservoirs with intricate pore structures.
Subsequently, these methodologies could be applied to various reservoir types, including tight gas, shale
gas, and unconventional reservoirs, with the aim of improving recovery rates in low-permeability formations.
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