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ABSTRACT

In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-
izontal wells after fracturing, a new sophisticated approach is proposed in this study. This new model stems from
the combination several techniques, namely, artificial neural network (ANN), particle swarm optimization (PSO),
Imperialist Competitive Algorithms (ICA), and Ant Clony Optimization (ACO). These are properly implemented
by using the geological and engineering parameters collected from 317 wells. The results show that the optimum
PSO-ANN model has a high accuracy, obtaining a R* of 0.847 on the testing. The partial dependence plots (PDP)
indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors
affecting the model’s performance.
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1 Introduction

Predrilling prediction of productivity for shale gas horizontal wells is an important link in the
formulation and optimization of development schemes for shale gas. It provides an assessment basis for
the investment risk of shale reservoir development and is particularly important for guiding the
development [1-4].

However, the current productivity prediction technology for shale gas horizontal wells is not yet mature.
These technologies mainly include physical simulation methods, empirical formula methods, analytical
methods and numerical simulation. Notably, analytical methods can only study the two-dimensional
seepage process of single-phase fluids in homogeneous formations, it can not predict the production of
gas wells with complex gas deposits [5-8]. The physical simulation method mainly includes electrical
simulation and the use of sand pack models for research. However, the electricity analogy experiment is
not suitable for evaluating production under a complex and unsteady state [9]. Although the sand packs
model is suitable for studying fluid seepage mechanism under formation temperature and pressure, it is
difficult to simulate the initiation and propagation of fractures and the stress sensitivity of the reservoir. In
addition, it requires the establishment of a three-dimensional reservoir physical model to ensure its
accuracy. Thus, the method is not applicable by the fact that the model is complex, the experiment is
difficult, and it takes a long time [10]. The above limitations suggest that it is difficult to obtain accurate
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regression equations for models based on empirical formula methods. Moreover, the equations are usually for
individual shale gas horizontal wells or individual blocks, and thus the generalization ability of this method is
relatively poor [11]. On the other hand, numerical simulation methods for predicting productivity also have
many problems: (1) Physical parameters of the reservoir are changeable and multi-scale problems are
prominent, which makes it difficult to establish a reasonable geological model. (2) There is a large
demand for evaluation parameters, but they are difficult to obtain before drilling. (3) Researchers usually
devote their work to the study of seepage mechanism in shale matrix or fractures, without considering the
characteristics of fracture networks [12—16]. (4) Shale has poor physical characteristics and strong stress
sensitivity. To sum up, shale gas development is affected by many uncertain factors, which makes the
current deterministic productivity prediction methods poor in reliability [17,18]. Considering the
uncertainty of shale gas development, non-deterministic prediction methods of shale gas productivity is
an effective way to solve the above-mentioned problems. However, the existing non-deterministic
prediction methods are only applicable to shale gas wells after they are put into production [19,20].

ANN is a new artificial intelligence method developed on biological research. It has the ability to learn
and solve complex nonlinear problems through self-learning. Currently, machine-learning methods have
been widely applied to estimate oil and coalbed methane well production performance [21-23]. There are
only few reports in the literature on predicting the productivity of shale gas wells based on the machine
learning methods, which also as comprehensively as possible considers the combined influence of
geological and engineering parameters, because shale gas development is affected by many uncertain
factors as mentioned above.

No matter what problems the machine learning methods have solved, an enlarged database is an
important prerequisite to obtain a satisfactory prediction performance and improve the generalisation
capability of the model [24-26]. This study collected 317 data samples obtained from the production data
of 317 horizontal shale gas wells in the Sichuan Basin including nine wells in Luzhou Block, 10 wells in
Yuxi Block, 233 wells in Changning Block, 58 wells in Weiyuan Block, and seven wells in Zigong
Block. Every data sample included eight geological parameters (pressure coefficient, vertical depth, TOC,
porosity, Young’s modulus, total gas content, Poisson’s ratio, and brittleness index) and seven engineering
parameters (displacement, cluster number, fluid intensity, flow back rate, slick water ratio, sanding
intensity, and quartz sand ratio). On the basis of the cross-regional and invaluable dataset, this study
constructed three new artificial intelligence methods for predicting the productivity of shale gas horizontal
wells on the basis of the ANN combined with PSO, ICA and ACO. They were abbreviated as PSO-ANN,
ICA-ANN, and ACO-ANN models. The methods starting from actual data, and accurately predicting
shale gas production are of great significance for determining the rational development decision of shale
gas wells [27,28].

2 Specification of the Study

2.1 Artificial Neural Network
The artificial neural network is composed of a large number of neurons interconnected. The function of
each neuron is relatively simple that performs the following commands:

Y = max(0, ZiwiXi +a) ()

where Y is the neuron output; w; are the weights; X; are the neuron inputs and a is bias.

All neurons which are set in different layers are connected by weights, and the function between inputs
and outputs is conducted as follows:

H[:max(O,wl--I-Ii_l—i—a,-),l SZSK,HO =X (2)
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Y = max(0, V - Hk) 3)

where matrices w;, V and vector a; are model parameters; L is the number of layers.

The network is trained by performing optimization of weights until the output values are as close as
possible to the actual outputs. The architecture of the ANN was turned based on the mean squared error
(MSE), which is defined as:

1 M N
MSE=—-% o (Y = %)° 4)
where M is the number of data samples; Y; and Y; are the predicted and true values of the test production per
unit well length.

2.2 Particle Swarm Optimization (PSO)

PSO can find the optimum through information sharing between individuals in the swarm [29]. The PSO
is a group of random swarm of particles (random solution) and each represented a specific ANN architecture,
then PSO can find the optimum iteratively. In each iteration, the particle updates its position and velocity by
comparing the fitness of each particle and the two extremum (one is the individual extremum of the particle
and the other is the global extremum of entire swarm). The particle approaches the best position in its own
history until the end of iterations. The fitness of particles was evaluated by the MSE on the training set.

The particles update the position formula by the following formula:

Vit = ouby +atfi (K = Xit) +aofs (U — 7 (5)
j=12--- L=12---
Xern+1 :*X;T + erlil+1 (©)

where a real vector is used to represent the position of a single particle. X7’ and X', represent the positions

of particle j at iteration L and L + 1 in the mth dimension. Vii and V7, | represent the velocity of the particle |
at iteration L and L + 1 in the mth dimension. K and GJ} represent the best position of a particle and the
swarm best position. a; and a, are the inertia parameter. f] and f, are random numbers between 0 and 1.

k(wmax - CUmin)

o(k) = Omax — T
max

(7
where the k is the current iteration number of swarm; T, 1S the maximum iteration number set; ®,, 1S the
maximum inertia weight, and ®,;, is the minimum inertia weight. ®,,, is generally set to be 0.9, and ®;, is
generally set to be 0.4.

The flowchart of the PSO algorithm is demonstrated in Fig. 1.

2.3 Imperialist Competitive Algorithm (ICA)

ICA starts with initial populations called countries [30]. There are two types of countries: colony and
imperialist. Attempting of the imperialists to gain more colonies was named imperialist competitive
process. During the competition, the powerful imperialists will be more power and the weaker
imperialists will be weaker. If an empire missed all of its colonies, the empire will be collapsed. In the
end, the most powerful imperialist will remain in the world and all the countries are its colonies. Power
and position of the imperialist and colonies at this level of computation are the same [31]. Fig. 2 shows
the flow chart of ICA-ANN prediction model.
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Figure 2: Flowchart of the ICA algorithm
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2.4 Ant Clony Optimization (ACO)

ACO is a bionic intelligent optimization algorithm. Ant colony algorithm is inspired by the process of
ants foraging, ants leave pheromones on their way to find food sources, and ants in the colony can sense
pheromones and move along places with high pheromone concentrations, forming a positive feedback
mechanism. After a period of time, the ants can determine an optimal path to the food source. The basic
idea of optimizing ANN with ACO is: First, the elements of the weight matrix and the bias vector are
taken out to form the path coordinates of the ant population. Because the shorter the ant’s path to the
food source, the higher the pheromone content on the path, so the mean square error (MSE) is used as
the ant’s fitness value. The shortest path determined by the final ant population is used as the optimal
initial weight and bias. Then the optimal weight and bias were assigned to the ANN for training and
testing, and the error is compared with the prediction of the ANN before optimization. Fig. 3 shows the
flow chart of ACO-ANN prediction model.
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Figure 3: Flowchart of the ACO algorithm

2.5 Partial Dependency Graph (PDP)

PDP is a method used to determine the dependence of prediction on input variables. PDP represents the
marginal impact of one or two features on the prediction results of the machine learning model, that is, how
the variables affect the prediction results. The partial dependence function for regression is as follows:

~

Floss) = B [7 55,5¢) | = [ 7 s xc)Pe) ®

where x, represents the characteristic variable of interest and x. represents other variables.
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A function f(x,) that only depends on x, can be obtained by integrating x.. This function is a partially
dependent function because it can realize the interpretation of a single variable x,. In actual operation, the
Monte Carlo method is used to determine the partial dependence function by calculating the average
value of the training set. The specific formula is as follows:

~ I = ;
Felws) =570 Ty (w5.5) 9)
where n represents the sample size.

The specific implementation steps of the single variable PDP are as follows: (1) Select a characteristic
variable of interest for research and define the searching grid. (2) Substitute each value in the searching grid
into X, in the above PDP function, a black box model is used to make predictions and obtain average

predicted values. (3) The relationship curve between the variable and the predicted value is the partial
dependence graph.

3 Model Application

3.1 Dataset Collection and Characteristics

The shale gas horizontal well production is affected by geological factors and engineering factors.
Geological parameters guide the comprehensive analysis of the target reservoir and effectively transform
the target reservoir. Combining the previous production measures, production performance, and profile
modification of adjacent wells can effectively improve the production of a single well through reasonable
fracturing operation parameters.

Geological factors

When the vertical depth of shale reservoir increases, especially when it exceeds 3500 m, the horizontal
in-situ stress difference of shale is large, the brittleness is weak, and the plasticity is strong, which is not
conducive to the volume fracturing and fracture propagation of shale [32—34]. The pressure coefficient,
TOC, total gas content, and porosity determine the quality of shale reservoir. High quality shale in the
Sichuan Basin generally has high TOC, which is usually conducive to the development and preservation
of shale pores [35-38]. The greater the Young’s modulus, the easier the fracture propagation and the
more complex the fracture network. However, the fracture becomes narrow and the conductivity is
weakened when Young’s modulus is too high [39—41]. The higher the Poisson’s ratio, the greater the
formation fracture pressure and closure pressure, the smaller the fracture height, and the smaller the
effective fracturing volume of shale reservoir [42]. Brittleness index reflects the content of brittle minerals
in shale, and high brittleness index is conducive to volume fracturing and fracture propagation of shale
[43-45].

Engineering factors

Studies have reported that reasonable distribution of cluster spacing is conducive to the increase of
stimulated reservoir volume [46—48]. Displacement is the most effective factor for determining the net
pressure, and the net pressure is the key to the formation of complex fracture network [49]. The flow-
back rate is closely related to the spontaneous imbibition of fracturing fluid, which spontaneously imbibes
into the reservoir because of the huge capillary pressure of the reservoir, thereby displacing more gas into
the fractures near the well and increasing the initial productivity [50-51]. Reasonable flow-back rate is
also conducive to the increase of stimulated reservoir volume. High liquid consuming intensity can also
increase the transportation distance of proppant, and make proppant effectively enter the branch and
bedding fractures, which is conducive to the effective support of fractures and maintenance of long-term
conductivity [52]. Studies have revealed that increasing the proppant injection intensity is conducive to
the effective support of the fracture and maintenance of long-term conductivity [53]. The slick water
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needs to be compounded with linear gel in order to form a variable viscosity slick water system and thus meet
the requirements of proppant transportation on site [54,55]. The relative density of quartz sand proppant is
low, and it is convenient for construction and transportation. Ceramsite has high strength, low broken rate,
and long bearing time, which helps to maintain fracture conductivity for a long time. Therefore, reasonable
proppant proportion distribution is conducive to the effective support of multi-stage fractures and the
maintenance of long-term conductivity [56].

Therefore, the above eight geological parameters and seven engineering parameters were selected as the
key research variables. Fig. 4 shows the distribution of the 15 variables.
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Figure 4: Distribution histogram of geological engineering parameters and test production
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Fig. 5 shows the distribution of the test production per unit well length of the 317 shale gas wells. The
dataset in this study was obtained from the production data of horizontal shale gas wells in the Sichuan Basin.
In total, 317 data samples were collected, including nine wells in Luzhou Block, 10 wells in Yuxi Block,
233 wells in Changning Block, 58 wells in Weiyuan Block, and seven wells in Zigong Block, and the
contingency and representativeness of the samples were avoided as much as possible. Moreover, the
randomness and independence of the samples were strong to ensure the reliability of ANN model training.
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Figure 5: Distribution histogram of test production per unit well length

A normalized input signal can make the average of sample to be close to zero, which can accelerate the
learning speed of the ANN model. In this study, the geological and engineering parameters of 317 shale gas
wells were normalized as input variables of the ANN model according to Eq. (10). The normalized test
productions per unit well length of the 317 shale gas wells were output variable of the ANN model in
accordance with Eq. (11). The dataset was divided into the training set and testing set according to the
ratio of nine to one. Ten-fold cross validation was used as the validation method.

Therefore, data samples including a shale gas horizontal well normalized test productions per unit well
length, the eight geological parameters, and the seven engineering parameters were used in this study.

Xt = L Ymin (10)

Xmax — Xmin

yt = Yi = Ymin (an
Ymax — Ymin

where x;* represents normalized input variable; x; represents unnormalized input variable; X,,,;, represents the

minimum value of the input variable; x,,,, represents the maximum value of the input variable; y;* represents

normalized output variables; y; represents unnormalized output variables; y,;, represents the minimum value

of the output variable; and y,.x represents the maximum value of the output variable.

It is worth noting that the correlation between the input variables of the ANN model should not be too
strong, otherwise, it will affect the accuracy of prediction. Fig. 6 shows the correlation coefficient (R)
between the input variables. Results showed that the R between most variables was less than 0.5,
indicating that there is a weak correlation between most input variables [57].
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Figure 6: Input variable correlation heatmap

3.2 Structural Optimization

For the prediction of test productions per unit well length by the three artificial intelligence techniques,
ANN model was developed first. Then, the PSO, ICA and ACO were used to optimize ANN model by
optimizing the weights and biases. Simultaneously, based on trial tuning and experience, considering the
complexity of input parameters, the tuning ranges for the number of neurons were 1-120. “trial and error”
(TAE) was conducted with one and two hidden layers of ANN models. Ultimately, the ANN model 15-
69-1 was defined as the best ANN technique for predicting test productions per unit well length in this
study. The optimum ANN architecture used for further analysis is illustrated in Fig. 7.
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Figure 7: Optimum ANN architecture

3.3 Prediction of Test Productions Per Unit Well Length by the Meta-Heuristics Algorithms

3.3.1 PSO-ANN Model

The reliability of ANN model was evaluated by the statistical descriptors including coefficients of
determination (R*)/Root-mean-square error (RMSE)/Slope of the regression line (k)/Willmott’s index of
agreement (IA) were calculated between the predicted and actual shale gas test production per unit well
length. Based on the statistical recommendation, a good prediction can be evaluated with R? > 0.64, 0.85
<k < 1.15, or IA > 0.80 [58]. R%, RMSE, k and IA are defined as follows:

N
Z (,Vi —J/i*)z
R2—1 _i=l (12)

N 2
;(Vi—?)
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1 & .
RMSE = N; i —»i*) (13)
Zyz%'*
k== (14)
> ()’
N 2
Z (Yi —J/i*)
A=1- =l (15)

(e =3+ i — 7))

N
=1

1

where N represents the number of dataset; y; and y;* represent actual values and predicted values,
respectively; y and y* represent the average predicted value and the average actual value, respectively.

The PSO algorithm parameters were set up before optimization of the ANN model as shown in Table 1.

Table 1: The PSO algorithm parameters

Parameters Value Parameters Value
Inertia weight 0.9 Maximum particle’s velocity 0.6
Number of iteration 200 Individual cognitive 1.2
Number of particle swarms 30 Group cognitive 1.2

As shown in Fig. 8, a visible decrease in the swarm minimum RMSE was achieved as the number of
iterations increased, indicating that PSO successfully optimized the ANN architecture. Figs. 9 and 10
showed that the PSO-ANN model successfully learned the relationships between the test production per
unit well length and input variables. The predicting performance set of optimum ANN model on the
training set is as follows: IA = 0.968, k = 0.986, RMSE = 0.0002, R* = 0.876. The predicting
performance set of optimum ANN model on the testing set is as follows: IA = 0.965, k = 0.957,
RMSE = 0.0009, R* = 0.847.

1.0E-04

@2 5.0E-05 |

0.0E+00 L—t . 1 . * T * * T * T
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Iteration

Figure 8: PSO-ANN performance in the training process
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Figure 9: The predictive performance of PSO-ANN model on the training set
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Figure 10: The predictive performance of PSO-ANN model on the testing set

3.3.2 ICA-ANN Model

2739

In this section, the ICA was used to optimize the weights and biases of the selected initialization ANN
model. The ICA algorithm parameters were set up before optimization of the ANN model as shown in

Table 2.
Table 2: The ICA algorithm parameters
Parameters Value Parameters Value
Maximum number of iterations 200 Number of initial countries
Assimilation coefficient 2 Initial imperialists
Lower-upper limit of the optimization region [-3, 3] —

As shown in Fig. 11, a visible decrease in the swarm minimum RMSE was achieved as the number of
iterations increased, indicating that ICA successfully optimized the ANN architecture. Figs. 12 and 13
showed that the ICA-ANN model successfully learned the relationships between the test production per
unit well length and input variables. The predicting performance set of optimum ANN model on the
training set is as follows: IA = 0.963, k = 0.986, RMSE = 0.0023, R? = 0.867. The predicting
performance set of optimum ANN model on the testing set is as follows: IA = 0.958, k = 0.946,

RMSE = 0.0009, R? = 0.842.
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Figure 11: ICA-ANN performance in the training process
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Figure 12: The predictive performance of ICA-ANN model on the training set
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Figure 13: The predictive performance of ICA-ANN model on the testing set

3.3.3 ACO-ANN Model

In this section, the ACO was used to optimize the weights and biases of the selected initialization ANN
model. The ACO algorithm parameters were set up before optimization of the ANN model as shown in
Table 3.
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Table 3: The ACO algorithm parameters
Parameters Value Parameters Value
Pheromone volatile factor 0.5 Pheromone factor 1.5
Boundary of the parameters -3, 3] Factor of heuristic function 0.3
The maximum number of iterations 200 Ants population 50

As shown in Fig. 14, a visible decrease in the swarm minimum RMSE was achieved as the number of
iterations increased, indicating that ACO successfully optimized the ANN architecture. Figs. 15 and 16
showed that the ACO-ANN model successfully learned the relationships between the test production per
unit well length and input variables. The predicting performance set of optimum ANN model on the
training set is as follows: IA = 0.961, k = 0.966, RMSE = 0.0024, R? = 0.862. The predicting
performance set of optimum ANN model on the testing set is as follows: IA = 0.954, k = 0.951,
RMSE = 0.0009, R* = 0.838.
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Figure 14: ACO-ANN performance in the training process
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Figure 15: The predictive performance of ACO-ANN model on the training set
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Figure 16: The predictive performance of ACO-ANN model on the testing set

3.4 Comparison and Evaluation of the Developed Models

The results of the three developed models were compared through the ranking and intensity of color.
From Table 4, the color intensity showed that the performance for predicting shale gas production in the
order from dominant to weakest is: PSO-ANN, ICA-ANN, ACO-ANN, with the total ranking of 11, 8§,
4, respectively. To have a complete conclusion, the models’ performances were assessed on the testing
dataset, where the dataset was considered as the new data and ever not used in the training process.

Table 4: Prediction results of the hybrid models (on the training set)

Model R? RMSE k IA Rank for Rank for Rank for Rank for  Total
R? RMSE k IA rank

PSO- 0.876 0.0002 0.986 0.968 3 3 2 3 11

ANN

ICA-ANN 0.867 0.0023 0.986 0.963 2 2 2 2 8

ACO- 0.862 0.0024 0.966 0.961 1 1

ANN

Based on the reports of Table 5, the color intensity indicated that the PSO-ANN model was the best
model with the total ranking of 11. Whereas, the ICA-ANN and ACO-ANN model proved lower
performances, as like the training process, with the total ranking of 6 and 5. From the perspective of the
four statistical descriptors (R, RMSE, k, IA), the PSO-ANN model ranks highest and provided the
highest performance on both training and testing set (i.e., lowest error).

Table 5: Prediction results of the hybrid models (on the testing set)

Model R? RMSE k 1A Rank for  Rank for Rank for Rank for  Total
R? RMSE k 1A rank

PSO- 0.847 0.0009 0.957 0.965 3 2 3 3 11

ANN

ICA-ANN 0.842 0.0009 0.946 0.958 2 1 1 2 6

ACO- 0.838 0.0009 0.951 0.954 1 1 2 1 5

ANN
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Fig. 17 compared the variation of RMSE with the number of iterations in the three models. In the PSO-
ANN model, the RMSE decreased the fastest with the number of iterations, and the minimal RMSE was
finally achieved (i.e., highest efficiency). From this perspective, the PSO-ANN model provided the
highest performance as well. As can be seen from Figs. 18 and 19, the maximum relative deviation of the
PSO-ANN model is observed in the early boundary on both the training and testing set.
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Figure 17: RMSE vs. with the iterations in the three models
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3.5 Relative Importance of Influencing Factors

Fig. 20 shows the PDP of the 15 variables in the ANN model affecting the prediction results of shale gas
productivity. The relative importance of variables can be determined using the slope of PDP, and the greater
the slope, the greater the relative importance as shown in Fig. 21.
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Figure 20: PDP of normalized variable
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Figure 21: Ranking of relative importance of variables

Results indicated that the order of relative importance of the 15 variables was as follows: liquid
consuming intensity > quartz sand proportion > brittleness index> cluster number > Poisson’s ratio >
flow back rate > displacement > vertical depth > porosity > slick water proportion > total gas content >
proppant injection intensity > Young’s modulus > pressure coefficient > TOC. According to the above
order, the corresponding variable serial numbers were a, b, ¢, d, e, f, g, h, 1, j, k, I, m, n, and o.

4 Prospects and Challenges

The main aim of this study was to verify the PSO-ANN method for prediction of shale gas horizontal
well production. The PSO-ANN method has the advantages of less time consuming and low cost, which is
more obvious in the research with large data samples. In addition, the PSO-ANN method has the following
advantages: (1) Accuracy of the PSO-ANN method will not suffer from idealized assumptions and parameter
settings, and it can automatically learn and solve the nonlinear relationship between input and output
variables using only input variables. (2) The hybrid models can directly predict the test production per
unit well length from the influencing variables, without field production testing, that is, there is no need
for history matching data in the early stage of horizontal shale gas well drainage. (3) A more
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comprehensive data set can be used to easily build and update a general model, which indicates that the
generalization capability of the hybrid model was good.

Though a large number of scientific studies have proved that the application of ML technology for
natural gas production prediction is very promising, there are still challenges. First of all, the dataset
came from shale gas wells in China, and the trained model may not be generalized to shale gas wells in
other regions because the characterization and fracturing techniques in other reservoirs are different.
Thus, a cross regional and highly accessible database is an important prerequisite. How to improve the
prediction accuracy is another challenge because advanced algorithms are rare and urgently needed.
Lastly, How to apply artificial intelligence technology to other aspects in the shale gas horizontal well
fracturing design process is also worth studying.

5 Conclusion

This paper proposed three new artificial intelligence techniques for predicting the shale gas production
based on the ANN combined with PSO, ICA, and ACO. Comparison were performed in this work and the
relative variable importance was investigated using PDP. According to the results of this study, the following
conclusions can be drawn:

(1) The optimum ANN-PSO model constructed for predicting the productivity of shale gas horizontal
wells had 1 hidden layer with 69 neurons.

(2) The PSO provided the highest performance in optimizing the ANN model. The predicting
performance that IA = 0.965, k = 0.957, RMSE = 0.0009 and R? = 0.847. The ANN-PSO model
optimized was successful in learning the nonlinear relationship between shale gas production and
variables affecting the prediction.

(3) PDP indicated that liquid consuming intensity and the proportion of quartz sand are the two most
sensitive factors affecting the accuracy of the optimum ANN-PSO model’s performance
predicting the productivity of shale gas horizontal wells.
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