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ABSTRACT

To achieve higher strength and better durability, ultra-high performance concrete (UHPC) typically employs a
relatively small water-binder ratio. However, this generally leads to an undesired increase in the paste viscosity.
In this study, the effects of liquid and powder polycarboxylate superplasticizers (PCE) on UHPC are compared
and critically discussed. Moreover, the following influential factors are considered: air-entraining agents (AE),
slump retaining agents (SA), and defoaming agents (DF) and the resulting flow characteristics, mechanical prop-
erties, and hydration properties are evaluated assuming UHPC containing 8%o powder PCE (PCE-based UHPC).
It is found that the spread diameter of powder PCE is 5% higher than that of liquid PCE. Among the chemical
admixtures studied, AEs have the best effect on improving UHPC workability, while DFs have the worst effect.
When the addition of AE and SA is 1.25%o and 14.7% of PCE, paste viscosity reduces by 35% and 19%, respec-
tively compared to the paste with only 8% PCE. A low AE dosage (1.25%o0) decreases compressive strength by
4.1%, while SA (8.1%) increases UHPC compressive strength by 9.1%. Both AE and SA significantly delay the
UHPC hydration process, reducing the hydration heat release peaks by 76% and 27%, respectively.
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UHPC Ultra-high performance concrete
PCE Polycarboxylate superplasticizer
AE Air-entraining agent

SA Slump retention agent

DF Defoamer agent
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VMA Viscosity-reducing admixture
WP Liquid PCE
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1 Introduction

Concrete was an essential and highly sought-after building material in the construction and civil
engineering sectors [1,2]. However, as construction engineering advances, the performance of traditional
concrete no longer satisfies the requirements for certain applications [3]. In response, ultra-high
performance concrete (UHPC) was developed as a new type of concrete with extremely high compressive
strength (exceeding 120 MPa), flexural strength (exceeding 10 MPa), and excellent durability [3]. UHPC
has a porosity of less than 1% and typically includes steel fibers to enhance its mechanical properties [4].
These attributes made UHPC an ideal material for long-span bridges [5], high-rise buildings [6], marine
engineering [7], railway engineering [8], and structures with specific functions [9,10]. Compared to
conventional concrete, UHPC’s low water-binder ratio (800 kg/m’) and its multi-scale fine-grained
mixture design (with a bulk density of 0.825 to 0.855 N/m’®) ensure a dense microstructure, thereby
reducing matrix porosity [11-13]. The difference in UHPC’s material composition resulted in
significantly higher viscosity than that of conventional concrete [14].

The rheological properties of UHPC significantly affected the dispersion and arrangement of matrix
particles, influencing their mechanical properties and durability [15]. These properties determined the ease
with which cement-based materials can be pumped, formed, and consolidated [16]. UHPC paste typically
exhibited shear-thickening behavior [1]. An increase in viscosity can lead to poor UHPC consolidation,
resulting in pore defects and affecting overall performance [15]. Semendary et al. [17] demonstrated that
when the plastic viscosity was less than 200 Pa‘s and the dynamic yield stress was less than 400 Pa, the
mixture exhibited good fluidity and pumpability. Yahia [18] evaluated the rheological behavior of high-
performance paste mixtures and found a nonlinear relationship between shear stress and strain rate.

Existing research on UHPC indicates that paste rheological properties can be adjusted by modifying the
amount of admixture [19-23]. The type of admixture also has an effect on the flow performance of UHPC
paste [23-27]. Table 1 shows the influence of different admixture types on concrete flow performance.
Polycarboxylate ether (PCE) can improve UHPC paste flow ability, rheology and workability by reducing
the water-binder ratio [3]. Compared to other liquid admixtures, PCE has a high water-reducing capacity
and excellent dispersibility [28]. Additionally, PCE’s molecular structure allows more stable adsorption
on cement particle surfaces and good compatibility with different binder materials [29]. Studies found
combining two PCEs can reduce the required PCE dose to achieve the same fluidity [28]. Notably,
gradually adding PCE can significantly improve its dispersion effect, increasing UHPC fluidity [4]. Some
studies have also used viscosity-modifying admixtures (VMAs) to adjust UHPC matrix rheological
properties [30]. VMAs maintain low flow resistance by increasing cement pore solution zero shear
viscosity and forming associative structures [31]. Sonebi et al. [32] showed that VMAs exhibit shear
thinning behavior at low shear rates but shear thickening behavior at high shear rates. However, at a
certain PCE amount, increasing VMA dosages can significantly improve UHPC fluidity [32].

Table 1: Influence of different types of chemical admixtures on the slump of high-performance concrete

Admixture type w/C Dosage added (%) Spread diameter (mm) Ref.
Admixture Fiber
Fiber-based PCE-HRWR 0.18 2.00 1.00 185+5 [25]
2.00 1605
3.00 133+5
0.25 1.80 20 235+5 [22]

(Continued)
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Table 1 (continued)

Admixture type W/C Dosage added (%) Spread diameter (mm) Ref.
Admixture Fiber
PCE-HRWR+SRA  0.25 P (1.80)+S (1.00) 245+ 5
P (1.80)+S (2.00) 240+ 5
PCE-HRWR 0.18 0.83 240 120+5 [26]
SRA 1.00 135+5
SRA+EA S (1.00)+E (7.50) 155+5
PCE-HRWR 025 1.5 20 215+5 [27]
PCE-HRWR+EA  0.25 P (1.50)+V (2.00) 191 5
Non-fiber-based PCE-HRWR 0.24 0.10 60+ 5 [19]
0.20 312+5
0.26 0.10 127+5
0.20 328+5
0.20 0.80 210+ 5 [20]
2.00 345+ 5
PCE-HRWR+VMAs 0.20 P (0.17)+V (0.05) 200 + 5 [21]
P (0.24)+V (0.14) 200 + 5
P (0.22)+V (0.27) 200 + 5
P (0.54)+V (0.81) 200 £ 5
SRA 0.20 0.25 570 £ 5 [23]
PCE-HRWR+SRA  0.20 0.25 585+5
SRA 0.3 0.50 620+ 5 [24]
1.00 605+ 5
EA 0.3 5.00 655+5
10.00 680 +5

Note: PCE-HRWR is the polycarboxylate ethers high-range water reducer, SRA is shrinkage-reducing admixtures, EA is expansive agents, VMAs is
viscosity modifying admixtures and P (1.80)+S (1.00) is mixed with 1.80% PCE-HRWR and 1.00% SRA.

The synergistic effect between chemical admixtures was an important consideration [33]. Nehdi et al.
[34] observed that adding admixtures further improves the rheological properties of cementitious
materials mixed with PCE, compared to those prepared with PCE alone. When PCE and VMA in
combination for UHPC, their concentrations needed optimization to obtain the best rheological properties
[35]. Additionally, the combination of VMA and PCE can provide varying degrees of robustness [36].
Fares et al. [37] found that the effect of PCE and VMA in the cement matrix depended on their order of
addition and the critical PCE/VMA ratio. When VMA was added first, paste fluidity mainly depended on
the water-binder ratio. When VMA was added after PCE, the paste flow affected significantly improved.
Yin et al. [38] discussed the feasibility of grouting with waste glass powder (WGP), PCE, and VMA. The
fresh state of cement-based materials was closely related to the WGP, PCE, and VMA dosages. When the
WGP, PCE, and VMA dosages were 15%, 0.115%, and 0.03%, respectively, the pseudoplastic index was
the smallest. Huang et al. [39] introduced a rosin resin-type air-entraining agent based on PCE and VMA.
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With increasing PCE and AE dosages, the plastic viscosity of self-compacting concrete gradually decreases.
Lazniewska-Piekarczyk [40] analyzed the effects of air-entraining admixtures, PCE, and VMA, highlighting
that the VMA type affects the fluidity of high-performance self-compacting concrete. Although different
admixture types can improve the rheological properties of cement-based materials, a research gap exists
in their application effects and synergistic improvement effects on UHPC [41,42].

In this study, the effects of powder and liquid PCE on UHPC paste rheological properties were compared
and powder PCE was selected to prepare low-viscosity and high flow UHPC with air-entraining agents (AE),
defoaming agents (DF) and slump retaining agents (SA), respectively. The effects of PCE, AE, SA and DF
dosages and mixed types on flow properties, viscosity, rheological properties, mechanical properties and
hydration process were studied. This study is expected to provide a theoretical reference for designing
and preparing low-viscosity and high-flow UHPC admixtures.

2 Raw Materials and Test Methods

2.1 Raw Materials

The cementitious material employed in this study was sourced from Wuhan Huaxin Cement Co., Ltd.
(China), and its chemical composition is detailed in Table 2. The aggregate used was quartz sand, acquired
from Wuhan, Hubei. The superplasticizer utilized in this study was a polycarboxylate superplasticizer (PCE),
purchased in Wuhan, Hubei Province. Two forms of PCE are depicted in Fig. 1. The water-reducing rates of
the PCE is presented in Table 3, with the liquid PCE exhibiting a water-reducing rate of 30.1% and the
powder PCE achieving a rate of 52%. The air-entraining agents (AE), slump retaining agents (SA), and
defoaming agents (DF) used in this study were all manufactured in Wuhan City, Hubei Province. The AE
was anionic surfactant; the SA was polycarboxylate-based slump retaining agent; and the DF was
polyether-based defoaming agent.

Table 2: Chemical composition of PCE (wt%)

Oxide CaO SIOQ A1203 F6203 MgO SO3 Kzo T102 Na20 MnO
PC 58.22 25.03 636 3.18 239 229 098 0471 0.448 0.128

Figure 1: Two different forms of PCE. (a) Powder and (b) Liquid
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Table 3: Chemical parameters of PCE

ClI” (%) Alkali content (%) Water reducing rate (%)
Liquid PCE 0.03 3.75 30.1
Powder PCE — — 52

2.2 Mix Proportion Design of PCE and Admixture System

The quality of the solid and UHPC admixtures used in this study is presented in Tables 4 and 5. For all
mixtures, the mass ratios of water to binder (w/b) and binder to quartz sand were maintained at 0.175 and 1.1,
respectively [43,44]. The total water used consisted solely of tap water. The w/b ratio was kept at 0.175 to
investigate the diffusion flow, slump, hydration kinetics, and strength of the paste [45]. The dosage of PCE
was determined based on the binder mass, while the dosages of the other additives were based on the PCE
mass [46]. The paste was mixed for approximately 8 min using a 5-liter mixer. The mixing procedure
included 30 s of dry mixing, followed by 180 s for adding the chemical admixtures and water, then 150 s
of mixing at low speed, and finally 120 s at medium speed [45].

Table 4: The UHPC mix ratio with different forms of PCE

Sample Binder (g) Quartz sand (g) Water (g) Powder PCE Liquid PCE
PP-0 1000 909.1 175 6%o -

PP-1 1000 909.1 175 8%o -

PP-2 1000 909.1 175 10%o -

WP-0 1000 909.1 175 - 6%o

WP-1 1000 909.1 175 - 8%o

WP-2 1000 909.1 175 — 11%o

Note: “PP” and “WP” represent powder PCE (PP) and liquid PCE (WP), respectively. The “0” and “1” indicate that the dosages of PCE is 6%o and
8 %o, respectively. “PP-2” and “WP-2” represent the dosages of 10%o0 powder PCE and 11%o liquid PCE, respectively.

Table 5: Different types of admixture UHPC mix ratio

Sample Binder (g) Quartz sand (g) Water (g) PCE (g) AE (g) SA (g) DF (g)

Re 1000 909.1 175 8 - - -
AE-1 1000 909.1 175 8 0.01 - -
AE-2 1000 909.1 175 8 0.03 - -
AE-3 1000 909.1 175 8 0.05 - -
SA-1 1000 909.1 175 7.575 - 0.425 -
SA-2 1000 909.1 175 7.4 - 0.6 -
SA-3 1000 909.1 175 7.175 - 0.825 -
SA-4 1000 909.1 175 6.975 - 1.025 -
DF-1 1000 909.1 175 7.95 - - 0.05
DF-2 1000 909.1 175 7.9 - - 0.1

DF-3 1000 909.1 175 7.85 - - 0.15
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1) The UPHC mix proportion design of different forms of PCE

To assess the impact of different forms of PCE on the viscosity and strength of UHPC, we initially
investigated the influence of powder and liquid PCE on the properties of UHPC paste. The specific ratios
are detailed in Table 4. The dosages of powdered PCE were established at 6%o, 8%o, and 10%o of the
cement mass, while the dosages of liquid PCE were set at 6%o, 8%o, and 11%o of the water mass. An
experimental group with an 8%o dosage of PCE was designated as the control group.

2) The UPHC mix proportion design of chemical admixtures

Based on the PCE tests, we carried out chemical admixture tests, with specific combinations shown in
Table 5. We selected the air-entraining agent (AE), slump retaining agents (SA) and defoaming agents (DF)
for this study. The AE dosages were set at 1.25%o, 3.75%0 and 6.25%o of the PCE mass. The SA was added to
replace the PCE, with substitution masses of 0.425, 0.6, 0.825 and 1.025 g, respectively. The DF was mixed
internally to replace the PCE, with masses of 0.05, 0.1 and 0.15 g, respectively. The experimental group with
an 8%o powder PCE dosage served as the control group.

2.3 Specimen Preparation Methods

The concrete block forming method adhered to the Chinese standard GB/T 50080-2016 [47]. The paste
test block preparation followed the requirements of GB/T 8007-2000 [48]. All test blocks were placed in a
standard curing room (20°C, 95% humidity) for 24 h. Subsequently, the molds were removed and the blocks
continued curing until the designated testing age.

2.4 Test Methods

2.4.1 Compressive Strength

For the compressive strength test, specimens measured 100 mm x 100 mm x 100 mm, with a loading
rate of 1.2 to 1.4 MPa/s. Six specimens with the same mix ratio were tested for compressive strength, with the
average value taken as the final result [49]. The deviation between the measured and average values did not
exceed 15% and the final result was accurate to 0.1 MPa.

2.4.2 Fluidity

The slump test was conducted using a slump cylinder with a base diameter of 100 mm, a top diameter of
200 mm and a height of 300 mm [19]. The test site was ensured to be dry and debris-free. Concrete was filled
in three layers, each compacted by vibrating 25 times with a rod from the outside to the inside along the
cylinder wall. The surface was flattened using a funnel to ensure smoothness. Afterward, the cylinder was
lifted, allowing the concrete to collapse. The slump was calculated by subtracting the height of the
highest concrete point from the cylinder height (300 mm).

2.4.3 Viscosity Test

Due to the high viscosity characteristics of UHPC, this study innovatively applied the asphalt viscosity
test method, using Brookfield viscosity as the characterization index. The largest rotor (No. 6) was selected
and the speed was fixed at 20 rpm to ensure test accuracy and comparability.

2.4.4 Rheological

The rheological properties were tested using an RST-SST touchscreen rheometer (Bolefeld Company,
USA). Instrument parameters were: torque 100 mN-m, torque resolution 0.15 pN-m and a rate range of
0.01-1300 rpm. The paste was tested at a constant shear rate, sheared at 100 s ' for 480 s and then
stopped [50]. Results were fitted using the Herschel-Bulkley model, as shown in Eq. (1).

T=1+K-)" (1)
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where 7 represents the shear stress, 1, denotes the yield stress, K is the consistency coefficient, y is the shear
rate and n is the flow index.

2.4.5 Hydration Heat

Isothermal calorimetry analysis of the mixture was performed at 20°C using a TAM Air isothermal
calorimeter. A total of 8 g of paste samples were uniformly stirred and injected into a sealed plastic
ampoule, then measured for 120 h.

3 Results and Discussion
3.1 Flowability of UHPC Paste

3.1.1 Different Forms and Dosage of PCE

Fig. 2 depicts the effects of different types and concentrations of polycarboxylate Ether (PCE) on the
fluidity of UHPC paste. It can be observed from Fig. 2 that powder PCE (PP) significantly improved the
fluidity of fresh UHPC paste compared to liquid PCE (WP), suggesting that powder PCE was more
suitable for the UHPC material system studied. When the flow time was 30 s, the fluidity measurements
for the PP-6%o, PP-8%o, PP-10%0, WP-6%0, WP-8%0 and WP-11%0 paste was 280, 287, 295, 265,
271 and 285 mm, respectively. It was evident that increasing the PCE dosages gradually enhanced the
fluidity of UHPC. Both excessively low and high fluidity can negatively impact the performance of
building structures. Therefore, for further studies on the influence of air-entraining agents (AE), slump
retaining agents (SA) and defoaming agents (DF) on the basic properties of UHPC, PP-8%0 was chosen
as the control group.
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Figure 2: The influence of different forms and dosages of PCE on the fluidity of UHPC paste

3.1.2 Different Dosages of AE, SA and DF

Fig. 3 depicts the effect of AE on the fluidity of UHPC paste. Upon adding AE, the fluidity initially
increased and then decreased, but all experimental groups exhibited higher fluidity than the control group,
particularly AE-1, which increased by 9.4% in fluidity. Low-dosage AE significantly enhanced the
fluidity of the paste by introducing tiny bubbles, reducing direct particle contact and facilitating flow [24].
However, excessive AE can cause paste agglomeration, reducing fluidity.

Fig. 4 demonstrates the effect of SA on the fluidity of UHPC paste. After adding SA, fluidity initially
decreased and then increased. Compared to the control group, the fluidity of SA-2 decreased by 4.3%. With
increased SA dosages, fluidity rose, particularly in SA-4, which was 6% higher than the control group. Both
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SA and PCE operate in a similar manner in cementitious materials, facilitating the dispersion of cement
particles and inhibiting aggregation through electrostatic repulsion, steric hindrance, and hydration control
[51-53]. Additionally, slump retaining agents commonly include retarders that prolong concrete setting

time [52].
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Figure 3: The influence of air-entraining agents (AE) on (a) fluidity and (b) fluidity loss ratio of UHPC
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Figure 4: The influence of slump retaining agents (SA) on (a) fluidity and (b) fluidity loss ratio of UHPC

paste

Fig. 5 depicts the effect of DF on the fluidity of UHPC paste. The fluidity progressively decreased with

the addition of DF. The fluidity measurements for the control, DF-1, DF-2 and DF-3 were 235, 230, 224 and
217 mm, respectively. DF-3 exhibited a 7.7% decrease in fluidity compared to the control group, indicating a
significant negative effect. The low surface tension of DF reduced the air content and enhanced the friction
between paste particles, thereby diminishing fluidity [54].

Based on these findings, DF had the most substantial negative impact on UHPC paste performance.
Lower dosages of AE were found to improve fluidity, while higher dosages of SA had an effect similar to
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that of lower dosages of AE. Consequently, in subsequent work, we focused on the effects of the AE and SA
on the basic properties of UHPC.
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Figure 5: The influence of defoaming agents (DF) on (a) fluidity and (b) fluidity loss ratio of UHPC paste

3.2 Viscosity Properties of UHPC Paste

3.2.1 Different Dosages of PCE and AE

To assess the effect of additives on UHPC viscosity, we tested the viscosity of UHPC paste. Fig. 6
illustrates the impact of PCE and AEs on UHPC viscosity. Fig. 6a indicates that powder water reducers
markedly decrease UHPC viscosity. Fig. 6b demonstrates that increasing the dosage of AE initially led to
a decrease in viscosity, followed by an increase. All experimental groups exhibited lower viscosity than
the control group, with AE-1 achieved a 35% reduction. Zhang et al. [55] reported that incorporating
10% of 4 um limestone powder decreased UHPC plastic viscosity by 22.8%, while Li et al. [56] found
that adding 15 wt% bentonite increased it by 16%. The dosage of AE enhanced surface adsorption and
foam height, thereby improving dispersibility. Nonetheless, excessive AE increased paste air content,
raising viscosity due to increased contact area between paste particles [31].
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Figure 6: The influence of (a) PCE and (b) air-entraining agents (AE) on the viscosity of UHPC
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3.2.2 Different Dosages of SA and DF

Fig. 7 displays the influence of SA and DF on the viscosity of UHPC paste. As shown in Fig. 7a after
adding SA, the viscosity of UHPC paste showed a trend of increasing first and then decreasing [51]. The
viscosity of SA-2 increased by 7.5% compared with the control group, while the viscosity of
SA-4 decreased by 18.7% compared with the control group. The addition of higher dosages of SA
significantly reduced the viscosity of UHPC paste. This effect can be attributed to the high dosages of
SA, which facilitate the redispersion and dilution of fine powder agglomerates in the concrete, thereby
lowering the viscosity of the UHPC paste. This observation aligns with the trend of paste fluidity changes
observed after the addition of SA [57]. As shown in Fig. 7b, the viscosity of UHPC paste increased after
adding DF and the viscosity values of all test groups were higher than those of the control group. With
the increase of DF dosages, the viscosity of UHPC paste continued to increase, especially in the DF-3,
where the viscosity reached 14,526 Pa-s, which was 51% increase over the control group. The addition of
DF had a pronounced negative effect on the viscosity of the paste. The primary function of DF was to
reduce the air content in the concrete, which increased the contact surface between the paste, enhanced
the cohesion between the paste and increased the viscosity of the paste [58].
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Figure 7: The influence of (a) slump retaining agents (SA) and (b) defoaming agents (DF) on the viscosity
of UHPC

3.3 Rheological Properties of UHPC Paste

3.3.1 Different Dosages of AE

To assess the viscosity reduction effect of AE, we conducted rheological tests on UHPC paste. Fig. 8
depicts the impact of AEs on the rheological properties of UHPC. The test results for the groups were
well-fitted to the H-B model, with correlation coefficients exceeding 0.99. Specific rheological parameters
are shown in Table 6. Fig. 8a indicates that with increasing AE dosages, the shear stress of UHPC paste
initially decreases and then increases. Table 6 shows that the yield stress increases as the AE dosage is
increased. Fig. 8b indicates that UHPC viscosity follows the similar trend, with AE-2 exhibiting the
lowest apparent viscosity. High AE dosages reduced viscosity by increasing air content and bubble
volume proportion, enhancing plastic viscosity [59]. Fig. 8c demonstrates a strong correlation between
static yield strength and apparent viscosity after adding AE.



FDMP, 2024, vol.20, no.10 2173

(@) 1000 (b)9 .
= PP-1 PPl
B AE3 / 84
AE-2
800 AE-1 @ 7
— = PP-1 H-B model fit ne: i
- &
a ——— AE-3 H-B model fit
=600+ AE-2 H-B model fit ‘? 61
Z ——— AE-1 H-B model fit 5]
g <9
£ 2 5
7]
% 400 -
= = 44
200+ g 3
<«
> 2 T
ol ‘_-_-_-,/
T ! 1 ' !

0 50 100 150 200 0 50 100 1%0 2(I)0

Shear rate [s'l] Shear rate [s)]
(¢) 1000
= PP-l
" AE-3 "
o0 " AE2 0

AE-1
——— PP-1 H-B model fit

= —— AE-3 H-B model fit

-

= 6004 AE-2 H-B model fit )
2 AE-1 H-B model fit ”
ot

3 400 4

St

<

]

=

w

[
(=3
(=]
1

(=]
1

0 50 100 1 150 200
Shear rate [s™7]

Figure 8: Air-entraining agents (AE) effect on UHPC (a) yield stress, (b) apparent viscosity and (c)
correlation between static yield strength and apparent viscosity

Table 6: The H-B model rheological parameters of UHPC paste with air-entraining agents (AE)

Sample 79 (Pa) K n R?

PP-1 20.89799 0.03325 1.91819 0.99876
AE-1 10.47300 2.22271 091151 0.99997
AE-2 16.66841 0.78543 1.25252 0.99982
AE-3 30.94276 0.45161 1.32843 0.99999

3.3.2 Different Dosages of SA

Fig. 9 shows the effect of SA on UHPC rheology. Fig. 9a reveals that increasing SA dosages initially
increases and then decreases shear stress. Under the same shear rate, SA-2 exhibited the highest shear
stress, while SA-4 showed the lowest. Fig. 9b indicates that both control and experimental groups
exhibited increased apparent viscosity with shear rate. SA-2 had the highest apparent viscosity, while SA-
4 had the lowest. Rheological data fitting results aligned with the H-B model, with correlation coefficients
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exceeding 0.99. Specific rheological parameters are shown in Table 7. The yield stress of SA-2 was the
lowest, while SA-4’s was the highest. Fig. 9c shows a strong correlation between static yield strength and
apparent viscosity after adding SA.
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Figure 9: Slump retaining agents (SA) effect on UHPC (a) yield stress, (b) apparent viscosity and (c)
correlation between static yield strength and apparent viscosity

Table 7: The H-B model rheological parameters of UHPC paste with slump retaining agents (SA)

Sample 79 (Pa) K n R?

PP-1 20.89799 0.03325 1.91819 0.99876
SA-1 18.72532 0.05249 1.85673 0.99933
SA-2 23.53622 0.10347 1.74259 0.99944
SA-3 1.89353 0.18432 1.55061 0.99992

SA-4 2.22387 0.40578 1.30607 0.99926
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3.4 Hydration Heat of UHPC Paste

3.4.1 Different Dosages of AE

Fig. 10 demonstrates the impact of AE on the hydration heat of ultra-high-performance concrete
(UHPC). The incorporation of AE resulted in a rightward shift of the hydration exothermic peak for
UHPC, markedly delaying the hydration exothermic process. As depicted in Fig. 10a, the control group’s
hydration exothermic peak occurred at 24 h, whereas the AE group’s peak was observed at 90 h. Kubissa
et al. [60] reported a 33% delay in the peak of hydration heat release when 0.1 and 0.2 wt% AE were
added to concrete. Similarly, Qin et al. [61] found that both PCE and AE delayed the hydration reaction
time by approximately 35%. Zhang et al. [62] observed that AE dosages ranging from 0 to 0.2 wt%
inhibited the hydration reaction time of cement. With AE addition, the peak value of hydration heat
release in UHPC significantly decreased. For the control group, the peak was 1.65 mW/g, while for the
AE group, it was 0.4 mW/g. Increasing AE dosages further reduced the peak value, though the
differences were minimal. According to Fig. 10b, AE addition also drastically reduced the cumulative
heat release of UHPC, with the AE group’s cumulative heat release being one-third that of the control
group. Increasing AE dosages had little effect on cumulative heat release. AE reduced the surface tension
of the concrete system, introducing more tiny bubbles, which buffered the cement hydration process [63].
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Figure 10: The influence of air-entraining agents (AE) on the (a) Heat flow and (b) cumulative heat of UHPC

3.4.2 Different Dosages of SA

Fig. 11 depicts the effect of SA on the hydration heat of UHPC. Fig. 11a showed that increasing SA
dosages decreased the exothermic peak and delayed the hydration process. The control group’s peak
appeared at 24 h, whereas the SA group’s peak appeared at 48 h, with SA-4 peaking at 60 h. Massarweh
et al. [64] found that using 0.03, 0.05 and 0.08 wt% SA delayed the water exothermic peak by 23%, 31%
and 46%, respectively. The peak values of hydration heat release for SA-1, SA-2 and SA-3 were similar,
but they decreased significantly for SA-4, possibly due to the negative effect of excessive SA on UHPC
hydration performance. From Fig. 11b, it is evident that SA incorporation reduced the cumulative heat
release of UHPC. All SA groups had lower cumulative heat release than the control group, with
SA-2 having a relatively high cumulative heat release. Compared to Fig. 10a, the hydration exothermic
peak of UHPC with SA addition was relatively higher, possibly due to the chemical composition and
effect of SA being similar to PCE [46].
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Figure 11: Effect of slump retaining agents (SA) on the (a) Heat flow and (b) cumulative heat of UHPC

3.5 Hydration Heat of UHPC Paste

3.5.1 Different Dosages of PCE and AE

Fig. 12 shows the effects of PCE and AE on the compressive strength of UHPC. In Fig. 12a, the
compressive strength of UHPC with powder PCE was higher than that with liquid PCE. Notably, when
the powder PCE dosage was 8%o, the 28-day compressive strength of UHPC reached 117.2 MPa.
However, further increasing the powder PCE dosage reduced compressive strength. Fig. 12b indicates
that the compressive strength of UHPC at various ages was lower than that of the control group after AE
addition. As AE dosages increased, UHPC strength further decreased. The 28-day compressive strength
of AE-1 was 112.4 MPa, 4% lower than the control group, while AE-3 was 89.7 MPa, 23% lower. This
suggested that AE significantly influenced UHPC compressive strength, with higher AE dosages
weakening mechanical properties [65]. The effect was mainly due to AE altering the pore structure of
concrete, including pore size and distribution, affecting compressive strength.
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Figure 12: Effect of (a) PCE and (b) air-entraining agents (AE) on the compressive strength of UHPC

3.5.2 Different Dosages of AE and SA

The effect of SA and DF on the compressive strength of UHPC is shown in Fig. 13. It can be found from
Fig. 13a that the compressive strength of UHPC increased first and then decreased after the addition of SA.
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The compressive strength of UHPC was improved when an appropriate amount of SA was added. Good
fluidity made UHPC paste uniformly hydrated, thus forming a more uniform microstructure [24]. When
the dosages of SA were too high, the compressive strength began to decrease. When the quality of the SA
was controlled at about 1%o of the cementitious material, the mechanical properties of UHPC could be
improved. The main function of the SA was to maintain the slump of the concrete and it will also have a
certain impact on the final strength development of the concrete. Some studies have pointed out that the
SA may have a certain adverse effect on the early strength of concrete, but it had little effect on the
strength after 28 days or longer.
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Figure 13: Effect of (a) slump retaining agents (SA) and (b) defoaming agents (DF) on the compressive
strength of UHPC

Fig. 13b demonstrated that increasing DF dosages initially increases and then decreases UHPC
compressive strength. DF-1 exhibited the best mechanical properties, with a 28-day compressive strength
of 127.9 MPa, 9% higher than the control group. However, excessive DF dosages decrease compressive
strength, with DF-3 being 18% lower than the control group. Studies indicate a correlation between
bubble content and concrete strength [54]. DF reduces bubble content, enhancing strength, but excessive
DF causes supersaturation, negatively affecting UHPC strength [58].

4 Conclusions

This study compared the effects of liquid and powder polycarboxylate superplasticizer (PCE) and
evaluated the impact of air-entraining agents (AE), slump retaining agents (SA) and defoaming agents
(DF) on the flow characteristics, mechanical and hydration properties of PCE-based UHPC. The
following conclusions were drawn:

1. Under the same dosage, UHPC with powder PCE exhibited higher flow and mechanical properties
than with liquid PCE. At 8% powder PCE, the 28-day compressive strength reached 117.2 MPa,
31% higher than with liquid PCE.

2. AE significantly improved the flow and mechanical properties of PCE-based UHPC paste, though
this effect diminished with increased dosage. At 1.25%0 AE dosages, UHPC exhibited fluidity of
257 mm, viscosity of 6274 Pa‘s and 28-day compressive strength of 112.4 MPa.

3. Increasing SA dosages initially decreased and then increased the flow characteristics of PCE-based
UHPC paste. At 14.69% PCE (SA-4), UHPC fluidity was 249 mm and viscosity was 7836 Pas.
Although DF improved compressive strength, it reduced paste fluidity.
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4. Both AE and SA delayed the hydration heat release process of PCE-based UHPC paste, with AE
having a more significant effect. The hydration heat peak for AE was about 0.4 mW/g, whereas
for SA, it was about 1.2 mW/g. AE and SA dosages had minimal effects on the hydration process.

5. For high early strength, reduce AE and SA dosages while increasing powder PCE. For high fluidity,
moderately increase AE and SA, controlling powder PCE dosages.
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