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ABSTRACT

The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable
cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense
averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimen-
sionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is exam-
ined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed
frequency, an increase in the oscillation amplitude leads to a phase-inclusion holding effect, i.e., the body occupies
a quasi-stationary position in one of the cells of the vertical channel, while oscillating around its average position.
It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body, the
magnitude of which depends on the properties of the body and its position in the channel. The quasi-stationary
position is determined by the relative density and size of the body, as well as the dimensionless frequency. The
behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed
in detail. Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen
mass transfer effects in a channel of variable cross section by means of fluid oscillations.
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Nomenclature
L Cuvette length (mm)
R Radial dimension (mm)
y Coordinate (mm)
b Fluid oscillation amplitude (mm)
dS Solid body diametral size (mm)
dP Visualizer particles diametral size (µm)
t Time (s)
g Acceleration due to gravity (m/s2)
AS Solid body oscillation amplitude (mm)
fvib ¼ �vib=2p Fluid oscillation frequency (Hz)
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Greek Symbols
k Spatial period (mm)
qS Solid body density (g/cm3)
qL Liquid density (g/cm3)
q ¼ ðqS � qLÞ=qL Relative density (–)
mL Kinematic liquid viscosity (cSt)
qP Visualizer particles density (g/cm3)
d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mL=�vib

p
Stokes layer thickness (mm)

x ¼ �vibR1
2
�
vL Dimensionless frequency (–)

Abbreviations
POM Polyoxymethylene
PIV Particle Image Velocimetry

1 Introduction

In the field of developing and studying energy-efficient technologies, there is a need to develop new
methods for enhancing mass exchange processes between different types of phase inclusions and their
environment. The study of flows excited by fluid oscillations in channels of variable cross section or
wavy (sinusoidal) profile is relevant for controlling heat and mass transfer in porous media [1–4]. A
variable cross section channel, also known as a variable shape channel, is a hydraulic system designed to
efficiently transport liquid, gas or other media. The main characteristic of this type of channel is the
gradual variation of its cross section along its length. This allows optimum flow conditions to be
achieved, including control of velocity, pressure and other hydrodynamic parameters. This design
improves the efficiency of liquid or gas transport. The internal flows become more laminar and flow
resistance is reduced by gradually changing the shape of the channel. In addition, the variable cross
section channel has a wide range of applications. It can be used in various industries, including power
generation, chemical, oil and gas, and hydraulic engineering. Due to its flexibility and adaptability, such a
system can be successfully applied to solve a wide range of engineering problems.

The problem of bubble or agglomeration float-up in vertical straight columns is a common issue. Recent
studies [5,6] have analyzed typical flow regimes in bubble columns. However, research has shown that
channels with a curved shape are more effective in improving inclusion dynamics. The dynamics of
homogeneous and heterogeneous hydrodynamic systems in flat and axisymmetric channels of variable
cross section are widely studied. The object of study is often either a liquid flow or a gas phase inclusion
in the liquid. The papers [7–10] examine the dynamics of gas phase inclusions in channels with varying
cross-sections, both theoretically and experimentally. It is demonstrated that the shape of the channel
significantly impacts the oscillations of the phase inclusion boundary, suggesting the potential for efficient
mass transfer. Papers [11–14] provide a comprehensive literature review and detailed analysis of the
method of intensifying fluid mixing processes through pulsations and vibrations in the presence of
constant non-zero flow in the channel. The works described focus on the dynamics of hydrodynamic
systems in channels with a fixed profile. However, it is worth noting that there are works that consider
channels with a changing profile over time. Peristaltic pumping refers to the movement of fluid, particles
or suspension in a tube caused by waves of contraction in the channel’s wall. These systems are of
significant interest due to their practical applications in physiological and technological processes. The
papers [15–17] examine the dynamics of solid particles in such a system and how the transport of the
solid particle depends upon its diameter, frequency of peristaltic waves on the walls, Reynolds number
and its initial placement in the channel. The intensification of mass transfer processes in channels with
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peristaltic wall dynamics and in models of porous media is a widely studied topic [18,19]. However, there is a
lack of experimental consideration of the dynamics of inclusions, both deformable (liquid) and solid
boundary, in oscillating fluid flow in channels of variable cross section. The literature lacks sufficient
representation of theoretical and experimental studies on the dynamics of phase inclusions in an
oscillating fluid flow with zero mean flow rate.

There are several methods for the generation of intense averaged flows. For example, intense fluid
oscillations can be generated by rotational oscillations of the cavity [20] or by oscillations of the elastic
cavity walls [21]. In both cases, fluid oscillations lead to averaged flows that can significantly intensify
mass transfer in the system. In the region of medium and low frequencies, the generation of averaged
flows is found, the intensity of which decreases with decreasing dimensionless vibration frequency. It is
shown that at high dimensionless frequencies the experimental results are in agreement with theoretical
estimates. In [22], the flow in a two-dimensional symmetric channel with wavy walls is studied
experimentally with periodic variation of the fluid pumping as a function of the dimensionless frequency.
It is found that the fluid oscillations lead to the excitation of the stationary flow in the form of a system
of transverse waves. It is shown that, in the low-frequency limit (for viscous fluid fluctuations), they can
be used to describe steady-state flows (and hence mass transfer phenomena) excited by fluid fluctuations
in porous media, which are a system of interconnected pores–channels of different cross section. This
modelling approach is fully applicable to axisymmetric channels with periodically varying radius. A
channel of variable cross section is a system of interconnected pores that represent the gaps between the
substance forming the ‘skeleton’ of the porous medium [23,24]. In the given formulation and geometry,
Darcy’s law is applicable. The results of previous studies [25] have shown that the structures and
intensity of averaged flows in an axisymmetric channel of variable cross section under oscillating
fluid flow in the channel excite the averaged flow in the form of a system of toroidal vortex flows.
The direction of the flows and their flow rate are determined by the pulsating Reynolds number and the
dimensionless frequency. These dimensionless complexes are determined by the values of the
characteristic amplitudes of the fluid vibrations, the kinematic viscosity of the fluid and the cavity size.

In the present work, the problem of the dynamics of a spherical body in an oscillating fluid flow in a
channel of variable cross section, depending on the amplitude and frequency of the oscillations of the
fluid column, is considered experimentally. The oscillating motion of the liquid column has an effect on a
heavy body moving freely in a vertical channel. The forces acting on a body immersed in a fluid, along
with the averaged vibrational forces and flows, combine to produce various effects. This study considers
a spherical body as a model of a particle that can oscillate in a fluid, and a channel of variable cross
section as a model of a porous medium. The practical applicability of this study is in the field of
vibratory hydromechanics, heat and mass transfer, phase transitions, and transfer processes, as well as in
the development and design of equipment for these processes.

2 Experimental Setup and Methodology

The experimental setup (Fig. 1) is a closed hydraulic circuit, which includes a system of periodic
pumping of liquid and an experimental cuvette with technological units. Experimental cuvette 1 is a
plexiglas parallelepiped with a length of L ¼ 225 mm and a square cross section of 40� 40 mm2. The
cuvette is made of two symmetrical halves in which grooves of variable depth are milled along
the long side. The channel’s cross-section shape is described by the following expression
R ¼ 10:6þ 4:4 cosð0:15xÞ mm. High precision of manufacturing on a numerically controlled machine
while assembling the two halves with bolts allows to organize an axisymmetric channel of variable cross
section. The radial dimensions of the narrow and wide sections of the channel are R1 ¼ 6:2 mm and
R2 ¼ 15:0 mm, respectively. Along the length of the channel there are 5 symmetrical segments with
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spatial period k ¼ 42:0 mm. Fig. 1 shows a natural view of the part of the channel with the body (in the red
frame) and an indication of the direction of the gravity field vector and the y-coordinate system. The
experimental study involves studying the motion of the phase inclusion in a vertical channel during fluid
oscillations. Thus, systems are needed to ensure the insertion, launching and collecting of the phase
inclusion. The insertion and launching unit 2 consists of a metal branch at 45°, a ball valve and a
plexiglas cube with a cylindrical channel, in the middle part of which a rotating ring with a mesh is
placed. The valve allows an inclusion to be inserted into the channel and provides tightness. The
configuration of the cube with a mesh overlapping the channel allows the body to be held in front of the
channel and the oscillating flow rate of the liquid to be adjusted. When the required frequency and
amplitude of fluid oscillation is set, the ring with the mesh is rotated and the spherical body begins to
move, entering the variable cross section channel. As the body passes through the channel, it is collected
at the bottom of the cuvette by the collection unit 3. In the angled deflection channel, a mesh cylinder is
installed across the fluid flow, deflecting the spherical body away from the channel. The collection unit
eliminates the possibility of system and liquid flow blockage. Spherical bodies accumulate in the outlet
and it is possible to carry out a number of experiments without disassembly of the setup. The cuvette
complete with assemblies is connected to pump 4 by means of hydraulic circuit 5.

Pump 4 consists of two independent, immiscible circuits separated by an elastic membrane. Vibrations
transmitted to the membrane by the vibration stand cause oscillations of the fluid in the hydraulic circuit 5.
The pump based on the “push-pull” principle provides a harmonic change in the volume of liquid pumped in
the closed hydraulic circuit according to the law Q � cos�vibt, where �vib ¼ 2pfvib. The electrodynamic
vibration stand is controlled by the Zet 210 digital generator 6 via a personal computer 7. A detailed
description of the working principle and design of the hydraulic pump is given in [26]. The oscillation
frequency fvib is set by the generator and can be varied in the range of 4�10 Hz. The volume of the
oscillating liquid is adjusted by changing the amplitude of the oscillations of the electrodynamic vibration
table, which is rigidly connected to the membrane. In the experiments, the amplitude b of the fluid
oscillations is determined by measuring the oscillation range 2b of the visualization particles suspended
in the working fluid. In the study region of dimensionless frequencies, the flow in the channel is viscous.
Measurements are made in a wide cross section of the working channel where the fluid oscillations are
close to the piston oscillations. This means that the amplitude of fluid oscillations (flow rate) is constant
in the wide part of the channel. During the oscillation of the fluid, the particles suspended in it make
uniform oscillations relative to their average position. The amplitude of fluid oscillations is small

Figure 1: Scheme of the experimental setup (side view)
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compared to the inhomogeneity of the wall relief. The maximum amplitude of the fluid oscillations is
measured at the channel axis.

The phase inclusion 8 is a solid ball made of polyoxymethylene (POM) with a diameter of
dS ¼ 6:0; 8:0mm and a density of qS ¼ 1:380 g/cm3. Depending on the density of the working fluid
relative to the density of the phase inclusion q ¼ ðqS � qLÞ=qL, the latter can either ‘sink’ or ‘float’ in the
channel. In the experiments, a water-glycerol solution with a density of qL ¼ 1:295 g/cm3 and a viscosity
of mL ¼ 27:3 cSt is used as the working fluid. The density of the working fluid can be varied by
dissolving sodium iodide NaI in different mass concentrations. In the present work, the relative density is
q ¼ ðqS � qLÞ=qL ¼ 0:07 and the body sinks in the liquid. Spherical body was externally loaded
(through a ball valve from insertion and launching unit 2) into the channel before each new experiment.

In the experiments investigates both the dynamics of phase inclusion and the structure of flows excited
by fluid and body oscillations in a channel of variable cross section. Plastic tracer particles of average size
dP ¼ 60 µm and an average density of qP ¼ 1:040 g/cm3 are used to visualize the fluid motion in the
channel. A 2 millimeter KLM-532/h-1000 continuous laser 9 is used to create a laser sheet in the plane of
which the structure of the flow is investigated. The optical axis of the cameras 10 is always perpendicular
to the flat outer edge of the axisymmetric channel. The construction of the cuvette and the close refractive
index values of the plexiglas and the working fluid minimise optical distortion at the curved edge of the
channel. Video registration of the particle tracer position is performed using the Optronis CamRecord
CL600x2 high speed camera, which is fixed in the laboratory reference frame. Video registration of the
phase inclusion position in the axisymmetric channel is performed using a Fujifilm X-E4 camera with a
frame rate of 60 to 120 frames per second. The specialized software ImageJ was used for frame-by-frame
processing of the experiments.

3 Experimental Results

The dynamics of a spherical phase inclusion in an axisymmetric vertical channel of variable cross
section in the absence of vibrations consists in moving along the channel in the gravity field. Fig. 2
shows the y-coordinate variation of the center of mass of the spherical body with time. The axis is
directed downwards along the direction of motion of the body (see in Fig. 1). The body sinks in the
liquid, but because the profile of the channel is curved, a deviation of the points from the linear law can
be observed. This is directly related to the shape of the channel and the size of the body. In the narrow
part of the channel, the diametral dimension is around 12 mm and the diameters of the bodies are 6 and
8 mm. Thus, the relative size of the phase inclusion to the channel size appears to be significant and,
approaching the narrowing of the channel, the body slows down slightly. The movement can be
characterized as peristaltic. However, in general, the body moves uniformly in the liquid along the
channel axis.

Figure 2: Time dependence of the y-coordinate of the center of phase inclusion dS ¼ 6 mm, while moving in
the gravitational field without vibrations
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When the fluid in the channel oscillates at a given frequency, the dynamics of the body depends on
several physical phenomena: the generated fluid flow and the thickness of the Stokes boundary layer. The
velocity of the fluid flows is significant because of the large amplitude of the oscillations. The viscous
boundary layer d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mL=�vib

p
(where �vib ¼ 2pfvib is the radian frequency of fluid oscillation) is a

region of viscous fluid flow of small transverse thickness formed directly at the curved channel wall. The
interaction of a body with a viscous boundary layer largely determines the dynamics of the body. For
oscillations with a frequency of fvib ¼ 4�10 Hz, the thickness of the Stokes boundary layer d is nearly
1:5�0:9 mm. The dynamics of the body is due to the action of gravity and averaged vibration forces on
it. Since the density of the body is greater than the density of the fluid and it is sinking, the body moves
along the axis of the channel at a certain average speed as the fluid in the channel oscillates. However, as
the amplitude of the fluid oscillations increased at a fixed frequency, an interesting effect was found: the
effect of phase inclusion held by the oscillating flow in a variable cross section channel is observed at
certain threshold amplitude b of the fluid oscillations.

The body-holding effect is observed after a sufficient liquid velocity (amplitude of oscillation) is reached
when the liquid oscillates in the variable cross section channel. In this case, the spherical phase inclusion
“hangs” near the constriction of the channel (Fig. 3). The spherical body is held by the oscillating fluid
flow and oscillates relative to its mean position (Fig. 3a) with the frequency of the oscillations of the fluid
column. The thickness of the layer, as was mentioned early, is significant, and when the body is near the
narrowing of the channel, this contributes to the observed body-holding effect and prevents the body
from passing into the next pore of the channel. In Fig. 3b the values obtained in the experiment are
marked: the reference point of the inclusion position, the coordinate y0, relative to which the observed
oscillations are registered; the coordinates of the extreme upper y1 and lower y2 positions of the center of
mass of the spherical body. It can be assumed that the oscillations of the liquid column in the channel
generate an averaged lifting force acting on the body, which occupies a quasi-stationary position in one
of the cells of the vertical channel.

Fig. 4a shows the dependence of the y-coordinate of the center of mass of a solid spherical body on its
mean position with respect to the zero coordinate (see Fig. 3b) with vibration frequency. The suspended state
of the body, i.e., above the threshold of the occurrence of the effect, is being considered. The graph shows the
coordinate points of the extreme positions of the center of the spherical body as the amplitude of the fluid
oscillations b increases.

(a) (b)

Figure 3: Oscillatory dynamics of a phase inclusion dS ¼ 6 mm: dependence of the y-coordinate of the
position of the phase inclusion center on time (a) and photos of the relative position (b) for fluid
oscillations with a frequency of fvib ¼ 4 Hz and an amplitude of b ¼ 2:10 mm
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The amplitude of the oscillations of the fluid at a given frequency is determined by the spread of the
visualizer particles 2b suspended in the fluid in the wide part of the channel (Fig. 4b). The visualizer
particles are visible in the plane of the laser sheet cutting the channel along its axis. From the graph it is
possible to determine the amplitude of the body oscillation, the dependence of the coordinate of the
average position of the body on fvib and b. As the frequency of fluid oscillation increases, the amplitude
of both fluid and body oscillation decreases. In this case, the body is oscillating at the frequency of the
liquid column. As the amplitude of the fluid oscillation increases, the amplitude of the body oscillation
proportionally increases. As the amplitude b of the liquid oscillations decreases at a fixed fvib, the
“floating” body approaches the region of maximum channel narrowing y0. Upon reaching region y0 and
oscillating relative to the reference point, the body is carried by the fluid flow to the next segment and
moves down the channel.

The amplitude of a body’s oscillations relative to its mean position characterizes its dynamics. With a
gradual increase in the amplitude of the fluid oscillations b, the amplitude of the body oscillations,
defined as AS ¼ ðy1 � y2Þ=2, increases (Fig. 5). The graph shows the experimental results for the body’s
quasi-equilibrium suspension during its oscillations. For the given system and frequency range, it is
possible to maintain the body in a quasi-stationary suspended state once the threshold amplitude b is
reached. As the vibration amplitude of the fluid column decreases, the body’s own density, which are
greater than those of the fluid, cause the body to approach the narrow part of the channel, at which point
it can no longer be held by the flows and the averaged vibration force. For different fvib and dS one can
see the uniform dynamics of the change in amplitude of the body vibration with increasing of b. The
amplitude of the body’s response to the fluid vibrations is determined by the curvature and shape of the
channel. This in turn is determined by the difference in the amplitude of the fluid vibrations between the
wide and narrow parts of the channel. An interesting effect found in the experiments is the possibility of
controlling the relative position of the phase inclusion. By gradually reducing the amplitude of the fluid
oscillations (flow rate), it is possible to move the phase inclusion to any of the following channel cells.
After reaching the required relative position along the channel, by successively increasing the amplitude
of the fluid oscillation, it is possible to achieve the effect of holding the oscillating phase inclusion in a
particular part of the channel with a variable cross section.

The threshold effect of holding a heavy phase inclusion relative to the oscillations of the working fluid is
observed. The threshold value of the amplitude of body oscillations is defined as the mean value of the
amplitude of the body when the effect of holding occurs and the amplitude of the body at the moment of
collapse of the quasi-equilibrium state. The amplitude of body oscillations at the threshold of the
‘suspended’ state effect, against the background of its oscillations, depends on the frequency fvib and size
dS of the body. Fig. 6 shows that as the frequency increases, the holdup is observed at a smaller

(a) (b)

Figure 4: Dependence of the y-coordinate of the centre of mass of a solid spherical body dS = 6 mm on its
mean position with respect to the zero coordinate y0 (a) with vibration frequency. Photograph of a channel
segment with visualizer particles suspended in the fluid (b)
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amplitude of the body oscillations, which is directly related to the amplitude of the fluid oscillations. A
similar dependence can be observed for bodies of different sizes. However, for a larger body, oscillating
at the same frequency, the amplitude of oscillations is smaller when the holding effect occurs.

Periodic changes in the flow rate of the fluid pumped through the channel result in the generation of
average flows in each of the channel cells. The earlier experimental study of averaged flows excited by
fluid oscillations in an axisymmetric channel whose cross section varies periodically with the longitudinal
coordinate [25] has shown that the parameter determining the structure and intensity of the averaged
flows is a dimensionless frequency x. The dimensionless frequency x ¼ �vibR2

1

�
mL is determined by the

ratio of the characteristic size of the channel (in a narrow part, where d is significant) to the viscous
Stokes boundary layer d near the wall. In order to determine whether the position of the channel (vertical)
and the presence of phase inclusion change the dynamics, the structure of the fluid flows was determined
qualitatively. The position of the visualizer particles was video recorded by cutting the channel along its
axis with the plane of the laser sheet. The structure of the flows generated by the oscillation of the liquid
column was obtained by superimposing the frames of the video recording taken after one period. The
visualizer particles, which move over a period of time, leave traces. In the above photographs of the
channel with and without a body (Figs. 7a and 7b) obtained in the experiments, the averaged fluid motion
along the channel axis is directed from a narrow region of segments to a wide one. The flow structure
observed in Fig. 7c for the dimensionless frequency (equal to x ¼ 35�88 in this study) is qualitatively
consistent with the findings of a previous study [25].

Figure 5: Dependence of the amplitude of the phase inclusion oscillation on the amplitude of the fluid
oscillation at different frequencies of the fluid column oscillation

Figure 6: Dependence of the threshold value of the amplitude of body oscillations on the fvib
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4 Discussion

When considering the motion of the body during one oscillation period, it is observed that the body must
return to its initial position as soon as it is displaced upwards by the fluid flow from the narrowing region of
the channel. This ensures that the amplitude of its oscillations remains constant (refer to Fig. 3a). Any
deviation from this quasi-stationary position may cause the body to slip further along the channel. When
a body oscillates while suspended, its dynamics are determined by the forces acting on it. Similarly, when
a body moves in a fluid under the influence of gravity, its dynamics are determined by the combined
action of gravity, Archimedes’ principle, and Stokes’ law. The distance travelled by the body is
proportional to half of the period of oscillation and the velocity of the body in the fluid, and it equals to
2AS . The velocity can be determined by balancing the forces acting on the body (from Stokes’ law). The
parameter responsible for the threshold effect of holding the body was determined as AS�vib

2
�
g–the ratio

of the average vibrational acceleration of a body to the acceleration of gravity. This definition
characterizes and determines the intensity of the averaged vibrational force relative to the force of gravity.
Fig. 8 shows the relationship between the dimensionless parameter and dimensionless frequency,
according to the parameters in Fig. 6. It can be seen that the threshold for holding the phase inclusion on
the plane of the dimensionless parameter is dependent on the dimensionless frequency. For different
frequencies of fluid vibration and body sizes, a qualitative agreement of the AS�vib

2
�
g � x dependence

can be observed. As the dimensionless frequency rises, so does the value of the parameter AS�vib
2
�
g

required to hold-up an inclusion.

In this study, the characteristics of fluid and body oscillations are considered. Fluid oscillations
are detected by the oscillations of particles suspended in the fluid. Let us analyze oscillations of the dS ¼ 6
mm body and visualizer particles in the fluid near the channel axis at fvib ¼ 6 Hz and b ¼ 1:23 mm. To
accurately determine the phase of body and fluid oscillations, high-speed video recording at a frequency of
600 frames per second (100 frames per period) is carried out. By measuring the y-coordinates of the

(a) (b) (c) 

Figure 7: Qualitative representation of the characteristic structure of averaged flows in a circular vertical
channel with a periodically changing cross section during oscillations of a liquid column without a body
(a) and with a body dS ¼ 6 mm (b) at fvib ¼ 6 Hz and b ¼ 1:35 mm. Schematic representation of the
characteristic structure of the averaged flows and the relative position of the body (c) during oscillations
of the liquid column
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visualizer particle, located near the channel axis, and the center of mass of the phase inclusion, the dependence
y� y on t is obtained (Fig. 9a). In this case, y is the coordinate of the mean position of the particle or body,
respectively. By determining the value of y� y it is possible to observe how the phases of oscillations are
related. The body and fluid oscillate at a given frequency. Closer examination of the one full period of
oscillations at phase diagram of the y-coordinates of the center mass of the body yS and the visualizer
particles yP reveals that the fluid and the body are oscillating out of phase (Fig. 9b). The curved profile of
the channel causes the instantaneous velocity along the channel axis to be non-uniform. In the narrow part
of the channel, the fluid displacement velocity exceeds the velocity in the wide part. The combined effect
of the channel shape and the relative position of the body at different times results in different dynamics.
For example, if the body is close to the narrow part of the channel and is moving downwards, the fluid
starts to move upwards at high velocity and “splashes” the body back from the narrowing. The body is
carried upwards by the flow and when the body reaches the widening of the channel, the fluid velocity
decreases. At the extreme upper point of the body’s relative position, on the reverse course of the fluid, the
heavy body begins to sink and is entrained by a relatively weak downward flow, and the cycle repeats. A
significant difference in flow rate in the narrow and wide parts and the presence of a phase difference in
the oscillations produce the observed body-holding effect. As soon as the flow rate differs slightly in
different parts of the oscillation period, when the body approaches the narrowing, and the center of mass
of the body is close to zero (see Fig. 4), the body moves to the next segment of the channel.

The characteristic structure of the averaged flow excited by the oscillations of the fluid is studied in a
vertical channel with a variable cross section using the PIVLab programme [27]. The PIV method
consists in processing pairs of frames, like in Fig. 10a at fvib ¼ 6 Hz and b ¼ 1:23 mm, the time interval
between which is a multiple of the fluid oscillation period. The experiment records the dynamics of
visualizer particles in the plane of the laser sheet near the axis of the variable cross section channel. For
each oscillation period, there is a slight shift in the particles, and by processing a series of such
photographs, an average picture of the fluid flow is obtained. Thus, the processing result is the period-
averaged vorticity field close to the axis (Fig. 10b). Periodic pumping of fluid leads to the appearance of
steady flow in each cell of the channel. In the considered area of dimensionless frequencies x ¼ 35�88
the oscillating flow of fluid in the entire volume of the channel is viscous. At this, the steady flow has the
form of a system of coordinately rotating rolls elongated transversally to the direction of oscillation. The
flow in each cell consists of two axisymmetric toroidal vortices rotating in opposite directions. This
structure is characteristic of all experimental parameters in the present study. The presence of a spherical
body in the channel slightly distorts the vortex structure, but the structure and intensity are identical in
the channel segments with and without the body.

Figure 8: The dimensionless threshold value of body oscillation amplitude dependence on dimensionless
frequency

1228 FDMP, 2024, vol.20, no.6



The direction of rotation of the rolls is such that the fluid moves along the axis of the cavity from the
narrow section of the channel to the wide section. The averaged flows have an impact on the body
dynamics, but they are not the sole determining factor. Thus, the averaged flows contribute to the
maintenance of the quasi-stationary position of the spherical body during the oscillations of the liquid
column in a channel of variable cross section.

(a)

(b)

Figure 9: Time dependence of the y-coordinates of the particle visualizer (black dots) and the center of mass
(red dots) of the phase inclusion (a) during oscillations of the liquid column and the phase diagram of one full
period of oscillations (b) of the body and liquid

(a) (b)

Figure 10: An example of a processed image obtained by high-speed recording (a) and the characteristic
period-averaged vorticity field (b) in the plane of the laser sheet in the vicinity of the axis of the channel
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It can be noted that the detected vibration effect is caused by the coincidence of the frequencies and
motion law (�cos�vibt) of the body and the fluid. During the downward movement of the fluid, the body
moves towards the narrowing of the channel. At the moment of upward movement of the fluid, due to the
large difference in the flow rate of the fluid, it “splashes” back. In simpler terms, the body’s sinking
velocity due to gravity must be balanced with the average vibration effect of the oscillating fluid flow
(flow rate). It is important to note that the amplitude of body oscillations is equal to the curvature of a
channel of variable cross section. The novel vibrational effect observed in the experimental study requires
further careful investigation depending on the relative size of the body to the channel width, the relative
density and the viscosity of the fluid. The study of phase inclusion dynamics in a wide range of
dimensionless frequencies can serve as an effective tool for controlling the phase inclusion position (both
light and heavy) in a variety of technological applications, particularly in mass transfer processes.

5 Conclusion

The dynamics of a spherical solid body in an oscillating fluid flow in an axisymmetric channel of
variable cross section has been studied experimentally. An experimental setup has been designed and
constructed which allows the setting of a periodic fluid flow in a variable cross section channel with the
simultaneous possibility of introducing a phase inclusion directly into the flow. The experimental
methodology has been tested. A new vibration effect is found when increasing the amplitude of
oscillations at a fixed frequency. The threshold effect of phase inclusion hold-up and its oscillation
relative to the mean position at a given oscillation frequency is observed. The parameter determining the
threshold for the occurrence of the effect of holding the body in a quasi-equilibrium state has been
identified. Within the range of dimensionless frequencies considered, the structure of averaged flows in
the presence of a body in a vertical channel during oscillations of a liquid column has been defined. The
discovered effect could be used to develop effective methods for controlling mass transfer in
heterogeneous hydrodynamic systems (such as the mass transfer process between the phase inclusion and
the surrounding liquid saturated with dissolved extractant), and also to develop a method for vibrational
control of phase inclusions in such a system.
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