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ABSTRACT

In response to the complex characteristics of actual low-permeability tight reservoirs, this study develops a mesh-
less-based numerical simulation method for oil-water two-phase flow in these reservoirs, considering complex
boundary shapes. Utilizing radial basis function point interpolation, the method approximates shape functions
for unknown functions within the nodal influence domain. The shape functions constructed by the aforemen-
tioned meshless interpolation method have δ-function properties, which facilitate the handling of essential aspects
like the controlled bottom-hole flow pressure in horizontal wells. Moreover, the meshless method offers greater
flexibility and freedom compared to grid cell discretization, making it simpler to discretize complex geometries. A
variational principle for the flow control equation group is introduced using a weighted least squares meshless
method, and the pressure distribution is solved implicitly. Example results demonstrate that the computational
outcomes of the meshless point cloud model, which has a relatively small degree of freedom, are in close agree-
ment with those of the Discrete Fracture Model (DFM) employing refined grid partitioning, with pressure calcu-
lation accuracy exceeding 98.2%. Compared to high-resolution grid-based computational methods, the meshless
method can achieve a better balance between computational efficiency and accuracy. Additionally, the impact of
fracture half-length on the productivity of horizontal wells is discussed. The results indicate that increasing the
fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil
production.
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1 Introduction

Low-permeability tight oil and gas reservoirs are critical for oil and gas development due to their rich
hydrocarbon reserves, varied reservoir types, and extensive distribution. Within proven reserves, tight oil
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reservoirs make up over two-thirds of national reserves, showing great development potential. However,
tight oil has intricate oil-water (OW) zones, low porosity, and cannot be easily extracted using
conventional techniques, posing challenges [1]. Large-scale development of tight reservoirs typically
requires horizontal wells and hydraulic fracturing [2,3]. However, during fracturing, fluid readily enters
the reservoir. The modified region exhibits higher pore water saturation than bound water saturation due
to retained fracturing fluid, original formation water, or water injection to maintain pressure. Thus, OW
two-phase flow with complex migration patterns is common in low-permeability tight reservoirs [4,5].
After fracturing, tight reservoirs retain natural fractures but also develop large conductive fractures,
significantly altering flow patterns. Understanding OW flow in fractured tight reservoirs is critical for
guiding and optimizing production in these reservoirs.

In recent years, scholars have paid considerable attention to and developed numerical simulation of OW
two-phase flow in fractured reservoirs. Currently, numerical simulation methods are primarily categorized
into two types: continuous medium models and discrete medium models [6]. Continuous medium models
mainly include the Equivalent Continuous Medium Model [7] and the Dual Porosity Model [8,9], where
fractures and matrix are treated as discretized elements of equal size. In discrete medium models,
fractures are handled as (n-1)-dimensional entities in an n-dimensional reservoir, meaning one-
dimensional lines in two-dimensional reservoirs and two-dimensional planes in three-dimensional
problems. This difference in handling fracture geometry is fundamental between the two methods. Under
both models, some scholars employ numerical methods like finite difference method [10,11], finite
element method [12], and finite volume method [13] for flow calculations. However, studies on
simulating OW two-phase flow in tight reservoirs considering fracture morphology and geology are
limited. Reservoir conditions are often complex with intricate boundaries and fractures. Traditional grid-
based schemes struggle to represent this complexity, causing large model grids, high computational
degrees of freedom, and substantially increased computation time, restricting field application [14,15].

Unlike traditional grid discretization, the meshless method employs nodal discretization of the
computational domain, free from grid topology constraints, providing more flexibility in domain
representation. Thus, meshless methods offer a convenient approach for modeling complex geometries.
Meshless method research traces back to the 1970s, with early techniques like the vortex method [16],
generalized finite difference method [17,18], and smooth particle hydrodynamics [19]. However, meshless
method application in reservoir simulation has been much less compared to finite volume, finite element,
and other methods, with research focused on solid mechanics. Meshless methods have two key
advantages over grid-based methods: increased flexibility in domain discretization and higher accuracy in
calculating potential fields like pressure and stress. With the same discretization dimension (equal grid/
point number), meshless methods can achieve higher precision in solving problems like pressure and
stress vs. grid-based methods (e.g., finite volume, finite difference, finite element). This is because grid-
based methods are constrained by grid topology and can only approximate derivatives between adjacent
grids, while meshless methods use shape functions to approximate within the influence domain, utilizing
more nodal information and offering higher theoretical precision.

Some collocation-type meshless methods still require background grids for discretizing integral
equations, limiting complex geometry capture. The point interpolation approach is a purely meshless
method not needing background grids, offering greater flexibility in discretizing domains with complex
geometries unconstrained by grid topology. It ensures computational accuracy while establishing
relatively lower degree-of-freedom models more faithful vs. grid-based methods, potentially reducing
computational needs while providing accurate physical domain representation. This paper introduces
meshless methods to study OW two-phase flow in tight reservoirs, motivated by theoretical advantages in
handling actual complex reservoir geometries. General methods like local boundary integral equation [20]
and meshless local Petrov-Galerkin [21] using moving least squares for function approximation and
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meshless discretization do not require background grid integration, improving efficiency. However, their low
accuracy and poor stability limit real problem applications. Xiong et al. [22] proposed a weighted least
squares (WLS) meshless method improving stability. But moving least squares approximate functions are
computationally expensive without the delta function property [23], complicating essential boundary
conditions. Horizontal well fracturing is common for tight oil reservoir stimulation, using high pressure to
create fractures, increasing permeability and drainage area, enhancing productivity [24,25]. Horizontal
well depletion development controls bottom-hole flowing pressure, a prescribed pressure essential
boundary condition problem. Introduced here are radial basis function methods with the delta function
property combined with WLS for a meshless model of OW two-phase tight reservoir flow with complex
geometries, enabling simple meshless characterization of tight reservoir complex geometries.

2 Theory of the Meshless Method in Low-Permeability Tight Oil Reservoirs

2.1 OW Flow Control Equations in Low Permeability Tight Reservoirs
Presuming tight reservoir horizontal well model is represented by a fracture-matrix dual porosity model,

it is divided into fracture and matrix systems. Crude oil primarily accumulates in the matrix while fractures
constitute the main flow channels. Both OW phases can flow in fractures, but only single-phase oil flow is
considered in the matrix, neglecting water phase matrix movement along with gravity and capillary force
effects. The fluids and rocks are assumed slightly compressible. The control equations for OW two
phases fracture flow are:

Oil Phase Mass Conservation Equation

r qfovfo
� �þ qo þ qmfo ¼ @

@t
ff qfoSo
� �

(1)

Oil Phase Flow Equation

vfo ¼ �Kf Kro

lfo
rpfo (2)

where vfo is the oil phase rate in the fracture, m/s; qfo is the crude oil density in the fracture, kg/m
3; qo denotes

the source and sink terms of the crude oil, representing the mass flow rate of the injected or produced fluid per
unit volume of the rock, 1/d; ff denotes the porosity of the fracture of the reservoir; Kf is the permeability of
the fracture of the reservoir, mD; So is the oil saturation of the fracture; pfo denotes the oil pressure in the
fracture, MPa; Kro denotes the oil relative permeability in the fracture, mD; lfo denotes the oil viscosity
in the fracture, mPa·s.

Hence, the mathematical representation of oil phase flow within reservoir fractures is as follows:

r a
Kf Kroqfo

lfo
rpfo

 !
þ a

rKmqmo
lm

pm � pfo
� �þ qo ¼ a

@

@t
ff qfoSo
� �

(3)

Similarly, the equation for the flow of the water phase in a fracture is as follows:

r a
Kf Krwqw

lw
rpw

� �
þ qw ¼ a

@

@t
ff qwSw
� �

(4)

where Krw denotes the relative permeability of the water phase, mD; qw denotes the density of the water in the
fracture, kg/m3. lw denotes the viscosity of the water in the fracture, mPa·s; pw denotes the water-phase
pressure in the fracture, MPa; qw denotes the water-phase source-sink term, 1/d; and Sw denotes the
water-phase saturation in the fracture.
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The matrix system functions as an oil-phase recharge. In accordance with the law of conservation of
mass and Darcy’s flow equation, the equations governing oil-phase flow control can be expressed as follows:

� rqokapp
lo

ðpom � pof Þ ¼
@ðfapp qoÞ

@t
(5)

where kapp is the permeability of the matrix, mD; lo is the viscosity of the oil phase, mPas; pom is the oil phase
pressure of the matrix system, MPa; pof is the oil phase pressure of the fracture system, MPa; uapp is the
porosity of the matrix; and qo is the oil phase density, kg/m

3.

In this study, we neglected the effect of capillary forces [26,27]. Therefore, the oil-phase pressure in the
fracture system is equal to the water-phase pressure, while only the oil-phase recharge is considered for the
matrix system. Therefore, Pf and Pm are used to represent the pressure in the fracture system and matrix
system, respectively. The auxiliary equations, boundary conditions and initial conditions are given below:

So þ Sw ¼ 1

@pf
@n

j�1
¼ 0; pf j�1

¼ pi

pf ðx; y; z; 0Þ ¼ pmðx; y; z; 0Þ ¼ Pi

8>><>>: (6)

The meshless method nodally discretizes tight reservoirs, advantageously representing complex
geometries over traditional grid discretization. Unconstrained by grid topology, it does not necessitate
grid refinement or reconstruction to match intricate geometric features, thereby enabling more flexible and
free complex geometry representation. The meshless computational method employed here is introduced
in two facets: approximation of unknown functions within the influence domain by shape functions and
discretization of equations in the computational domain by WLS meshless techniques. The radial basis
point interpolation approach does not require background grids for calculations, offering enhanced
flexibility in discretizing complex geometries, uninhibited by grid topology. Section 2.2 will present the
fundamental principles of the radial basis point interpolation methodology.

2.2 Radial Basis Point Interpolation Shape Functions
As Fig. 1, let the continuous function u xð Þ defined in the problem domain � be represented by a set of

field nodes, and at the computational point X, u xð Þ can be approximated as

u xð Þ ¼
Xn
i¼1

Ri xð Þ ai þ
Xm
j¼1

pj xð Þ bj ¼ RT xð Þaþ pT xð Þb (7)

where Ri xð Þ is the radial basis function; n is the number of radial basis functions; pj xð Þ is the polynomial basis
function and m is the number of polynomial basis functions. To determine ai and bi in Eq. (7), the n field
nodes contained in the support domain at the computational point X are brought into Eq. (7) to obtain

Us ¼ R0aþ Pmb (8)

where Us ¼ u1 u2 u3 � � � umf gT is the vector of nodal function values; a ¼ a1 a2 a3 � � � anf gT is the
coefficient of the radial basis function; b ¼ b1 b2 b3 � � � bnf gT is the vector of polynomial coefficients.
The moment matrix of the radial basis function is

R0 ¼
R1 r1ð Þ R2 r1ð Þ � � � Rn r1ð Þ
R1 r2ð Þ R2 r2ð Þ � � � Rn r2ð Þ

..

. ..
. . .

. ..
.

R1 rnð Þ R2 rnð Þ � � � Rn rnð Þ

26664
37775; rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xið Þ2 þ yk � yið Þ2

q
(9)
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The moment matrix of the polynomial is

PT
m ¼

1 1 � � � 1
x1 x2 � � � xn
y1 y2 � � � yn
..
.

pm x1ð Þ
..
.

pm x2ð Þ
. .
.

� � �
..
.

pm xnð Þ

2666664

3777775 (10)

However, there are n + m variables in Eq. (8), and solving for the coefficient matrices a and b requires
adding a little more than m constraints.Xn
i¼1

pj xið Þai ¼ PT
ma ¼ 0; j ¼ 1; 2; � � � ;m (11)

Associative Eqs. (8) and (11) lead to the following matrix equation:

Ues ¼ Us

0

	 

¼ R0 Pm

PT
m 0

	 

a
b

	 

¼ Ga0 (12)

Since the matrix R0 is symmetric, the matrix G will also be symmetric, then the coefficient vector

a0 ¼ G�1Ues, which is carried into Eq. (7) yields

u xð Þ ¼ NT xð ÞUes;NT xð Þ ¼ RT xð ÞpT xð Þ� �
G�1 (13)

whereN xð Þ is the shape function vector. The radial basis interpolation method obtains the approximate shape
function of the unknown function in the influence domain with δ-function property, which is easy to impose
the essential boundary conditions.

For equation discretization, this paper utilizes the WLS technique for computational domain solution.
The WLS method effectively addresses stability issues associated with meshless discretization formats
from the local Petrov-Galerkin method’s computational instability. The local Petrov-Galerkin method
generally establishes meshless discretizations based on moving least squares approximation for
constructing approximate shape functions, which is computationally expensive without the δ-function

Figure 1: The computation domain of discretization by meshless method
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property, complicating essential boundary conditions. In contrast, the meshless interpolation approach
employing radial basis functions, as adopted here, constructs shape functions with δ-function properties,
simplifying essential boundary conditions like controlled bottom-hole flowing pressure. Section 2.3 will
present the fundamental principles of the WLS methodology.

2.3 Weighted Least Squares Meshless Methods
Numerous problems ultimately reduce to solving differential equations with defined boundary and initial

conditions, meaning the unknown function u xð Þ must satisfy the differential equation set.

A u xð Þ½ � ¼
A1 u xð Þ½ �
A2 u xð Þ½ �

..

.

Am1 u xð Þ½ �

8>>><>>>:
9>>>=>>>; ¼ 0; u 2 � (14)

Boundary condition

B u xð Þ½ � ¼
B1 u xð Þ½ �
B2 u xð Þ½ �

..

.

Bm2 u xð Þ½ �

8>>><>>>:
9>>>=>>>; ¼ 0; u 2 @� (15)

where Ai and Bi are differential operators of independent variables.

Since Eq. (14) is satisfied at any point in the domain � and Eq. (15) is satisfied at any point on the
boundary @�, it follows that for any functions t and �t there areZ
�

tTA u xð Þ½ �d�þ
Z
@�

�tTB u xð Þ½ �d @�ð Þ ¼ 0 (16)

The functions t and �t are termed weight functions, which are function vectors of order m1 and m2,
respectively, and Eq. (16) is the equivalent integral form of the differential equation system (14) and
boundary condition Eq. (15). Let uh xð Þ denote an approximate solution of Eqs. (14) and (15), called the
trial function, expressible as a linear combination of a known function set fi xð Þ, namely:

u xð Þ � uh xð Þ ¼
Xn
i¼1

fi xð Þui ¼ � xð ÞUs (17)

whereUs ¼ u1 u2 u3 � � � unf gT ,�T xð Þ ¼ f1 xð Þ f2 xð Þ � � � fn xð Þf g, ui are parameters to be determined.
Obviously, the approximate solutions uh xð Þ are generally not equal to the exact solutions and they will
produce residuals R and �R.

R xð Þ ¼ A uh xð Þ �
; �R xð Þ ¼ B uh xð Þ �

(18)

To obtain the best approximation of the unknown function u xð Þ, weighting is used to make the residues
R and �R zero. In weighted least squares, the weighted discrete sum of the residuals R and �R squared is made
to be

JR ¼
Xr1
k¼1

akR
T xkð ÞR xkð Þ þ

Xr2
k¼1

bk �R
T xkð Þ�R xkð Þ (19)
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where ak and bk are the weighting coefficients; xk denotes the coordinates of the matching point; r1 represents
the quantity of matching points for calculating the differential equation residuals; r2 signifies the number of
matching points for determining the boundary condition residuals. Eq. (19) is attained by minimizing

@JR
@u

¼
Xr1
k¼1

ak
@R xkð Þ
@uj

� �T

R xkð Þ þ
Xr2
k¼1

bk
@�RT xkð Þ

@uj

 !T

�R xkð Þ ¼ 0 (20)

The preceding equation determines the trial function’s n unsolved coefficients. WLS technique
necessitates computing residuals at collocation points sans grid background, with the resultant matrix for
solving symmetric and less computationally time-intensive vs. the Petrov-Galerkin method, but mandating
higher order trial function continuity [28].

3 Meshless Discretization in Low Permeability Tight Reservoirs

The weighted residual methodology is extensively utilized in meshless techniques, constituting an
important theoretical foundation for solving intricate control equation discretization. In reservoir
engineering, it is often necessary to deal with flow control equations, and traditional finite difference or
finite element methods may be limited in handling complex geometric features. To discretize the
computational domain and flow control equations more simply and efficiently, this paper utilizes meshless
nodal discretization for representing the computational domain. Radial basis point interpolation
techniques construct approximate shape functions within the reservoir computational domain. The WLS
method discretizes the control equations. This approach demonstrates strong adaptability and efficiency in
handling complex geometries and unstructured grids. The established meshless discretization format of
the low-permeability tight oil reservoir two-phase flow model is

rðktforptþ1
f Þ þ rðktfwrptþ1

f Þ þ rkm
lo

ðptm � ptþ1
f Þ � ðff Ctf Þt

ptþ1
f � ptf
@t

¼ 0

rðktfwrptþ1
f Þ � ft

f

Stþ1
w � Stw

@t
¼ 0

rkm
lo

ðptþ1
m � ptþ1

f Þ þ fmCtm
ptþ1
m � ptm

@t
¼ 0

8>>>>>><>>>>>>:
(21)

Assuming that the reservoir computational domain Ω and boundary Г are discretely characterized by n
points. Based on the radial basis point interpolation shape functions approximation, the fracture system
pressure, matrix system pressure, and water saturation are expressed as a function of the following
approximation:

pf x; yð Þ �Pn
i¼1

Ni x; yð Þpfi ¼ N x; yð Þpf

pm x; yð Þ �Pn
i¼1

Ni x; yð Þpmi ¼ N x; yð Þpm

Sw x; yð Þ �Pn
i¼1

Ni x; yð ÞSwi ¼ N x; yð ÞSw
N x; yð Þ ¼ N1 x; yð Þ;N2 x; yð Þ; � � � ;Nn x; yð Þ½ �
pf ¼ ½pf 1; pf 2; � � � ; pfn�T
pm ¼ ½pm1; pm2; � � � ; pmn�T

8>>>>>>>>>>>><>>>>>>>>>>>>:
(22)

where Ni x; yð Þ denotes the shape function value of the ith node at the point (x, y), and pfi signifies the fracture
pressure at the i-th node, which will be abbreviated as N x; yð Þ subsequently.
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Subsequently, exemplifying with the fracture system seepage control equation, the meshless
discretization format for the OW two-phase flow equation will be derived. The residuals are attained by
substituting the preceding OW two-phase flow Eq. (22) into Eq. (21).

Rpf x; yð Þ ¼ @N
@x

ktfw þ ktfg

� � @N
@x

þ @N
@y

ktfw þ ktfg

� � @N
@y

þ N ktfw þ ktfg

� �	
�

� @2N
@x2

þ @2N
@y2

� �

ptþ1
f þ rkm

lg
Nptm � Nptþ1

f

� �� ff Ctf

Dt

� �t

Nptþ1
f � Nptf

� � (23)

At every computational domain point, the residual Eq. (23) must be satisfied. In other words, boundary
points meet the prescribed pressure boundary condition, while internal nodes satisfy Eq. (23). Hence, solving
Eq. (23) can be bifurcated into computing the weighted residual for both internal and boundary nodes. As an
illustration, the outer constant pressure boundary condition and inner point constant pressure boundary
condition are aggregated, therefore the WLS computational format for the fracture system pressure
equation is

�pf ¼
Z
�

ðRpf ÞTRpfd�þ
Z
�1

a1ðNptþ1
f � pfcÞðNptþ1

f � pfcÞd�

þ
Z
�2

a2ðNptþ1
f � piÞðNptþ1

f � piÞd�
(24)

where a1 and a2 are boundary condition penalty functions. The main idea of the WLS meshless method is to
minimize the value of the square of the residual expressed in Eq. (24), when the generalization of Eq. (24) is
equal to 0, so that we can get

d�pf ¼
Xn
s¼1

dRpf

� �T
Rpf j x;yð Þ¼ xs;ysð Þ þ

Xn1
s¼1

a1N
T ðNptþ1

f � pfcÞj x;yð Þ¼ xs;ysð Þ

þ
Xn1
s¼1

a2N
T ðNptþ1

f � piÞj x;yð Þ¼ xs;ysð Þ ¼ 0

(25)

Meshless interpolation methods based on radial basis functions are used to construct shape functions,
which possess delta function properties, facilitating the application of essential boundary conditions. The
WLS method establishes the variational principle of the unknown problem system equations directly
using the least squares method, eliminating residuals at boundary nodes and introducing stabilization
terms to form symmetric coefficient matrices. Compared to collocation methods that require background
grid integration and Gaussian integration, this approach involves less computational effort [29]. This
paper utilizes radial basis functions based on local support domains to construct interpolation functions
and employs the WLS method for equation discretization. This synthesis of both methods not only makes
the application of essential boundary conditions convenient but also ensures higher computational
accuracy and efficiency, making it suitable for characterizing the complex geometries of actual reservoirs.

4 Numerical Examples

As illustrated in Fig. 2, taking well X in a certain block as an example and to account for complex
reservoir boundary conditions while simplifying the description, the computational domain is assumed to
be an area with an arc boundary. �1, �3 represent the left and right boundaries, respectively, forming an
arc with a radius of 100 meters. �2, �4 are the top and bottom boundaries, respectively, forming straight
lines each 300 meters long. All boundaries are set as fixed pressure boundary conditions. Centrally within
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the computational domain, a horizontal well with six 60-meter half-length radiating fractures exists. Figs. 3
and 4 respectively demonstrate the reservoir models discretized per the Discrete Fracture Model (DFM) and
meshless technique. The DFM utilizes 1400 triangular grids, while the meshless model comprises 198 nodes.
Significantly, the Discrete Fracture Model (DFM) solution is derived via COMSOL software computations
employing fine triangular discretization. Table 1 presents the formation’s physical parameters.

Figure 2: Reservoir model

Figure 3: DFM discrete model

Figure 4: Meshless discrete model

FDMP, 2024, vol.20, no.7 1547



The reservoir model’s initial pressure is established at 50 MPa, and the external boundary is also
maintained at 50 MPa. Positioned at the reservoir center along the x-axis is a fractured horizontal well
designated for production, with a consistent pressure of 10 MPa. In this investigation of dual-porosity
fractured horizontal well models for OW two-phase flow, the fracture pressure at fracturing cluster points
is defined as 10 MPa. Table 1 outlines additional fundamental physical properties. The simulation
duration spans 150 days, employing a time step of 0.1 day.

Fig. 5 displays the fracture pressures calculated for the first and hundredth days. Even with a relatively
coarse model, the meshless method achieved results consistent with those obtained using the finely meshed
DFM. Using the DFM results as a reference solution, the pressure calculation accuracy on the 1and 100 days
was 97.8% and 98.2%, respectively. In Fig. 6, a comparison is presented between the daily oil and water
production curves obtained through the proposed method in this paper and the Discrete Fracture Model
(DFM). The results demonstrate a striking similarity, indicating that our method closely aligns with the
finely meshed DFM outcomes. The accuracy for daily oil and water production was calculated to be
96.5% and 94.8%, respectively, demonstrating the effectiveness of our method. The notable reduction in
computation time observed in our method, in comparison to the finely meshed Discrete Fracture Model
(DFM), can be attributed primarily to the meshless method’s ability to provide a more streamlined
representation of intricate geometrical features and a lower degree of freedom in the established model.
Despite having relatively fewer degrees of freedom, our method successfully produces results that closely
match those of the finely meshed DFM. This suggests that the meshless method introduced in this paper
is better suited for reservoirs with complex boundaries than the conventional grid-based DFM method.

In-depth analysis focused on the distinct influence of fracture half-length on production. The model,
depicted in Fig. 2, incorporates a horizontal well featuring six fractures, each with varying half-lengths of
40, 60, and 80 m. Specifically, Figs. 7 and 8 illustrate the pressure field for fracture half-lengths of
40 and 80 m, respectively. Fig. 9 offers a comprehensive comparison, highlighting the diverse effects
of varying fracture half-lengths on production.

Table 1: Physical parameter

Parameter Value Parameter Value

Initial pressure pi, MPa 50 Fracture porosity φf, dimensionless 0.35

Fracture permeability, mD 1000 Initial water saturation, dimensionless 0.3

Fracture width, m 0.15 Wellbore flow pressure pwf, MPa 10

Matrix permeability, mD 0.01 Matrix porosity φm, dimensionless 0.25

Figure 5: (Continued)
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Fig. 9 illustrates the relationship between fracture half-length and both daily and cumulative oil
production. It can be observed from the Fig. 9 that as the fracture half-length increases, both daily oil
production and cumulative oil production show a positive correlation and increase accordingly. This
implies that increasing the half-length of hydraulic fractures can enhance the productivity of fractured

Figure 6: Comparison of oil-production and water-production rate calculated by meshless method and DFM

Figure 5: Comparison between the pressure calculated by DFM and the meshless method

Figure 7: Meshless pressure profile with fracture half-length of 40 m
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wells. This is because when hydraulic fracturing is conducted, increasing the half-length of the fractures
enlarges both their length and surface area, thereby enhancing the permeability and fluidity of the rock
reservoir. As a result, more crude oil can be released from the rock reservoir, leading to an increase in
both daily and cumulative oil production. From the numerical example of this horizontal well, we can
observe that the meshless method achieved results consistent with those of the finely meshed Discrete
Fracture Model (DFM), which validates the correctness of the method presented in this paper. The
meshless method, based on a point cloud, discretizes the reservoir’s computational domain more freely
and flexibly, making it simpler to finely delineate the complex geometry of the reservoir. With a smaller
degree of freedom in the model, we obtained higher computational accuracy, indicating that our method
can achieve high precision in calculations without generating a high-resolution matching point cloud
when discretizing complex boundaries. Of course, theoretically, a high-resolution point cloud can achieve
more accurate results but at the cost of increased computational time. Therefore, compared to high-
resolution grid-based methods, the meshless method can achieve a better balance between computational
efficiency and accuracy.

Figure 8: Meshless pressure profile with fracture half-length of 80 m

Figure 9: Comparison of oil-production and water-production rate with different fracture half-length
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5 Conclusions

1. This study combines the OW two-phase flow model and dual-porosity theory for low-permeability
tight reservoirs. It integrates the WLS meshless method, employing radial basis point interpolation
functions to formulate shape functions. Consequently, a meshless computational model is established for
horizontal well productivity in low-permeability tight reservoirs with circular curved boundaries. The
model successfully predicts production dynamics, specifically addressing fractured horizontal wells with
varying fracture half-lengths.

2. The meshless method presented in this paper achieves commendable results, surpassing 98.2%
accuracy in pressure calculations, even with a reduced number of degrees of freedom compared to the
finely meshed Discrete Fracture Model (DFM) used as a reference solution. Notably, our method is
versatile, demonstrating adaptability in describing reservoirs featuring complex boundaries or geological
conditions, effectively handling intricate geometries.

3. An analysis of the impact of fracture half-length on both daily and cumulative oil production of
fractured horizontal wells was conducted. The findings reveal a positive correlation between fracture half-
length and both daily and cumulative oil production. To maximize cumulative oil production, it is
suggested to enhance fractured well productivity by increasing the half-length of hydraulic fractures.
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