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ABSTRACT

The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related
widespread occurrence in nature and technology. The influence of external force fields on rotating systems can
be used to control the dynamics of inclusions of various types. Controlling inclusions is of current interest for
space technologies. In low gravity, even a slight vibration effect can lead to the appearance of a force acting
on phase inclusions near a solid boundary. When vibrations are applied to multiphase hydrodynamic systems,
the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.
Asymmetries in the fluid flow lead to the appearance of an averaged force. As a result, the body is repelled from
the cavity boundary and takes a position at a certain distance from it. The vibrationally-induced movement of
phase inclusions in liquids can be used to improve various technological processes (for example, when degassing
and cleaning liquids from solid inclusions, mixing various components, etc.). This study presents a relevant meth-
odology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall
of a cavity. Attention is paid to the region of moderate and low dimensionless frequencies when the size of the
inclusion is consistent with the thickness of the Stokes boundary layer. The dynamics of these bodies is considered
in a horizontal cylindrical cavity with a fluid undergoing modulated rotation. The average lift force of a vibrational
nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density
of the liquid in a static centrifugal force field. The developed technique makes it possible to determine the depen-
dence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclu-
sions are located. It is shown that in the region of moderate dimensionless frequencies, the average lift force acting
on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless
frequency.
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Nomenclature
d Diameter of the cylinder, mm
frot Mean value of the cavity rotation rate, rps
flib Modulation frequency, Hz
F� Non-dimensional vibrational lift force
FC Centrifugal force, N
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FL Vibrational lift force, N
h Gap width between the cylinder and the cavity wall, mm
l Cylinder length, cm
L Cavity length, cm
R Cavity radius, cm
t Time, s

Greek Symbols
b Azimuthal coordinate of the body oscillations, deg
b0 Amplitude of the angular oscillations of the cylinder, deg
d Thickness of the Stokes boundary layer, mm
D Angular distance between two cylinders, deg
m Kinematic viscosity, St
rL Fluid density, g/cm3

rS Cylinder density, g/cm3

j Azimuthal coordinate of the cavity oscillations, deg
j0 Amplitude of the cavity azimuthal oscillations, deg
ψ Rotation angle of the cylinder, deg
ψ0 Amplitude of rotational oscillations, deg
v Non-dimensional frequency of oscillations
�rot Cavity angular velocity, rad/s
�lib Radian frequency of the cavity oscillations, rad/s

1 Introduction

Many researchers give attention to the problems of vibrational hydromechanics, studying the effect of
oscillating force fields on systems containing phase inclusions. The dynamics of free phase inclusions in the
fluid, as well as the averaged forces acting on them, are of interest in such studies. An example of the effect of
an averaged vibrational force on a phase inclusion in an inviscid fluid is its attraction/repulsion to/from a
solid wall. The direction of the averaged force is determined by the distance to the wall at high
dimensionless frequencies. The force of attraction is due to the fact that the fluid in the gap between the
body and the wall flows at a higher velocity than on the other side of the body, which leads to a decrease
in pressure in the gap (Bernoulli’s law) [1]. The attractive force replaces the repulsive force at the viscous
interaction distance, which is determined by the thickness of the viscous Stokes layer. The action of the
repulsive force is limited by the thickness of the viscous boundary layer, within which the fluid motion is
viscous. On the opposite side, the flow around the cylinder is a potential oscillating flow, which leads to
an inhomogeneity of the averaged pressure near the body [2]. A better understanding of the vibrational
dynamics of inclusions in fluids allows the creation of means to control vibrational processes in fluids.
This field of research is of interest for the development of methods for the redistribution of phase
inclusions in fluids (e.g., cleaning contaminants from the boundary fluid layer).

Numerous theoretical and experimental studies have been conducted on the attraction and repulsion
forces acting on inclusions of different shapes (sphere/cylinder) and densities at high dimensionless
frequencies. Thus, a theoretical description of the averaged attractive force acting on cylindrical and
spherical bodies that oscillate at high frequency and small amplitude is given in [3–5]. Namely,
Lyubimov and co-authors studied the oscillatory motion of a cylinder at an arbitrary distance from the
cavity wall at high dimensionless frequencies and determined the conditions under which an oscillating
body with a density higher (lower) than that of the fluid floats (sinks) [5]. The results of theoretical and
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experimental studies of the repulsive vibrational force acting on a cylinder in a cavity under translational
oscillations are presented in [6]. It is shown that the repulsive force is manifested at the viscous
interaction distance between the oscillating cylinder and the wall. Schipitsyn et al. demonstrated that the
vibrational lift force depends on the amplitude and frequency of oscillations as well as on the fluid
density [7]. It is found that the magnitude of the averaged lift force decreases with increasing
dimensionless amplitude.

Detailed experimental and theoretical studies of phase inclusions enable the determination of universal
laws that describe their dynamics. This, in turn, allows the control of the distribution of inclusions in the fluid.
This direction is significant for various technological processes including wastewater treatment and enhanced
oil recovery. An overview of studies and developments in dynamic filtration across various technological
applications is given in [8]. There is a commercial VSEP (Vibratory Shear Enhanced Process)
technological process which is based on the generation of high shear at the surface of the filter
membrane. This causes bodies and foulants to detach from the membrane surface, increasing the
permeability of the membrane pores. In contrast to the studies described above, this process occurs at low
non-dimensional frequencies.

The effect of the averaged vibrational force is evident in microgravity. The effect of g-jitter (spacecraft
oscillations) on fine particles suspended in a fluid cell was studied in [9]. It is found that the vibrational force
shifts from attraction to repulsion as the fluid viscosity increases. Additionally, the effect of vibrational force
grows with increasing oscillation frequency and amplitude. Liang and colleagues employed numerical
modeling to investigate bubble dynamics in the vicinity of a wall under microgravity conditions relevant
to material processing, such as crystal growth in space [10]. It is demonstrated that the fluid viscosity and
the distance between the bubble and the wall are crucial parameters in determining the direction of the
vibrational force. The recent paper presents the research project T-PAOLA (Thermovibrationally-driven
Particle self-Assembly and Ordering mechanisms in Low Gravity) [11]. The primary aim of the project is
to investigate the occurrence of new dispersed-phase self-organization phenomena driven by the
application of vibrations. The paper provides a detailed description of the space hardware and software,
the experiment protocol, the ground tests and procedures, and all the adaptations that had to be
implemented to overcome many technological and physical issues.

The inclusion motion is determined by the interaction with other inclusions, too. Two issues are
considered: (a) bodies are suspended and streamlined by an oscillating fluid flow [12–14]; (b) one of the
bodies oscillates under the action of an external force while the second body and the fluid remain
stationary at a significant distance from the oscillating body [3,15,16]. Note that the interaction between
two bodies is influenced by the direction of the body oscillations. When oscillations are directed along
the axis connecting the centers of two suspended cylinders, a repulsive force occurs. On the contrary,
when oscillations are perpendicular to this axis, the cylinders are attracted. When discussing the dynamics
of several bodies, the phenomenon of flow-induced vibration (FIV) is of great interest to scientists due to
its significance in offshore and ocean engineering applications. Various aspects of FIV have been studied
including the mutual arrangement of cylinders [17,18], the distance between cylinders [19,20], the
cylinders’ shape [21–23] as well as the steady and unsteady forces acting on cylinders [24,25]. The
reduction of vibrations caused by the flow around a tandem of cylinders is one of the most important
research topics for the safety of various facilities (underwater pipelines, pipe arrays in heat exchangers,
chimneys, and bridge abutments).

This work presents an experimental study of the dynamics of two cylinders near the wall of an unevenly
rotating horizontal cylindrical cavity filled with fluid. This paper is part of a series of works devoted to the
study of the dynamics of a single cylinder in a rotating cavity and the measurement of the averaged lift force
[26–28]. Previous research has shown that a cylinder experiences an averaged repulsive force in a cylindrical
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cavity undergoing modulated rotation. In this case, the non-dimensional lift force increases almost linearly
with the dimensionless frequency of oscillations.

2 Experimental Setup

The paper examines the effect of lift force acting on two free cylinders 1 and 2 in an unevenly rotating
horizontal cylindrical cavity 3 (Fig. 1). The cylinders are made of plastic (rS ¼ 1:05 g/cm3) rods and have
similar length l ¼ 58 mm and diameter d ¼ 4:3 mm. The cylinders are marked with a straight line running
through the center of one end wall to track their rotation. The transparent Plexiglas cylindrical cavity has the
following dimensions: radius R ¼ 30 mm and length L ¼ 74 mm. The cavity is filled with silicone oil of
viscosity of m ¼ 0:2 St or 1.0 St and density rL of 0.95 or 0.99 g/cm3, respectively. The cylinders’
relative density varies within a range of 1.06–1.10. The low relative density of the cylinders allows us to
reduce the average effect of gravity on the cylinders to a negligible value [26].

The cavity filled with fluid and containing cylinders rotates about a horizontal axis according to the law
� ¼ �rot 1þ e cos�libtð Þ. Here,�lib ¼ 2pflib is the radian frequency of modulation,�rot ¼ 2pfrot is the mean
value of angular velocity, and e ¼ j0�lib=�rot is the amplitude of the angular velocity modulation. The
cavity 1 is rotated by stepper motor 2 (Fig. 2). The motor is controlled by SMD 4.2 type driver 3 and
power supply 4. The ZetLab 210 module 5 and a personal computer are used to control and change the
rotation parameters. A more detailed design of the experimental setup is presented in [27].

The modulated rotation of the cavity can be considered as the sum of uniform rotation and rotational
oscillations. The dynamics of two cylinders is studied in a reference frame that rotates uniformly at a rate
of frot. In this frame of reference, the cavity undergoes azimuthal oscillations according to the law
j ¼ j0 cos�libt. In experiments, the rotation rate frot varies in the range of 3–4 rps, and the frequency flib
varies in the range of 2–16 Hz. During the experiment, the modulation amplitude ε increases step by step

Figure 1: Scheme of the experimental setup and scheme indicating the measured parameters

Figure 2: Scheme of the experimental setup
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at fixed frequencies frot and flib. The dynamics of two cylinders is recorded at each step of the experiment
using a high-speed camera positioned in front of the cavity. The recorded video is converted into a
number of frames to measure the azimuthal coordinates of the cavity j and the cylinders b, the angle ψ
of the cylinders’ rotation about their axis, the angular distance between two cylinders D, and the gap
thickness h (Fig. 1). We use subscripts 1 and 2 to distinguish the quantities related to each of the cylinders.

3 Experimental Results

At the beginning of the experiment, the cavity is rotated to a speed frot at which the cylinders are pressed
against the wall of the cavity by centrifugal force (Fig. 3a). As the cavity rotates uniformly, the cylinders are
positioned close to each other. Then, the modulation of the rotation rate with the frequency flib and amplitude
ε is activated. The cylinders begin to oscillate in the azimuthal direction due to viscous interaction with the
cylindrical wall of the unevenly rotating cavity. The amplitude b0 of the cylinders’ oscillations increases
linearly with the amplitude j0 of the cavity oscillations (Fig. 3b). Here, filled symbols indicate the
amplitude of the cylinder 1 oscillations while empty symbols indicate the amplitude of the cylinder 2
oscillations.

The oscillatory dynamics of a pair of cylinders will be analyzed with reference to the dynamics of a
single spherical and single cylindrical body, as presented in [26–28]. This will enable us to identify the
impact of an increase in the number of bodies on their oscillatory dynamics. It is evident that the
amplitude of azimuthal oscillations grows linearly only up to the threshold value of j0 (the threshold
value of j0 increases as the frequency of oscillation decreases flib). When the threshold value of j0 is
reached, the amplitude b0 decreases abruptly. As j0 is further increased, the amplitude b0 continues to
increase linearly, but the dependence of b0 on j0 weakens. A similar dependence b0 j0ð Þ was previously
obtained for a single cylindrical body [26,28]. Note that the dependence of b0 j0ð Þ is the same for both
cylinders for a fixed value of flib. The break in the graph is explained by the detachment of the cylinders
from the cavity wall and further transition to the suspended state (Fig. 4a).

The transition to the suspended state occurs at the threshold value of j0 (Fig. 4b). As the frequency
of oscillation flib increases, the threshold value of j0 decreases. So, the gap width between the cylinders
and the cavity wall is equal to zero at small amplitudes of azimuthal oscillations of the cavity. The
gap h increases monotonically with increasing j0. Note that unlike the case of a single cylinder studied
in [26,28] a pair of suspended cylinders undergo both radial and azimuthal oscillations. The plot
displays the average distance between the cylinders and the cavity wall during its azimuthal oscillations.

(a) (b)

Figure 3: (a) Photograph of two cylinders located near the cavity wall at frot ¼ 4 rps, flib ¼ 4 Hz, e ¼ 0,
m ¼ 1:0 St; (b) dependence of the amplitude of azimuthal oscillations of two cylinders on the amplitude
of the cavity oscillations
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One can find that the amplitude of radial oscillations increases with j0. Error bars indicate the deviation from
the mean.

Experiments conducted over a wide range of modulation parameters show that, in addition to azimuthal
oscillations, the cylinders undergo rotational oscillations about their axis. These oscillations are caused by the
viscous interaction between the cylinders and the oscillating wall. The amplitude of rotational oscillations of
the cylinders ψ0 grows linearly with j0 (Fig. 5a). One can find that the experimental data are consistent with
each other within the range of investigated parameters. The linear dependence of ψ0 on j0 indicates that
viscous interaction plays a crucial role in the dynamics of cylinders. A similar dependence was obtained
for a single cylinder and a sphere oscillating near the wall due to viscous interaction with the one [26,28].
Note that the detachment of the cylinders from the cavity wall does not affect the dependence of ψ0 on
j0. This is because in the suspended state, the cylinder remains within a viscous Stokes boundary layer
of thickness d ¼ 2m=�libð Þ which ensures its rotation about its axis. The experimental data deviate from
the linear law only at large supercriticality. Let us examine experimental data indicated by the red oval in
Fig. 5а. Fig. 5b displays the trajectory of the cylinders in this experiment (frot ¼ 4 rps, flib ¼ 4 Hz,
e ¼ 0:70, m ¼ 1:0 St). As previously mentioned, the cylinders undergo radial oscillations while moving
along the cavity wall.

It is evident that cylinder 1 undergoes radial oscillations within the Stokes boundary layer (h=d < 1).
Therefore, the amplitude of the rotational oscillations is determined by the amplitude of the cavity
oscillations: The experimental point (filled inverted triangle in Fig. 5a) is in agreement with the linear
law. At the same time, cylinder 2 is outside the boundary layer for a portion of the oscillation period
(h=d > 1). This weakens the viscous interaction with the oscillating cavity wall and reduces the amplitude
ψ0 of rotational oscillations of the cylinder (empty inverted triangle in Fig. 5а).

In addition to the detachment of two cylinders from the cavity wall, we reveal the repulsive
force between cylinders first described in [13]. At the beginning of the experiment, the cylinders are
placed next to each other (Fig. 3а). At small amplitudes of cavity oscillations, the cylinders move side by
side along the cavity wall. As the amplitude of azimuthal oscillations of the cavity increases, an angular
gap with a value of D appears between the cylinders (Fig. 4а). The value of the distance D increases as
the value of j0 increases (Fig. 6). Note that the distance D varies during the oscillation cycle: the
cylinders move closer together in the extreme positions, and the distance between the cylinders becomes
maximum in the mid-position. Error bars on the graph indicate the deviation from the mean value of D. It

(a) (b)

Figure 4: (a) Photo of the suspended cylinders at frot ¼ 4 rps, flib ¼ 4 Hz, e ¼ 0:75, m ¼ 1:0 St; (b)
dependence of the gap width h on the amplitude of the azimuthal oscillations of the cavity
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is evident that although the cylinders tend to converge during the oscillation cycle, the gap between the
cylinders is maintained. The symbols at D < 0 can be attributed to measurement error caused by parallax
resulting from the axial displacement of the cylinders relative to each other. It can be seen that the gap
between the cylinders occurs in a threshold manner. The threshold value of D decreases as the libration
frequency increases in experiments with fluid of the same viscosity. This requires further research.

The detachment of the cylinders from the cavity wall is caused by an average vibrational lift force, the
description of which is given in [29]. The lift force is associated with the asymmetry of the flow velocity
distribution near the oscillating cylinder. The oscillatory flow between the cylinders and the wall is
viscous while on the opposite side of the cylinders the flow is potential. This results in a pressure
gradient away from the cavity wall.

(a)

(b)

Figure 5: (a) Dependence of the amplitude of the cylinder rotational oscillations on the amplitude of the
cavity oscillations and (b) trajectories of two cylinders (frot ¼ 4 rps, flib ¼ 4 Hz, e ¼ 0:70, m ¼ 1:0 St)

Figure 6: Scheme of the experimental setup and scheme indicating the measured parameters
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It has been demonstrated in previous experiments with bodies of various shapes (sphere, cylinder, plate)
that the repulsive (lift) force acts at a distance comparable to the thickness of the Stokes boundary layer [30–
32]. In this study, the cylinders detach from the cavity wall at a distance of approximately d, too (Fig. 5b). The
method of quasi-stationary suspension of the body in the static field of centrifugal force is used to measure
the average vibrational lift force (Fig. 7а). The formula F� ¼ pd r� 1ð Þj2

0

�
2e2b20 R� d=2ð Þ determines the

non-dimensional lift force calculated by the velocity amplitude of tangential oscillations of the cylinder
center of mass. This formula was initially presented in the experimental work [28] for the case of a single
cylinder oscillating in the vicinity of a wall. In addition, the authors derived a formula for the force acting
on an oscillating spherical body. Earlier, researchers measured the lift force acting on a single body
(sphere, cylinder) that oscillates due to viscous interaction with the oscillating cavity wall [28,29]. It is
revealed that the value of F� does not change with the distance to the cavity wall. It is hypothesized that
the amplitude of the body oscillations, rather than its distance to the cavity wall, is the major factor
affecting the lift force. A similar effect is observed when a pair of cylinders oscillates in the fluid near the
wall. Fig. 7b illustrates the relationship between the non-dimensional lift force and the non-dimensional
gap width. Since the cylinders undergo both azimuthal and radial oscillations, the average value of h is
used. One can find that the magnitude of the non-dimensional lift force remains unaffected by the
distance to the cavity wall. Note that the lift force increases as the non-dimensional frequency
v ¼ �libd2

�
4m increases. This is due to the fact that the thickness of the Stokes layer decreases with

increasing v. This leads to an increase in the fraction of the cylinder surface that is in contact with the
inviscid fluid flow which is responsible for the generation of the lift force.

As discussed above, the magnitude of the lift force depends on the non-dimensional frequency. When a
body undergoes inertial oscillations in a cavity, the lift force increases with frequency in the limit of low
frequencies [6,30,31]. Also, the dependence of F� on v weakens or disappears completely in the limit of
high non-dimensional frequencies. However, in the case of a cylinder oscillating due to viscous
interaction with an oscillating wall, a nearly linear increase in the value of F� with v is found in a wide
range of non-dimensional frequencies [27,28]. When a pair of cylinders oscillates near a solid wall, a
similar dependence of F� on ω is found (Fig. 8). Here, the results obtained in experiments with a single
cylinder are illustrated by filled symbols, while data obtained in experiments with a pair of cylinders are

(a) (b)

Figure 7: (a) Forces acting on the cylinder relative to a uniformly rotating frame of reference; (b)
dependence of the non-dimensional lift force on the non-dimensional gap width between the cylinder and
the cavity wall
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represented by symbols. It is evident that new experimental data are in satisfactory agreement with data
obtained in previous studies. This indicates that the presence of the second cylinder does not affect the
magnitude of the lift force. It can be concluded that an increase in the number of bodies in the oscillating
cavity does not result in qualitative or quantitative changes in the generation of the lift force. This is
likely due to the fact that the case of close densities between the bodies and the surrounding fluid is
being considered. In this case, the amplitude of oscillations of the bodies and the lift force are determined
by the viscous interaction with the oscillating wall. The cylinders do not affect the oscillatory motion of
each other.

4 Conclusion

The average vibrational lift force acting on a pair of cylinders in a fluid near the wall of a non-uniformly
rotating cylindrical cavity is experimentally studied. It is shown that the cylinders oscillate relative to the
cavity due to the viscous interaction with the wall and transit to the suspended state when the threshold
amplitude of oscillations is reached. The transition of a body into a suspended state is the result of the
action of a vibrational lift force. The lift force can only occur if the body oscillates relative to the
surrounding fluid and a portion of the body is immersed in the viscous boundary layer to provide viscous
interaction with the oscillating cavity wall. As with the single-cylinder experiments, the lift force is
calculated by the velocity amplitude of the azimuthal oscillations of two cylinders. It is revealed that the
lift force is independent of the gap width but depends on the non-dimensional frequency. A comparison
of new experimental data with the data obtained previously for the case of a single cylinder indicates that
the addition of a second cylinder does not affect the magnitude of the vibrational lift force. It is suggested
that increasing the number of bodies in an oscillating cavity does not lead to qualitative and quantitative
changes in the generation of the vibrational lift force. The effect of repulsion may be useful in regulating
heat transfer and enhancing fluid mixing in multiphase flows. This may be of particular importance under
conditions of reduced gravity.
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