
A New Approach for the Calculation of Slope Failure Probability with Fuzzy
Limit-State Functions

Jianing Hao1, Dan Yang2, Guanxiong Ren1, Ying Zhao3 and Rangling Cao4,*

1Department of Engineering Management, Sichuan College of Architectural Technology, Deyang, 61800, China
2Department of Transport and Municipal Engneering, Sichuan College of Architectural Technology, Deyang, 61800, China
3Department of Basic Teaching, Sichuan College of Architectural Technology, Deyang, 61800, China
4Sichuan Hongye Construction Software Co., Ltd., Chengdu, 610081, China
*Corresponding Author: Rangling Cao. Email: hy_crl2405@outlook.com

Received: 29 May 2024 Accepted: 06 November 2024 Published: 24 January 2025

ABSTRACT

This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzy
limit-state functions, a method that significantly enhances the accuracy and efficiency of slope stability analysis.
Unlike traditional probabilistic techniques, this approach utilizes a least squares support vector machine (LSSVM)
optimized with a grey wolf optimizer (GWO) and K-fold cross-validation (CV) to approximate the limit-state
function, thus reducing computational complexity. The novelty of this work lies in its application to one-dimen-
sional (1D), two-dimensional (2D), and three-dimensional (3D) slope models, demonstrating its versatility and
high precision. The proposed method consistently achieves error margins within 3% of Monte Carlo simulation
(MCS) results, while substantially reducing computation time, particularly for 2D and 3D models. This makes the
approach highly practical for real-world engineering applications. Furthermore, by applying fuzzy mathematics to
handle uncertainties in geotechnical properties, the method offers a more realistic and comprehensive under-
standing of slope stability. As water is the main factor influencing the stability of slopes, this aspect is investigated
by calculating the phreatic line after the change in water level. Relevant examples are used to show that the failure
probability of a slope under water wading condition can increase by more than 20% (increase rates in 1D, 2D and
3D conditions being 25%, 27% and 31%, respectively) compared with the natural condition. The influence of
diverse fuzzy membership functions—linear, normal, and Cauchy—on failure probability is also considered. This
research not only provides a strategy for better calculation of the slope failure probability but also pioneers the
integration of computational intelligence, fuzzy logic and fluid-dynamics in geotechnical engineering, presenting
an innovative and efficient tool for slope stability analysis.
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1 Introduction

Failure probability is a critical metric in the assessment of slope stability, providing essential insights
into the potential risk of slope failure [1]. This probability is derived from the inherent uncertainties
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present in geotechnical mechanical properties, which are primarily influenced by measurement errors and
statistical variability.

Currently, probabilistic methods are the primary approach for calculating slope failure probability,
largely due to the thorough theoretical development of probabilistic frameworks. These methods are
broadly categorized into sampling methods and approximation methods, each with distinct advantages
and limitations. MCS is the predominant sampling method employed in this domain. MCS is highly
regarded for its accuracy, as it provides a precise probability calculation by simulating numerous possible
scenarios. However, a significant drawback of MCS is its computational intensity, especially when
dealing with complex limit-state functions [2]. In contrast, approximation methods, such as the first-order
first-moment method [3] and the second-order second-moment method [4], offer faster calculations. These
methods leverage Taylor series expansions to approximate the failure probability, which significantly
reduces computation time. The trade-off, however, is that these methods can incur larger errors when
applied to more complex limit-state functions. This discrepancy arises because the approximation may
not capture the intricacies of the actual failure mechanisms accurately. To address the computational
challenges associated with traditional methods, researchers have explored the integration of computational
intelligence technologies. These advanced methods aim to replace or augment complex limit-state
functions, thereby reducing computational costs while maintaining accuracy. Notable among these are
neural networks [5], which have demonstrated substantial potential in pattern recognition and predictive
modeling. Additionally, Kriging techniques [6,7], originally developed for geostatistical applications,
have been adapted to estimate failure probabilities by interpolating the outputs of complex models. By
leveraging the strengths of these computational intelligence methods, it is possible to achieve a balance
between accuracy and computational efficiency. This hybrid approach allows for the effective handling of
complex geotechnical data, thereby enhancing the reliability of slope stability analyses.

Fuzzy theory has also been utilized in the computation of failure probabilities for slopes and landslides.
These approaches employ fuzzy sets to depict uncertain parameters, facilitating a more supple manifestation
of the inherent variability in geotechnical properties [8–12]. Through the employment of fuzzy operations,
failure probabilities of slopes can be estimated from a distinct perspective in contrast to traditional
probabilistic methods. The considerable advantage of fuzzy sets over probabilistic theory resides in their
capacity to capture the distribution of uncertain parameters more effectively, offering a more detailed
comprehension of the variability and risks involved [13–15]. Nevertheless, there are prominent challenges
related to the application of fuzzy sets in this context. A significant issue is the computational intricacy
introduced by fuzzy arithmetic operations. A critical study conducted by Sotoudeh-Anvari [16] highlights
that “current fuzzy mathematics is not even in a position to tackle reliably the simplest equations and
consequently.” This statement underscores the difficulties faced when performing basic arithmetic
operations with fuzzy sets. While addition and subtraction are generally handled with sufficient accuracy,
multiplication and division remain controversial and prone to significant errors. These technical
challenges necessitate a cautious approach when employing fuzzy sets for slope failure probability
estimation. It is essential to recognize the limitations and potential inaccuracies that can arise from the
use of fuzzy arithmetic.

In addition to the inherent uncertainty of geological properties, the limit state function itself exhibits a
degree of “uncertainty.” Traditionally, many methods have strictly separated the safety and unsafety regions
with a critical value of 1, designating areas with a safety factor greater than 1 as safe and those with a factor of
1 or less as unsafe. However, this binary classification does not align with engineering practice, where the
reality is often more nuanced. In practice, a slope may remain stable even when the safety factor is
slightly above 1, and conversely, it may fail when the safety factor is equal to or less than 1 [17]. This
discrepancy highlights the existence of an intermediate state between the safety and unsafety regions,
known as the “fuzzy area.” The fuzzy area represents a zone where the slope has a certain possibility of
instability, acknowledging the gradation of risk rather than a strict threshold (Fig. 1). Incorporating this
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ambiguity into the limit state function provides a more realistic and practical assessment of slope stability,
reflecting the true nature of geotechnical uncertainties. Considering the ambiguity of the limit state
function not only aligns the analysis closer to real-world conditions but also helps avoid the confusing
calculations often associated with the concentration of ambiguity in fuzzy sets. This approach allows for
a more nuanced and accurate representation of slope stability, recognizing that safety and failure are not
always absolute states but exist on a spectrum influenced by various factors. To address these
complexities, advanced methods that incorporate fuzzy logic and other computational techniques are
necessary. These methods can effectively capture the intermediate state and provide a more
comprehensive understanding of the slope’s stability profile. By acknowledging and integrating the fuzzy
area, engineers and researchers can develop more robust models that better predict the behavior of slopes
under various conditions, ultimately leading to safer and more reliable geotechnical designs.

The primary contribution of this article is the development of a novel method for calculating failure
probability that incorporates the ambiguity of the limit-state function. Traditional methods often struggle
with the binary classification of slope stability, which fails to capture the nuanced nature of geotechnical
uncertainties. To address this, we propose a method that leverages a LSSVM [18], optimized by the
GWO [19] and validated using the K-fold cross-validation technique [20]. This approach aims to provide
a more flexible and accurate estimation of failure probabilities by integrating the inherent ambiguities
within the limit-state function. The proposed algorithm stands out due to its universal applicability across
various slope stability scenarios. By combining LSSVM with GWO, we enhance the optimization
process, ensuring that the model parameters are fine-tuned for the best possible performance. The use of
K-fold cross-validation further strengthens the model’s reliability by systematically evaluating its
predictive capability across multiple subsets of the data. To demonstrate the efficacy and robustness of
our method, we conducted comprehensive analyses on one-dimensional (1D), two-dimensional (2D), and
three-dimensional (3D) slope models [21].

The rest of this paper is organized as follows. In Section 2, a new calculation method of failure probability
is derived and the detailed calculation flow is given. In Section 3, the proposed method is applied to three
practical examples, and compared with MCS, which is the most accurate method for calculating the failure
probability, the influence of water on slope stability is also investigated, and the influence of the
membership function on the results is also discussed. The end is the conclusion drawn by this study.

2 Method

2.1 Failure Probabilities Calculation Involving Limit-State Function’s Ambiguity
A limit-state function (F) for side-slope stability analysis was often written as [5]:

F ¼ Fs � 1 (1)

Fuzzy 
domainFailure domain Safety domain 

Fs = 1

Failure
domain

Safety
domain

F
s
= 1

(a) (b)

Figure 1: Definition of safety domain and failure domain: (a) without considering the fuzzification of limit-
state function, and (b) considering limit-state function’s fuzzification

FDMP, 2025, vol.21, no.1 143



In the above equation, Fs represents the slope safety factor, which can be calculated using methods
including limit equilibrium theory. When F > 0, slopes are considered to be in a safe domain; when
F ≤ 0, slopes are considered to be in failed domain. There are many factors affecting the safety factor of
slope. Besides the mechanical properties of slope soil, water is also an important factor [22–25].

It can be seen from the definition of Eq. (1) that Fs = 1 is the strict boundary between slope safety domain
and failure domain. However, in practice, when the slope Fs is less than 1, it also may not be unstability, and
when it is greater than 1, the slope may not be safe. This shows that there is also an intermediate region
between the safety and unsafety regions of slopes, which can be both unstability and safe. That is, limit-
state functions for slopes are fuzzy, which can be characterized by a fuzzy membership function [26].
Combining fuzzy membership theory, the fuzzy membership for the limit-state function for slope stability is:

uðFÞ ¼
1; F � b
F � a

b� a
; a < F < b

0; F � a

8>><
>>: (2)

In Eq. (2), a and b represent two parameters. In this paper, we set b = 0.5, a = −0.5. That is, if slope Fs is
larger than 1.5, one can determine that this slope is in a safe state, and when the slope safety factor is less than
0.5, the slope is considered to be unstable. Slopes with a safety factor between 0.5 and 1.5 are likely to be
unstable, and the probability of instability decreases as the slope safety factor increases [17]. According to the
form of Eq. (2), Eq. (1) can be rewritten as:

uðFÞ ¼ 1;F > 0
0;F � 0

�
(3)

Fig. 2 shows the comparison of Eqs. (2) and (3). Failure probability (Pf) could obtained according to
Eq. (4):

Pf ¼ 1� 1

N

XN
i¼1

uðFÞ (4)

In the equation, N is the number of sampling points. By substituting Eq. (2) into Eq. (4), a failure
probability considering limit-state function ambiguity can be calculated, and by substituting Eq. (3) into
Eq. (4), a failure probability without considering limit-state ambiguity can be obtained. It can be seen
from Eqs. (2) and (3) that when a = b = 0, the method of considering limit-state ambiguity will
degenerate into the method of not considering limit-state ambiguity.

Fuzzy 
domainFailure domain Safety domain
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Failure
domain

Safety
domain

u

F
s

1

1 F
s
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1
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Figure 2: Calculation of membership: (a) without considering the fuzzification of the limit-state, and (b)
considering the fuzzification of limit-state function
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The steps for calculating the slope Pf according to the Monte Carlo method are:

1) Sampling, with a total number of N;

2) Calculate u according to Eq. (2);

3) Calculate the failure probability according to Eq. (3).

When Fs expressed by a simple explicit function, Pf can be calculated directly based on the MCS
method. When Fs needs to be calculated by a complex implicit iterative procedure, it is extremely time-
consuming to directly calculate the failure probability according to the above method. In view of this, a
new model is designed below to replace the limit-state function.

2.2 Alternative Model for Limit-States
An LSSVM optimized by the GWO and K-fold CV algorithm is implemented to replace a limit-state

function.

2.2.1 GWO
GWO, as a new swarm-intelligence algorithm, simulates the hunting process of grey wolves [19]. In this

section, we briefly introduce the basic process of GWO.

In GWO, all wolves are divided into four categories (alpha wolves, beta wolves, delta wolves, and
omega wolves), and the first three categories guide the behavior of the last one. The process of wolves
surrounding the prey is described as follows [19]:

Xtþ1 ¼ Xp;t � l � d (5)

d ¼ c � Xp;t � Xt

�� �� (6)

l ¼ 2 � b � rand1 � b (7)

c ¼ 2 � rand2 (8)

where Xt+1 represents a location of a wolf at (t+1)th iteration, and Xt represents a wolf’s location at tth
iteration, and Xp,t represents the prey’s location at tth iteration. During the iteration, b linearly reduces
from 2 to 0 [19]. The grey wolves hunting process is modeled as follows:

X 0
1 ¼ Xa � la � da (9)

X 0
2 ¼ Xb � lb � db (10)

X 0
3 ¼ Xd � ld � dd (11)

Xtþ1 ¼ X 0
1 þ X 0

2 þ X 0
3

� ��
3 (12)

In the equation, Xα, Xβ, and Xδ are respectively the best guide, second-best guide, and third-best guide.
Eqs. (5)–(12) constitute the core of GWO. Unlike the Particle Swarm Optimization [27], which requires the
user to specify multiple parameters, there are only two parameters that need to be specified by the user in
GWO, i.e., population size and the total iterations.

2.2.2 LSSVM
SVM transforms vectors in an input space to a new feature space using a nonlinear rule, and then

converts the actual problem into a quadratic programming problem with inequality constraints. LSSVM is
an extension of SVM. LSSVM replaces the inequality constraints in SVM with equality constraints and
adopts a squared-error loss function as the training set’s empirical loss, thereby transforming the primary
problem into a linear matrix solution problem [18].

FDMP, 2025, vol.21, no.1 145



The model expression of LSSVM is:

f ðxÞ ¼ wT4ðxÞ þ b (13)

in which, x represents input matrix, wand b are parameters, φ is a nonlinear function.

The parameter w in Eq. (13) is:

w ¼
Xm

i¼1
ki4ðxiÞ (14)

in which, λi is Lagrange multiplier, m is sample total number.

According to Eqs. (14) and (13), we have:

f ðxÞ ¼
Xm

i¼1
ki4ðxiÞT4ðxÞ þ b (15)

and Eq. (15) can also be written as:

f ðxÞ ¼
Xm

i¼1
kiKðxi; xÞ þ b (16)

In which, K is a kernel function. This paper chooses a gaussian function, defined as follows:

Kðxi; xÞ ¼ exp � x� xik k�2r2� �
(17)

λi and b need to be obtained througth a linear equation:

0 1T

1 Kðxi; xÞ þ C�1I

	 

b
k

	 

¼ 0

y

	 

(18)

where 1 ¼ 1; 1; . . . ; 1½ �m�1, k ¼ k1; k2; . . . ; km½ �T , y ¼ y1; y2; . . . ; ym½ �T . I ¼ 1m�m, and y are output vectors,
C represents a penalty factor.

σ in Eq. (17) and C in Eq. (18) are hyperparameters. They can be solved by GWO. The objective
function (fitness) of GWO is set to:

fitness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxÞ � yð Þ2

q �
m (19)

Eq. (19) is also called root mean square error (RMSE) function.

When hyperparameters are determined, a K-fold CV algorithm is also performed to divide samples (in
Section 3 of this article, K = 5), which is a training method to improve generalization abilityof machine
learning.

To better explain the proposed method, Fig. 3 gives a flowchart of calculation method of failure
probability proposed in this paper. The following will use 3 examples to verify our method.

It is noted that water is the main factor influencing the stability of slopes. Thus, in the calculation of the
safety factor in Eqs. (1)–(4), the effect of water should be incorporated. In this paper, the impact of water on
slopes is analyzed through fluid dynamics. Specifically, it is reflected by calculating the phreatic line after the
change in water level. Fig. 4 presents a simple model for calculating the saturation line, where h0 represents
the initial water level and hd represents the variation of the saturation line.

The differential equation that describes the non-stable motion of diving can be expressed as follows [5]:

@hd
@t

¼ a
@2hd
@x2

(20)
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where x and t denote the position and time of the calculation point, respectively; a is a coefficient related to
the coefficient of permeability. The solution of Eq. (20) can be deduced by Laplace transform, namely:

hd ¼ v0tMðx�2 ffiffiffiffi
at

p Þ (21)

v0 indicates the rate of water level drop, while M is a sign function, that is:

MðxÞ ¼ 0:1091x4 � 0:7501x3 þ 1:9283x2 � 2:2319xþ 1 (22)

Based on Fig. 4, the coordinate h of the saturation line can be represented as:

h ¼ h0 � hd (23)

Based on Eqs. (20)–(23), the phreatic line can be determined. Once the phreatic line is determined, the
unit weight of the soil above the line is taken as the natural unit weight, and the unit weight below the line is
taken as the saturated unit weight.

3 Results and Discussion

It is worth noting that all the following calculations are done by MATLAB 2018a on a computer with a
Windows 10 system. Fig. 5 shows the iteration curves of the Grey Wolf Optimizer (GWO) for three different
slope stability analysis cases (1D, 2D, and 3D slopes). The x-axis represents the number of iterations, and the
y-axis indicates the fitness value. Each subfigure (a), (b), and (c) corresponds to Case 1 (1D slope), Case 2

Figure 3: Calculation flow chart of the proposed method

Figure 4: A simplified model for calculating the saturation line
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(2D slope), and Case 3 (3D slope), respectively. Fig. 5a depicts the convergence of GWO for the 1D slope is
achieved within approximately 20 iterations, indicating efficient optimization. Fig. 5b depicts the iteration
curve for the 2D slope, showing similar convergence behavior, reaching the optimum around the 20th
iteration. Fig. 5c depicts the iteration curve for the 3D slope, with convergence occurring around the 30th
iteration, reflecting the increased complexity of the model.

3.1 Results

3.1.1 Case 1
Case 1 is a 1D slope (Fig. 6). On the 1D slope, the slip surface is a straight line. The slope gradient is 30°.

The soil’s weight, cohesion, and friction coefficient are uncertain parameters that satisfy the normal
distribution (Table 1). The safety factor Fs of the 1D slope is calculated using the following equation:

Fs ¼ ð2ðUnit weightÞcos230�Þ tanðInternal friction angleÞ þ Cohesion

2ðUnit weightÞ cos 30� sin 30� (24)

One hundred samples are generated, and the values of C and σ are obtained according to the method in
Fig. 3, as shown in Table 2. Among them, the population size and total iterations of GWO are set to 20 and
100, respectively. Fig. 5a shows the iteration curve of GWO. It can be seen that after about 20 generations,

Figure 5: Iteration curve of GWO: (a) Case one, (b) Case two, (c) Case three
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GWO tends toward the global optimal value. By setting the sampling times to 30,000, the Pf for this slope is
find to be 0.072%. MCS is the most accurate method to calculate the failure probability of landslide. ByMCS
method, Pf is 0.074%, and the relative deviation between the two is only 2.34%.

3.1.2 Case 2
Case 2 is a 2D slope (Fig. 7). On the 2D slope, the slip surface is a curve. In this example, there are three

types of normal distributions: the first one is for severity with a mean of 18.60 and a standard deviation of
0.93; the second one is for cohesion with a mean of 25.00 and a standard deviation of 3.75; the third one is for
friction angle with a mean of 23.00 and a standard deviation of 3.45. The safety factor for this slope was

Figure 6: One-dimensional slope

Table 1: Distribution form and numerical characteristics of uncertain parameters

Cases Properties Means Standard deviations Distribution type

1 Unit-weight (kN/m3) 18.60 0.93 Normal

Cohesion (kPa) 22.70 3.41 Normal

Internal friction angle (deg.) 20.00 3.00 Normal

2 Unit weight (kN/m3) 18.60 0.93 Normal

Cohesion (kPa) 25.00 3.75 Normal

Internal friction angle (deg.) 23.00 3.45 Normal

3 Unit weight (kN/m3) 20.60 1.03 Normal

Cohesion (kPa) 26.70 4.01 Normal

Internal friction angle (deg.) 25.00 3.75 Normal

Table 2: LSSVM parameters

Cases C σ

1 2139.33 94.80

2 3529.90 190.15

3 3715.75 307.82
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calculated using the MP method [28]. One hundred samples are generated (Table 3), and the values of C and
σ are obtained according to the method in Fig. 3 as shown in Table 2. Fig. 5b shows the iteration curve of
GWO. It can be seen that after about 20 generations, GWO tends toward the global optimal value. By setting
the sampling times to 30,000 times, a Pf of 2.518% can be obtained. The Pf obtained by MCS method is
2.58%, and the relative deviation between the two is only 2.48%.

Figure 7: Two-dimensional slope

Table 3: Calculation samples for Case 2 (Fs is calculated according to MP method)

No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs

1 17.463 26.162 19.046 1.653 51 16.880 24.722 18.563 1.613

2 18.008 21.862 23.034 1.542 52 16.412 17.350 25.673 1.496

3 20.601 32.323 20.114 1.737 53 19.141 30.241 24.330 1.866

4 17.433 28.375 22.099 1.839 54 20.115 25.735 23.735 1.613

5 18.776 30.675 17.410 1.714 55 19.593 18.316 28.602 1.490

6 19.569 20.620 24.532 1.460 56 19.407 29.754 21.272 1.742

7 19.479 29.484 17.346 1.619 57 18.134 21.279 16.866 1.340

8 18.395 22.522 18.251 1.417 58 18.099 29.712 21.672 1.838

9 18.871 29.836 23.580 1.845 59 18.813 25.840 20.917 1.607

10 20.018 24.936 24.271 1.602 60 21.092 22.721 20.458 1.362

11 18.824 23.975 22.993 1.587 61 18.041 21.477 26.626 1.629

12 19.388 29.370 18.916 1.662 62 17.742 24.184 23.172 1.662

13 17.471 20.962 26.696 1.638 63 18.874 27.061 27.094 1.834
(Continued)
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Table 3 (continued)

No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs

14 20.497 29.292 23.775 1.731 64 18.166 26.823 26.724 1.856

15 19.321 31.462 28.252 2.022 65 18.652 20.363 23.991 1.474

16 18.411 19.967 22.363 1.421 66 17.281 22.038 20.700 1.524

17 18.527 20.517 24.306 1.495 67 18.622 27.252 30.792 1.974

18 20.690 19.960 18.996 1.234 68 20.077 28.959 21.359 1.673

19 17.080 21.946 23.856 1.621 69 18.598 27.243 20.813 1.675

20 19.355 23.340 26.623 1.641 70 19.271 27.762 22.317 1.699

21 19.853 25.861 26.153 1.703 71 18.650 24.222 27.085 1.728

22 20.150 18.307 23.694 1.321 72 19.350 23.816 20.968 1.496

23 18.171 26.411 21.234 1.678 73 17.947 25.468 22.326 1.682

24 18.384 25.242 19.690 1.572 74 20.098 23.115 13.943 1.245

25 18.816 21.086 26.135 1.559 75 17.672 16.663 21.898 1.297

26 19.227 25.980 27.098 1.769 76 17.961 22.385 26.000 1.654

27 19.972 26.634 26.108 1.725 77 20.374 22.814 18.269 1.336

28 18.106 25.091 17.861 1.533 78 19.370 24.809 17.778 1.448

29 18.346 25.899 27.572 1.831 79 17.113 28.878 20.169 1.831

30 20.417 37.310 19.161 1.913 80 17.641 23.212 22.966 1.619

31 17.937 30.049 31.342 2.158 81 19.273 26.721 24.760 1.727

32 18.871 24.897 22.625 1.612 82 20.471 25.942 24.997 1.640

33 16.796 24.533 26.243 1.829 83 19.845 26.893 28.346 1.811

34 18.613 24.568 23.327 1.633 84 19.017 29.138 26.830 1.903

35 18.121 20.426 23.915 1.499 85 18.894 20.599 22.414 1.427

36 19.637 26.334 19.053 1.530 86 18.402 23.959 22.014 1.581

37 19.310 25.520 20.449 1.553 87 20.058 23.912 21.314 1.476

38 19.728 21.201 22.639 1.421 88 17.392 23.281 23.066 1.640

39 19.206 36.425 25.933 2.161 89 18.957 28.936 16.752 1.613

40 18.618 26.391 17.149 1.538 90 16.644 22.879 23.087 1.669

41 17.900 34.405 25.436 2.166 91 19.204 27.627 25.309 1.784

42 18.237 31.254 26.938 2.048 92 18.404 26.167 31.311 1.959

43 19.759 25.474 21.490 1.557 93 19.883 23.505 18.388 1.388

44 19.309 19.419 25.678 1.456 94 17.166 26.388 22.766 1.787

45 17.737 22.105 25.766 1.647 95 20.152 27.757 23.241 1.675

46 17.885 28.484 24.443 1.879 96 18.565 27.452 23.298 1.756

47 20.931 20.571 21.642 1.321 97 18.045 24.720 16.219 1.477

48 18.099 21.357 27.442 1.646 98 18.228 23.842 30.615 1.847
(Continued)
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3.1.3 Case 3
Case 3 is a 3D slope (Fig. 8). In the 3D slope, the slip surface is a curved surface. The slope gradient is

45°. Fig. 8 provides a schematic of a three-dimensional slope used in the case study. This figure illustrates the
complex geometry of the 3D slope, including the weight stress and normal stress acting on the slope. In this
example, the severity has a mean of 20.60 and a standard deviation of 1.03, the cohesion has a mean of
26.70 and a standard deviation of 4.01, and the internal friction angle has a mean of 25.00 and a standard
deviation of 3.75. The safety factor Fs of a 3D slope was calculated using a direct stress [29] approach.
As shown in Fig. 8, the method makes it possible for us to obtain Fs by solving the Eq. and adjusting the
self-weight stress. The samples used to train the LSSVM are shown in Table 4. Similar to the above two
examples, the values of C and σ are 3715.75 and 307.82, respectively. GWO also toward the global
optimal solution after 10 iterations. By setting the sampling times to 30,000, the failure probability of this
slope is found to be 38.320%. The Pf obtained by MCS method is 37.8%, and the relative deviation
between the two is 1.35%.

Table 3 (continued)

No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs No. Unit
weights
(kN/m3)

Cohesion
(kPa)

Internal
friction angles
(deg.)

Fs

49 18.747 29.616 15.960 1.633 99 17.262 22.907 30.071 1.844

50 18.369 24.569 22.805 1.632 100 18.518 22.192 25.461 1.600

Weight stress

Normal stress

Figure 8: Three-dimensional slope
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Table 4: Calculation samples for Case 3 (Fs is calculated according to the normal stress method)

No. Unit weights
(kN/m3)

Cohesions
(kPa)

Friction
angles
(deg.)

Fs No. Unit weights
(kN/m3)

Cohesions
(kPa)

Friction
angles
(deg.)

Fs

1 19.450 25.080 28.615 1.228 51 20.286 23.198 28.704 1.183

2 21.426 25.040 20.752 0.943 52 20.175 25.692 25.992 1.137

3 20.604 25.449 23.505 1.047 53 21.399 32.365 23.228 1.130

4 19.907 28.137 27.617 1.235 54 20.905 28.778 23.569 1.095

5 21.333 27.368 19.157 0.934 55 21.604 17.293 25.406 0.964

6 19.497 19.143 25.228 1.017 56 20.434 22.844 28.789 1.177

7 18.709 17.611 19.481 0.831 57 20.578 25.590 22.806 1.028

8 20.760 25.776 26.902 1.156 58 20.167 30.848 25.951 1.220

9 21.264 25.621 24.347 1.063 59 19.788 26.048 22.954 1.057

10 20.373 21.274 25.689 1.052 60 19.522 26.857 31.345 1.350

11 21.808 29.328 25.924 1.158 61 21.150 30.407 28.941 1.287

12 20.372 24.843 29.845 1.246 62 20.810 25.411 26.829 1.147

13 20.542 30.651 25.201 1.184 63 19.629 22.830 23.344 1.018

14 19.617 25.832 19.109 0.944 64 19.335 26.312 22.037 1.044

15 19.519 30.707 22.885 1.140 65 20.566 26.825 28.974 1.245

16 20.671 25.133 22.759 1.018 66 20.665 17.898 29.528 1.121

17 19.451 26.949 24.312 1.121 67 19.982 24.010 18.579 0.891

18 21.166 27.647 23.487 1.070 68 19.186 26.577 20.610 1.010

19 21.559 25.483 24.662 1.065 69 19.600 21.056 19.659 0.880

20 19.564 32.348 19.464 1.066 70 20.271 24.131 24.696 1.069

21 21.379 28.224 23.975 1.089 71 21.913 28.903 22.571 1.046

22 18.180 21.237 20.297 0.929 72 22.125 29.338 23.081 1.064

23 19.557 31.038 28.692 1.328 73 19.504 26.831 27.588 1.222

24 20.494 22.485 29.238 1.186 74 20.792 22.018 20.198 0.890

25 21.872 33.741 24.559 1.181 75 20.442 18.093 24.588 0.966

26 22.129 32.376 21.470 1.061 76 22.084 26.487 19.761 0.924

27 19.078 26.637 36.945 1.568 77 22.106 25.186 20.531 0.926

28 21.963 23.172 25.106 1.037 78 21.051 21.485 26.841 1.081

29 18.806 23.294 23.430 1.046 79 20.883 30.996 18.189 0.974

30 19.415 29.149 23.576 1.137 80 22.072 31.302 24.157 1.127

31 20.460 28.073 23.316 1.086 81 20.470 25.990 28.659 1.223

32 20.416 27.325 21.243 1.013 82 18.969 27.322 31.375 1.372

33 21.007 30.437 28.168 1.265 83 20.884 27.018 26.109 1.147
(Continued)

FDMP, 2025, vol.21, no.1 153



Water constitutes one of the crucial factors influencing slope stability. Consequently, the proposed
methodology is employed to analyze the failure probability of the three slopes under water-immersed
conditions (refer to Eqs. (20)–(23)).

Table 5 presents the outcomes of the three slopes under water-immersed conditions. In three cases,
a = 30, v0 = 0.2 m/day, and t = 360 days. It can be observed that for Case 1, the failure probability of the
slope under water-immersed condition amounts to 0.09%, which is 25% higher than that under the
natural condition. For Case 2, the failure probability of the slope under water-immersed condition is
3.198%, which is 27% higher than that under the natural condition. For Case 3, the failure probability of
the slope under water-immersed condition is 50.199%, which is 31% higher than that under the natural
condition.

Table 4 (continued)

No. Unit weights
(kN/m3)

Cohesions
(kPa)

Friction
angles
(deg.)

Fs No. Unit weights
(kN/m3)

Cohesions
(kPa)

Friction
angles
(deg.)

Fs

34 20.278 29.441 25.779 1.189 84 19.808 30.393 28.646 1.309

35 21.466 21.628 26.624 1.070 85 21.498 25.770 28.939 1.209

36 22.289 19.228 26.556 1.021 86 22.140 24.728 23.610 1.011

37 22.187 25.630 28.086 1.166 87 18.752 20.173 17.147 0.809

38 21.777 19.298 22.501 0.902 88 19.834 29.074 30.087 1.335

39 21.976 20.895 26.417 1.045 89 19.880 26.325 24.634 1.111

40 22.363 32.085 21.743 1.060 90 20.929 24.291 23.714 1.029

41 20.021 24.699 29.885 1.252 91 20.697 27.789 24.577 1.115

42 20.341 31.849 16.580 0.956 92 19.970 24.894 30.203 1.268

43 21.346 19.142 22.522 0.906 93 21.095 26.300 24.362 1.077

44 20.401 27.298 33.162 1.403 94 21.283 25.638 20.262 0.940

45 20.300 27.389 22.146 1.043 95 21.102 32.787 26.012 1.230

46 21.421 23.426 27.822 1.137 96 20.271 27.057 17.762 0.912

47 18.676 28.303 29.120 1.319 97 18.845 33.769 19.873 1.124

48 19.461 25.808 25.921 1.152 98 21.016 25.175 24.540 1.066

49 20.411 28.933 27.693 1.239 99 21.053 24.499 30.364 1.246

50 18.305 25.676 26.798 1.205 100 20.996 26.479 31.151 1.305

Table 5: Failure probability under wading condition

Cases Pf

1 0.090

2 3.198

3 50.199
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3.2 Discussion

3.2.1 Accuracy and Calculation Time
An exact solution for slope failure probability can be acquired through the MCS method. After

30,000 times of sampling, the failure probabilities of the slopes in Cases 1–3 were 0.074%, 2.582%, and
37.810%, respectively. The errors of the proposed method in comparison with the MCS method are
2.341841%, 2.478699%, and 1.34885% (Table 6). As can be observed, the proposed method possesses
high accuracy and can satisfy the requirements of engineering applications.

Fig. 9 compares the computation time required for the proposed LSSVM-GWO method and the MCS
method across the three case studies (1D, 2D, and 3D slopes). The x-axis represents the different cases, while
the y-axis indicates the computation time in seconds. In Cases 1–3, the calculation times of our proposed
method are 31.45, 29.17, and 30.33 s, while the times for the MCS method are 0.02, 5260.75, and
83114.99 s (Fig. 9). Except for the 1D slope, our method takes much less time than the MCS algorithm.
Since the Fs expression of the 1D slope can be expressed using a simple explicit function, it only takes a
short time to calculate Pf directly according to the MCS approach. However, calculation according to the
MCS method for 2D and 3D slopes requires much more time. The calculation complexity of the safety
factor for 1D to 3D slopes gradually increases. In the calculation of Pf for 2D and 3D slopes, the MCS
approach takes 180 times and 2740 times longer than our approach, respectively. The calculation time of
our approach is not affected by the complexity of the safety factor model and averages about 30 s. The
proposed method has significant advantages over the MCS method in calculating the failure probability
of complex slopes.

3.2.2 Comparison of Proposed and Probabilistic Methods
Here, we call the method that does not consider the function of the limit-state a Probabilistic method.

Our approach considers the ambiguity of limit-state. Table 3 compares differences between the
calculation results of the two. Fig. 10 presents the failure probability results obtained using the proposed
LSSVM-GWO method and the classical probabilistic method. The x-axis represents the different cases

Table 6: Comparison of our approach with MCS

Cases MCS Proposed method Error (%)

1 0.074 0.072 2.341841

2 2.582 2.518 2.478699

3 37.810 38.320 1.34885
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Figure 9: Comparing the calculation time of this method with the strict MCS method
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(1D, 2D, and 3D slopes), while the y-axis indicates the failure probability percentage. According to
Probabilistic method, samples were sampled 30,000 times, and the failure probabilities were 0%, 0.040%
and 19.550% (Fig. 10). Probabilistic approach is quite different from the proposed approach. In
comparison, the probabilistic method underestimates the failure probability of the slope.

3.2.3 Comparison of Different Membership Functions
Except for linear membership rule used in Eq. (2), in fuzzy field, the common membership functions are

normal type and Cauchy type [30].

uðFÞ ¼
1; F � b

exp � F � bð Þ2
b

 !
; F < b

8><
>: (25)

uðFÞ ¼
1; F � b

b

bþ10 F � bð Þ2; F < b

8<
: (26)

Fig. 11 compares Pf calculation results of the above membership functions used in three cases. The
parameter settings are the same as in Section 3.1. As shown in Fig. 11 the difference in the failure
probability of several membership functions is relatively small. In contrast, Pf determined by normal
membership function is less than the linear function, and Pf by Cauchy membership function is greater
than the linear membership function. In practice, using linear membership function is a compromise.
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Figure 10: Calculation results of the present approach and probabilistic method
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4 Conclusions

This study introduces a novel approach for calculating slope failure probability by incorporating the
ambiguity of the limit-state function. The developed method leverages a Least Squares Support Vector
Machine (LSSVM) optimized by the Grey Wolf Optimizer (GWO) and K-fold cross-validation to replace
traditional limit-state function methods, significantly reducing computational time while maintaining high
accuracy.

1. The proposed method was tested on three cases: one-dimensional (1D), two-dimensional (2D), and
three-dimensional (3D) slopes. The results demonstrate that the accuracy of our algorithm is
exceptional, with an error margin within 3% compared to the strict Monte Carlo Simulation
(MCS) method. This accuracy is sufficient to meet engineering requirements, indicating that the
alternative model method established in this study is highly reliable and accurate for practical
applications. For 1D, 2D and 3D conditions, the probability of failure under wading conditions is
25%, 27%, and 31% higher than that under natural conditions, respectively.

2. One of the significant advantages of the proposed method is its efficiency in reducing computational
time, especially for complex limit-state functions. In the calculation of 2D and 3D slope failure
probabilities, the proposed method is approximately 180 times and 2740 times faster than the
MCS method, respectively. This dramatic reduction in computation time highlights the method’s
potential for real-time applications and large-scale simulations where traditional methods would
be impractical due to time constraints.

3. Compared with our algorithm, the classical probabilistic methods tend to underestimate the slope
failure probability. This disparity highlights the significance of considering the ambiguity in the
limit-state function, which our method effectively handles. The incorporation of this ambiguity
offers a more realistic and precise estimation of slope failure probabilities, rendering the proposed
method superior in scenarios where precision is of vital importance.

4. The type of membership function used in the fuzzy limit-state model significantly influences the
calculated failure probability. Our findings show that the failure probability obtained using a linear
membership function lies between those derived from normal and Cauchy membership functions.
This sensitivity to membership function types suggests that careful selection and tuning of these
functions are essential for accurate failure probability estimation.

5. While incorporating the ambiguity from the limit-state function, the method also introduces
uncertainty due to human factors, such as the distribution type and parameters of the membership
function. This aspect adds a layer of complexity to the analysis but also aligns more closely with
real-world conditions where human judgment and variability play a role.
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