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Abstract: This work investigates the dynamic behavior of a pulsatile flow electrically 

conducting through porous medium in a cylindrical conduit under the influence of a 

magnetic field. The imposed magnetic field is assumed to be uniform and constant. An 

exact solution of the equations governing magneto hydro-dynamics (MHD) flow in a 

conduit has been obtained in the form of Bessel functions. The analytical study has been 

used to establish an expression between the Hartmann number, Darcy number and the 

stress coefficient. The numerical method is based on an implicit finite difference time 

marching scheme using the Thomas algorithm and Gauss Seidel iterative method for 

solving the resulting algebraic system of equations. The results show that the flow behavior 

is strongly affected by the permeability parameter of medium porosity and the Hartmann 

number. It has also shown that the stress coefficient has a sinusoidal aspect and it increases 

with decreasing Darcy number. 
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1 Introduction 

The study of magneto hydro-dynamics through a uniform porous medium has attracted 

attention for its applications in diverse domains. Common examples in medical science 

include peristaltic food motion in the intestine, motion of urine in urethra, and blood flow 

through an artery. In engineering we find its applications in MHD pump. It is also very 

common in astrophysical theoretical stellar structure and in geophysics, as well as in cores 

terrestrial and solar plasma. In biological systems, the control of blood pressure through 

human arterial system is being possible by using porous effect with an application of 

external magnetic field on blood flow, in cases of chole sterol and related diseases, which 

contributes to an increase in the friction of flowing blood. 

Vardanyan [Vardanyan (1973)] have developed several theoretical models on MHD effects 

on a pulsatile flow. They found that the application of a constant and uniform magnetic 

field decreases the flow rate. Their work had a significant impact on biological research.  

Amos et al. [Amos and Ogulu (2002)] conducted a numerical study on the pulsatile flow 

in a conduit with a constriction in the presence of an external uniform magnetic field. Since 
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the speed decreases when the magnetic field increases, the only way to circumvent this 

problem of speed reduction is to increase the flow pressure. This corresponds to the 

increase in the work load of the heart which can lead to heart attacks. Mansutti et al. 

[Mansutti, Pontrelli and Rajagopal (1993)] discussed the case of fluid with a steady flow 

past a porous plate with suction or injection. Ruunge et al. [Ruunge and Rusetski (1993)] 

investigated the effects of magnetic fields on bio magnetic fluid flow with ample 

applications in bioengineering and medical sciences. Ramamurthy et al. [Ramamurthy and 

Shanker (1994)] have studied the magneto hydrodynamics effects on blood flow through a 

porous channel. The pulsatile flow of blood through a porous medium under periodic body 

acceleration was investigated by Elshehawey et al. [Elshehawey, Elbarbary and Elshahed 

(2000)]. Saynal et al. [Saynal and Biswas (2010)] analyzed the effect of uniform transverse 

magnetic field on its pulsatile motion through an axisymmetric tube, assuming blood to be 

an incompressible fluid. 

The Porous medium is defined by its permeability, which is a measure of the flow 

conductivity in the material volume consisting of solid matrix with an interconnected void. 

It is characterized by the porosity, the ratio of void space to void volume of the medium 

and the Darcy law, which relates linearly the flow velocity to the pressure gradient across 

the porous medium. The combination of the fluid and the porous medium is the tortuosity 

which represents the hindrance to flow diffusion imposed by local boundaries or local 

viscosity. The tortuosity is especially important in medical applications as works 

investigated by Khaled et al. [Khaled and Vafai (2003)]. Sinha et al. [Sinha and Misra 

(2011)] investigated a mathematical modeling of blood flow in porous vessel, having 

double stenosis in the presence of an external magnetic employing Darcy’s law. The 

peristaltic flow of a compressible non-Newtonian Maxwellian fluid through porous 

medium in a tube was investigated by Eldesoky et al. [Eldesoky and Mousa (2010)]. Abeer 

et al. [Abeer and Ahmed (2011)] studied the pulsatile flow of a non-Newtonian fluid, 

through a non-Darcy porous medium between two permeable parallel plates. Majdalani 

[Majdalani (2008)] obtained the analytical solution for the evolution of the velocity profiles 

and the stress coefficient in the case of a pulsatile flow. Hatami et al. [Hatami, Hatami and 

Ganji (2014)] studied the third-grade non-Newtonian blood conveying gold nanoparticles 

in a porous and hollow vessel. The authors used two analytical methods called Least Square 

Method and Galerkin Method (GM). Asim and Taha (2013) investigated the solution and 

modeling of the unsteady flow of an incompressible third grade fluid over a porous plate 

within a porous medium by considering that the fluid is electrically conducting in the 

presence of a uniform magnetic field applied transversely to the flow. Das et al. [Das and 

Saha (2009)] studied the arterial MHD pulsatile flow of blood under periodic body 

acceleration. Under the influence of an imposed pressure gradient and periodic body 

acceleration, the flow of combined two phase motion of viscous ideal medium, through a 

parallel plate channel was analyzed by Rao et al. [Rao, Ravikumar, Vasudev et al. 

(2011)]. Adesanya [Adesanya (2012)] studied the effect of couple stresses under a uniform 

external magnetic field on an unsteady magneto hydrodynamic (MHD) flow between two 

parallel fixed porous plates. For that, Eyring-Power model was used and they found that 

the flow is damped with the increase of the couple stresses effect. The mathematical frame 

work for the laminar flow in the presence of external magnetic fields, with the effect as a 

means to various medical application of a non-Newtonian fluid, was analyzed by Tzirakis 
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et al. [Tzirakis, Botti, Vavourakis et al. (2016)]. Bouvier [Bouvier (2005)] studied 

experimentally the heat transfer in oscillating flow from an analytical development. They 

have reported a fundamental system in oscillating flow. 

A survey of oscillating flow in stirling engine heat exchangers was studied by Simon et al. 

[Simon and Seume (1988)]. Ikbal. Md et al.[Ikbal, Chakravarty, Kelvin et al. (2009)] 
investigated atherosclerotic arteries deals with mathematical models that represent non-

Newtonian flow of blood through a stenosed artery in the presence of a transverse magnetic 

field. They reported that the magnetic field causes substantial reduction of the flow rate. 

The form of magnetic field gradient plays an important role and substantially determines 

the flow field. Khechiba et al. [Khechiba and Ghezal (2013)] studied the influence of 

magnetic field on the pulsatile flow through cylindrical conduit. Norzieha et al. (2009) 

investigated unsteady magneto hydrodynamic blood flow through irregular multi-stenosed 

arteries. The results obtained show that the flow separates mostly towards the downstream 

of the multi-stenoses. However, the flow separation region keeps on shrinking with the 

increasing intensity of the magnetic-field which completely disappears with sufficiently 

large value of the Hartmann number. Malathy et al. [Malathy and Srinivas (2008)] studied 

Pulsating flow of a hydro magnetic fluid between permeable beds. The effects of the 

magnetic field on the velocity fields are calculated numerically for different values of the 

parameter. It is interesting to note that the velocity can attain its maximum even at the 

lower permeable bed in the case of some specific choice of parameters. When the Hartmann 

number tends to zero, Mkheimer et al. [Mkheimer, Haroun, Elkot et al. (2011)] studied 

the effects of magnetic field and porosity for anisotropically elastic multi stenosis arteries 

on blood flow characteristics. They reported that the trapping bolus increases in size toward 

the line center of the tube as the Darcy number increases and decreases when the Hartmann 

number increased. 

Chand et al. [Chand, Rana and Hussein (2015)] studied the Instability in a low Prandtl 

number nanofluid layer in a porous medium. They reported that Prandtl number and Darcy 

number have a destabilizing effect on stationary convection. A 3D finite element analysis 

of incompressible fluid flow and contaminant transport through a porous landfill was 

studied by Adegun et al. [Adegun, Komolafe, Hussein et al. (2014)]. Wakif [Wakif and 

Boulahia (2017)] studied numerical analysis of the onset of longitudinal convective rolls 

in a porous medium saturated by an electrically conducting fluid in the presence of an 

external magnetic field. Chitra et al. [Chitra and Karthikeyan (2018)] studied oscillatory 

flow of blood in porous vessel of a stenosed artery with variable viscosity effects of 

magnetic field. Hatami et al. [Hatami, Hatami and Ganji (2014)] studied the effect of a 

variable magnetic field (VMF) on the natural convection heat transfer. As a main outcome, 

results confirm that in low Eckert numbers, increasing the Hartmann number make a 

decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger 

magnetic field. Zhou et al. [Zhou, Hatami, Song et al. (2016)] investigated the heat transfer 

in heat sink by a numerical method. They reported that a result should have practical value 

for designing the compact heat exchanger. The proposed optimization method is supposed 

to have a wide application for the time-efficient optimization of heat transfer through 

irregular configurations. 



 

 

 

140   Copyright © 2018 Tech Science Press          FDMP, vol.14, no.2, pp.137-154, 2018 

 

 

2 Mathematical formulation 

2.1 Physical problem 

The pulsatile flow of a viscous incompressible fluid, through porous medium in a 

cylindrical conduit of length L and radius R, in the presence of a transverse uniform 

magnetic field 𝐵, is considered. 𝐵 = 𝐵0 + 𝐵1 
, represents the total magnetic field with

 
the 

induced magnetic field  𝐵1 assumed to be negligible to the external magnetic field 𝐵0 in 

MHD flow at small magnetic Reynolds number. The fluid flow is subjected to a pulsatile 

dimensionless pressure gradient parallel to the axis given by: 

𝜕𝑃

𝜕𝑧
= −( 𝐴0 + 𝐴1𝑒

𝑖𝜔𝑡)                                                                                                      (1) 

𝐴0: Represents the amplitude of the steady part, and  𝐴1: represents the amplitude of the 

not stationary part of the pressure gradient. 

The fluid which is laminar, Newtonian and with constant physical properties, flows through 

porous medium with permeability parameter  𝑘 .The Lorentz electromagnetic force is 

expressed after neglecting gravity for reasons of axial symmetry of the problem, in the 

following way: 

𝐹 = 𝐽 × 𝐵                                                                                                                          (2) 

𝐽: Represents the current density vector due to the movement of the conductive fluid, and 

according to Ohm’s law we have:  

 𝐽 = 𝜎(𝐸 + 𝑉 × 𝐵)                                                                                                            (3) 

Therefore 𝐹 = −𝜎 × 𝐵2 × 𝑉 = 𝜎𝐵0
2𝑤                                                                            (4) 

Where: 𝜎  represents the electrical conductivity, 𝑤  the velocity and 𝐸 the electric field 

which is considered as negligible. In order to solve the problem analytically, we assume 

that the flow occurs only in the axial direction and is fully developed. 

Boundary Conditions: 

The associated initial and boundary conditions to the model are given here by: 

At 𝑡 = 0 , 𝑊(𝑟, 𝑧, 0) = 𝑈(𝑟, 𝑧, 0) = 0                                                                            (5) 

Figure 1: Flow field geometry  
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Where (𝑟, 𝑧, 𝑈, 𝑊, 𝑡) are the cylindrical coordinates system, the normal and the axial 

components of the velocities and the time. The velocity component in 𝑟 and 𝑧 direction 

represented by 𝑈 and 𝑊 correspondingly.
 

Along the axis of symmetry, the axial velocity gradient and the normal component of the 

velocity are given as: 

For                    𝑟 = 0:
𝜕𝑊(𝑟,𝑧,𝑡)

𝜕𝑟
= 0,𝑈(𝑟, 𝑧, 𝑡) = 0                                                              (6) 

At the outlet    𝑧 = 𝐿:
𝜕𝑊(𝑟,𝑧,𝑡)

𝜕𝑧
= 

   𝜕𝑊(𝑟,𝑧,𝑡)

𝜕𝑧
= 0                                                                  (7) 

Given all the assumptions described above and after projection of the equations on 

cylindrical coordinates (𝑟, 𝑧), the equation governing the flow is reduced to [Hatami, 

Hatami and Ganji (2014)]: 

Momentum equation 

𝜕𝑤

𝜕𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+
𝜇

𝜌
[
𝜕2𝑤

𝜕𝑟2
+
𝜕𝑤

𝑟𝜕𝑟
] −

𝜎𝐵0
2𝑤  

𝜌
−
𝜇𝑤

𝑘𝜌
                                                                             (8)

 

The terms  𝜇 and  𝜌  represents the dynamic viscosity and the density of fluid.  
Using the following dimensionless variables: 

𝑊∗ =
𝑤

𝑊
, 𝑟∗ =

𝑟

𝑅
, 𝑧∗ =

𝑧

𝑅
, 𝑡∗ =

𝑡𝑊

𝑅
, 𝑃∗ =

𝑃

𝜌𝑊2       
                               

 
Therefore, the equation of motion, governing the considered phenomenon can be written 

as follows: 

𝜕𝑊

𝜕𝑡
= −

𝜕𝑃

𝜕𝑧
+

1

𝑅𝑒
[
𝜕2𝑊

𝜕𝑟2
+
𝜕𝑊

𝑟𝜕𝑟
] −

𝐻𝑎2𝑊  

𝑅𝑒 
−

𝑊

𝑅𝑒𝐷𝑎
                                                                          (9)

 

The parameters 𝐻𝑎,  𝐷𝑎 and 𝑅𝑒  represents the Hartmann number, Darcy number and 

Reynolds number respectively, and are defined by: 

𝐻𝑎2 =
𝜎𝐵0

2𝑅2  

𝜇
, 𝐷𝑎 =

𝑘

𝑅2
 , 𝑅𝑒 = 

𝜌𝑊𝑅  

𝜇
 

2.2 Analytical study 

In addition to the previous simplifying assumptions, we assume that the flow occurs only 

in the axial direction. Under these conditions, the conservation equation governing the 

pulsated flow is modeled as follows [Khechiba and Ghezal (2013)]: 

𝜕𝑊

𝜕𝑡
= −

𝜕𝑃

𝜕𝑧
+

1

𝑅𝑒
[
𝜕2𝑊

𝜕𝑟2
+
𝜕𝑊

𝑟𝜕𝑟
] −

1

𝑅𝑒 
(𝐻𝑎2 +

1  

𝐷𝑎 
)𝑊                                                                (10)

 

Steady state 

The dimensionless equation to be solved in the steady state is a modified Bessel equation 

[Vardanyan (1973)]: 

 
𝑑2𝑊

𝑑𝑟2
+
𝑑𝑊

𝑟𝑑𝑟
− (𝐻𝑎2 + 2 )𝑊 = − 𝐴0 𝑅𝑒                                                                       (11) 
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Where   2 =
1  

𝐷𝑎 
                                                                                                            (12) 

The solution is a combination of Bessel functions 𝐼0,  𝐾0  
of first and second kind 

respectively; with homogeneous solution: 

𝑊0(𝑟) = 𝐶1 𝐼0  (√𝐻𝑎
2 + 2  . 𝑟)+𝐶2 𝐾0  (√𝐻𝑎

2 + 2  . 𝑟)                                        (13) 

and  
𝐴0 𝑅𝑒  

𝐻𝑎2+ 2  
  as a particular solution, where  𝐴0 

is a known constant.                         (14) 

Boundary Conditions 

At the wall of the conduit: 

𝑟 =  ∓  1, 𝑊 = 0                                                                                                            (15) 

𝐶1,  𝐶2  are constants calculated from the previous boundary conditions:  

For:  𝑟 = 0 ∶  𝑊0(0) = 𝐶1 𝐼0(0) + 𝐶2 𝐾0(0) +
𝐴0 𝑅𝑒  

𝐻𝑎2+ 2  
                                  (16) 

With:  𝐼0(0) = 1,  𝐾0(0) → ∞, the constant  
2C  

must be equal to zero, since the velocity 

cannot be infinite at .0=r  

For:  𝑟 = 1 ∶  𝑊0(1) = 𝐶1 𝐼0  (√𝐻𝑎
2 + 2  ) +

𝐴0 𝑅𝑒  

𝐻𝑎2+ 2  
= 0                              (17) 

𝐶1 = −
𝐴0 𝑅𝑒  

𝐻𝑎2+
2  

 (
1 

𝐼0 (√𝐻𝑎
2+ 2  ) 

 )                                                                       (18) 

Then, we find: 

 𝑊0(𝑟) =
𝐴0 𝑅𝑒  

(𝐻𝑎2+ 2 ) 
 (1 −

𝐼0(√𝐻𝑎
2+ 2 .𝑟)

𝐼0 (√(𝐻𝑎
2+ 2  ) 

)                                                         (19) 

This expression is the same founded by Khechiba et al. [Khechiba and Ghezal (2013)], 

with non-porous medium   2 = 0 

Unsteady state 

To characterize the oscillatory flow, we include the dimensionless frequency  𝑅𝑒𝜔  and we 

use dimensionless variables of time  𝑡 = 𝜔𝑡  

Where: 

𝑅𝑒𝜔 =
  𝜌𝑅2𝜔

𝜇 
  is equal to the square of the Womersley number  𝑅𝑒𝜔 = 𝛼

2             (20) 

Under these conditions, the dimensionless velocity profile is:  𝑊1(𝑟, 𝑡) =  𝑅𝑒(𝑓(𝑟)𝑒
𝑖𝑡) 

The dimensionless equation can be written as follow:       

 
 𝑑2

𝑑𝑟2 
𝑓 +

 𝑑

𝑟𝑑𝑟 
𝑓 − (( 𝐻𝑎2 + 2 ) + 𝑖𝛼2)𝑓 = − 𝐴1𝛼

2                                                 (21)  
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The solution of the homogeneous equation 𝑓ℎ(𝑟) is written in the form: 

𝑓ℎ(𝑟) = 𝐶1 𝐼0  (√𝐻𝑎
2 + 2 + 𝑖𝛼2. 𝑟)+𝐶2 𝐾0  (√𝐻𝑎

2 + 2 + 𝑖𝛼2 . 𝑟)                 (22) 

and  𝑓𝑝 =
𝐴1𝛼

2  

(𝐻𝑎2+ 2 )+𝑖𝛼2 
 as a particular solution                                                  (23) 

The constant  𝐶2  
must be set equal to zero, since the velocity cannot be infinite at  𝑟 = 0 

𝐶1: Is determined by the condition of velocity 𝑊1 = 0 at the wall expressed by: 

𝑓𝑔(1) = 0    

Such as:  𝑓𝑔(𝑟) = 𝑓ℎ(𝑟) + 𝑓𝑝                                                                                          (24)
 

The general solution is as follows: 

𝑓𝑔(𝑟) = −
𝐴1𝛼

2

(𝐻𝑎2 + 2 ) + 𝑖𝛼2

(

 
𝐼0 (√(𝐻𝑎

2 + 2 ) + 𝑖𝛼2. 𝑟)

𝐼0 (√(𝐻𝑎
2 + 2 ) + 𝑖𝛼2)

− 1

)

  

Letting: 
 
𝛽𝑘 = √(𝐻𝑎

2 + 2 ) + 𝑖𝛼2                                                                              (25)
 

We obtain the expression of the dimensionless velocity: 

𝑊1(𝑟, 𝑡) = −
𝐴1𝛼

2  

𝛽𝑘
2 
 (
𝐼0(𝛽𝑘.𝑟)

𝐼0 (𝛽𝑘 ) 
− 1) 𝑒𝑖𝑡                                                                              (26)  

The value of  𝐴1 is not known so, we use the flow rate velocity  𝑊 = 𝑅𝑒( 𝑊𝑚𝑎𝑥𝑒
𝑖𝑡) with 

the expression given by Bouvier [Bouvier (2005)]. 

𝑊𝑚𝑎𝑥 = −
𝐴1𝛼

2ωR  

𝛽𝑘
2 
 (
2𝐼1(𝛽𝑘)

𝛽𝐼0 (𝛽𝑘 ) 
− 1)            (27)

                         
                                                  

We deduce: 𝐴1 = −
𝑊𝑚𝑎𝑥𝛽𝑘

2  

𝛼2ωR 
 (

𝛽𝑘𝐼0(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘) 
) = −

𝑅𝑒𝑚𝑎𝑥𝛽𝑘
2  

2𝛼4 
 (

𝛽𝑘𝐼0(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘) 
)      (28) 

Where:  𝑅𝑒𝑚𝑎𝑥 =
2𝛼2𝑊𝑚𝑎𝑥  

ωR 
     (29) 

Finally:  𝑊1(𝑟, 𝑡) =
 𝑅𝑒𝑚𝑎𝑥 

2𝛼2 
 (
𝛽𝑘𝐼0(𝛽𝑘.𝑟)−𝛽𝑘𝐼0(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘) 
) 𝑒𝑖𝑡                                     (30) 

This equation is similar to the expression that was given by Tzirakis et al. [Tzirakis, Botti, 

Vavourakis et al. (2016)] in the absence of magnetic field with:  𝛽𝑘 = √
2 + 𝑖𝛼2  

 

It was also that found by Bouvier [Bouvier (2005)], for non-porous medium, and in the 

absence of magnetic field with: 𝛽𝑘 = √𝑖𝛼
2 

Pulsatile state: 

The expression of the velocity field in the pulsatile state  𝑊(𝑟, 𝑡)  is the superposition of 

the steady  𝑊0(𝑟) and unsteady component  𝑊1(𝑟, 𝑡). 

𝑊(𝑟, 𝑡) =  𝑊0(𝑟) +𝑊1(𝑟, 𝑡)                                                                                   (31) 
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𝑊(𝑟, 𝑡) =
𝐴0 𝑅𝑒  

(𝐻𝑎2+ 2 ) 
 (1 −

𝐼0(√𝐻𝑎
2+ 2 .𝑟)

𝐼0 (√(𝐻𝑎
2+ 2  ) 

)+
 𝑅𝑒𝑚𝑎𝑥 

2𝛼2 
 (
𝛽𝑘𝐼0(𝛽𝑘.𝑟)−𝛽𝑘𝐼0(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘) 
) 𝑒𝑖𝑡     (32) 

2.2.1 Stress coefficient study 

The dimensionless stress coefficient at the wall 𝜏 is calculated from the previous expression 

of the velocity:
  

𝜏 = −
𝜕𝑊

𝜕𝑟   𝑟=1
| =

𝐴0𝑅𝑒

(𝐻𝑎2+ 2 )

𝐼1(√𝐻𝑎
2+ 2 )

𝐼0(√(𝐻𝑎
2+ 2 )

−
𝛽𝑘𝑅𝑒𝑚𝑎𝑥

2𝛼2
(

𝛽𝑘𝐼1(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘)
) 𝑒𝑖𝑡            (33) 

It can be written by the following formulation: 

𝜏 = 𝜏𝑆+𝜏𝑂𝑆𝐶                                                                                                                                (34) 

Where: 𝜏𝑆 and  𝜏𝑂𝑆𝐶 are the stationary and oscillatory stress coefficients respectively.   

𝜏𝑆 =
𝐴0 𝑅𝑒  

(𝐻𝑎2+ 2 ) 

𝐼1(√𝐻𝑎
2+ 2 )

𝐼0 (√(𝐻𝑎
2+ 2  ) 

                                                                                 (35) 

𝜏𝑂𝑆𝐶 = −
 𝛽𝑘𝑅𝑒𝑚𝑎𝑥 

2𝛼2 
(

𝛽𝑘𝐼1(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘) 
) 𝑒𝑖𝑡

                                                                     
(36) 

 

The normalized stress coefficient 

The normalized stress coefficient computation is not possible directly from the equations 

of governing flow, which led to use an indirect method involving the balance of forces in 

a volume element of fluid commonly used in such studies.  

If we consider an incompressible fluid with a flow rate velocity  𝑊 =  𝑅𝑒( 𝑊𝑚𝑎𝑥𝑒
𝑖𝑡)   in a 

cylindrical conduit through porous medium in the presence of a magnetic field, we can 

write for a given volume element, the equation of balance of forces acting on it as follows: 

𝜋𝑅2𝜌
𝜕𝑊

𝜕𝑡
+ 𝜋𝑅2

𝜕𝑃

𝜕𝑧
= 2𝜋𝑅𝜏𝑝 − 𝜋𝑅

2𝜎𝐵2𝑊 − 𝜋𝑅2
𝜇

𝑘
𝑊                                                 (37) 

Adding the dimensionless variable  𝐶𝑓𝑛  called normalized stress coefficient as follows: 

𝐶𝑓𝑛 =
𝜏𝑝

𝜏𝑠
 , with the expression given by Bouvier [Bouvier (2005)]: 

𝜏𝑠 = 4𝜇 
𝑊

𝑅
                                                                                                                                (38) 

Eq. (7) can be written using the previous dimensionless variables: 

𝑖𝑅𝜔2 𝑊𝑚𝑎𝑥𝑒
𝑖𝑡 + 𝑅𝜔2

𝜕𝑃

𝜕𝑧
= −

8𝜔𝜇

𝜌𝑅
𝐶𝑓𝑛 𝑊𝑚𝑎𝑥𝑒

𝑖𝑡 −
𝜎𝐵2

𝜌
 𝑅𝜔𝑊𝑚𝑎𝑥𝑒

𝑖𝑡 −  
𝜇

𝑘𝜌
𝑅𝜔𝑊𝑚𝑎𝑥𝑒

𝑖𝑡  

  (39) 

The previous expression becomes: 
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𝑖𝛼2 +
𝛼2

 𝑊𝑚𝑎𝑥𝑒
𝑖𝑡

𝜕𝑃

𝜕𝑧
+ 𝐻𝑎2 + 2 = −8𝐶𝑓𝑛                                                                   (40) 

Where:  𝐻𝑎2 =
𝜎𝐵0

2𝑅2  

𝜇
 , 𝐷𝑎 =

𝑘

𝑅2
, 𝛼2 = 

𝜌𝑅2𝜔  

𝜇
                                                        (41)  

We deduce: 

𝐶𝑓𝑛 = −
1

8
(𝐻𝑎2 + 2 ) −

𝑖𝛼2

8
(
𝛼22𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘)(𝛼

2+𝑖𝛽𝑘
2)

𝛼2(2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘))
)𝑒𝑖𝑡                            (42) 

In the absence of magnetic field through non-porous medium:  𝐻𝑎2 = 0, 2 = 0, 𝛽𝑘 =

√𝑖𝛼2

 We find the same expression given by Seume et al. [Seume and Simon (1988)]. 

𝐶𝑓𝑛 = −
𝑖𝛼2

8
(

2𝐼1(𝛽𝑘)

2𝐼1(𝛽𝑘)−𝛽𝑘𝐼0(𝛽𝑘)
) 𝑒𝑖𝑡                                                                        (43) 

2.3 Numerical study 

The computations were carried out by using FORTRAN code. The discretization of the 

equations using a finite difference implicit time marching used by Ghezal [Ghezal (2007)] 

leads to an algebraic equations, which were solved using an iterative Gauss-Seidel 

technique, with a relaxation coefficient. At each new time, the system of the algebraic 

equations resulting from FDM discretization is solved by TDMA Algorithm. 

Due to the axisymmetry, the computational domain is reduced to the mesh grid domain. In 

the vicinity of the ducts, the mesh is refined by replacing the mesh situated near the wall 

by sub decreasing mesh size following geometric sequences. 

A numerical investigation has been performed to study the effects of Hartmann and Darcy 

numbers on streamlines, pressure isolines and stress coefficient by using Tecplot code.  

The computer code and mathematical model have been validated by comparison with the 

available results in the literature [Majdalani (2008); Malathy and Srinivas (2008); Seume 

and Simon (1988); Ikbal, Chakravarty, Kelvin et al. (2009)].  

On the other hand, these results are in good agreement between our results and those of 

previous works. The agreement between these results allows us to ensure the validity of 

our Code concerning the study of this type of flow.   

3 Results and discussion 

Fig. 2a shows the effects of the porosity on streamlines, in the absence of the magnetic 

field 𝐻𝑎 = 0. It should be noticed, from the streamlines contours, it can be observed that 

all the streamlines get gradually perturbed more towards the wall, and follow the straight 

line path near the axis which for  𝐷𝑎 = 0.1 , indicating the occurrence of the annular 

phenomenon. When the porosity decrease  𝐷𝑎 = 0.001, we noted that the dimensionless 

stream function values increase and the streamlines are parallel to the cylindrical axis, the 

results are in agreement with the corresponding ones of Ikbal et al. [Ikbal, Chakravarty, 

Kelvin et al. (2009)]. 
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Fig. 2b shows the Hartmann number effects for various Darcy number on streamlines. It 

should be noted, that in the presence of the magnetic field with 𝐷𝑎 = 0.1, the streamlines 

have less curve than in the preceding case, without magnetic field. It indicates that the 

magnetic field tends to decrease the effect of porosity on the parietal constraint. It has been 

observed that the increase in the porosity with presence of magnetic field, results in a 

progressive flattening of the axial velocity W. The main difference in this figure is on the 

streamline values, as seen by increasing the Ha, the values on the stream lines reduce 

significantly, this reduction on the stream line may be due to Lorentz force resulting from 

the presence of the magnetic field which reducing the stream component along the axis of 

symmetry and slowdown the fluid motion. Our results are in agreement with the 

corresponding ones of Khechiba et al. [Khechiba and Ghezal (2013)]. It is also noted that 

the flow lines presents certain similarity between the case of a porous medium, 𝐷𝑎 = 0.1 

subjected to an intense magnetic field, and the case of a medium of low porosity, 𝐷𝑎 =
0.001 not subjected to the magnetic field. These results indicate the combined of external 

magnetic forces and those due to the porosity, and are in agreement with the corresponding 

ones of Ikbal et al. [Ikbal, Chakravarty, Kelvin et al. (2009)].

                                                                              

                

             

 

                  
                                        

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3a shows the effects of the porosity on pressure isoline, in the absence of the magnetic 

field 𝐻𝑎 = 0.The pressure gradient is constant, and does not depend on radial coordinate, 

but only on azimuthal coordinate. It must be noticed, that the pressure gradient increase by 

decreasing the number of Darcy. One may be notice that the increase in the pressure 

gradient may be caused by the increasing in the apparent viscosity of the flow, resulting 

from the decreasing porosity. Fig. 3b shows the Hartmann number effects for various Darcy 

number on pressure isolines. It should be noted, that the pressure gradient increase in the 

 

Figure 2a                                                              Figure 2b 

Effect of Darcy number on streamlines for various Darcy number when 𝑅𝑒𝜔 = 1000 

     Figure 2a. 𝐻𝑎 = 0                                              Figure 2b.  𝐻𝑎 = 50 
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presence of a magnetic field, and this increasing remains practically constant, by increasing 

the number of Darcy, the results are in good agreement with the corresponding ones of 

Moustapha et al. [Moustapha, Amin, Chakravarty et al. (2009)]. One may be notice that at 

great values of Hartmann the effect of porosity can be considered as neglected. 

 

                            Figure 3a                                                          Figure 3b 

Effect of Darcy number on pressure isolines for various Darcy number when 𝑅𝑒𝜔 = 1000 

                     Figure 3a. 𝐻𝑎 = 0                                               Figure 3b. 𝐻𝑎 = 50 

 

 

 

 

                    Figure3a                                                            Figure3b 

Effect of Darcy number on pressure isolines for various Darcy number when 𝑅𝑒𝜔 = 1000 

                      Figure3a. 𝐻𝑎 = 0                                           Figure3b. 𝐻𝑎 = 50 

 

 

 

 

 

 

 

 

                                          Figure 4a                                                                  Figure 4b    

                   The effect of Darcy number on stress coefficient  𝐶𝑓𝑛: Figure 4a. 𝐻𝑎 = 0, Figure 4b. 𝐻𝑎 = 50 
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Figure 4c: Seume and Simon results (1988) 

Fig. 4a shows that the maximum amplitude of the normalized stress coefficient 𝐶𝑓𝑛, in the 

absence of magnetic field, through non-porous medium increases with frequency about 10 

times its value in the case of steady flow. These results are in agreement with those obtained 

by Seume et al. [Seume and Simon (1988)], see Fig. 4c. However there was a slight increase 

for low frequencies. This can be justified by the contribution of the second component of 

the velocity. The frequency effect is appreciable for frequencies  𝑅𝑒𝜔 between 100 and 150, 

which corresponds to the initiation of the annular effect. Another important result is that 

the normalized stress coefficient  𝐶𝑓𝑛 increases since the Darcy number 𝐷𝑎 decreases, for 

a given frequency and this increasing is accentuated by the presence of magnetic 

field 𝐻𝑎 = 20. Fig. 4b shows that the normalized stress coefficient 𝐶𝑓𝑛 increases with an 

increase of the porosity, and the results are in agreement with the corresponding ones of 

Malathy et al. [Malathy and Srinivas (2008)]. The normalized stress coefficient 𝐶𝑓𝑛 is 

approximately equal to 1 for low frequencies 𝑅𝑒𝜔 < 100, which corresponds to the case 

of steady flow. This result is found by the limited development of the Eq. (43) in the 

absence of the magnetic field through non-porous medium and for 𝑅𝑒𝜔 → 0. In fact, the 

limited development near zero of the function  𝐼1(𝛽) which is given by:  𝐼1(𝛽) =
𝛽

2
+
𝛽3

16
 

leads to an expression of the normalized stress coefficient such that: 

 𝐶𝑓𝑛 =
𝑖𝛼2

8
(1 +

8

𝛽2
) = 1 +

 𝑖𝑅𝑒𝜔

8
                                                                                       (44) 

This gives for  𝑅𝑒𝜔 = 0 →  𝐶𝑓𝑛 = 1                                                                                (45) 

In the presence of the magnetic field, the normalized stress coefficient  𝐶𝑓𝑛 increases when 

the Darcy number decreases. For a given frequency, the maximum amplitude varies as a 

function of the frequency from 𝑅𝑒𝜔 > 100. Another important result is that, the variation 

of normalized stress coefficient  𝐶𝑓𝑛 in the presence of the magnetic field is less dependent 
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on frequency as the porosity decreases. The variation becomes totally independent of 

frequency for values of 𝐷𝑎 = 0.001. The expression of the normalized stress coefficient 

 𝐶𝑓𝑛 as a function of time (42) is given in Fig. 4d: 

 

Figure 4d: The stress coefficient for various Darcy numbers, when 𝐻𝑎 = 20,𝑅𝑒𝜔 = 900       

Fig. 4d shows that the normalized stress coefficient 𝐶𝑓𝑛 is sinusoidal and its amplitude 

decreases by increasing the Darcy numbers at high frequencies. The addition of the 

magnetic field 𝐻𝑎 = 20 increase the normalized stress coefficient, this increase makes it 

possible to shows this decrease due to Darcy number better than in the case of the absence 

of magnetic field. A very important result is that the normalized stress coefficient decreases 

with increasing 𝐷𝑎, but the opposite effect can be noticed with increasing of the magnetic 

field.  

4 Vorticity study 

Dimensionless vorticity is given by: 

  = −
𝑑𝑊

𝑑𝑟
= −

𝑑

𝑑𝑟
( 𝑊0(𝑟) +𝑊1(𝑟, 𝑡))                                                                      (46) 

Where: 𝑊(𝑟, 𝑡) =
𝐴0 𝑅𝑒  

(𝐻𝑎2+ 2 ) 
 (1 −

𝐼0(√𝐻𝑎
2+ 2 .𝑟)

𝐼0 (√(𝐻𝑎
2+ 2  ) 

)−
𝐴1𝛼

2  

𝛽𝑘
2 
 (
𝐼0(𝛽𝑘.𝑟)

𝐼0 (𝛽𝑘 ) 
− 1) 𝑒𝑖𝑡 

The final expression of the vorticity is given by: 

  =
𝐴0 𝑅𝑒  

√𝐻𝑎2+ 2  

𝐼1(√𝐻𝑎
2+ 2 .𝑟)

𝐼0 (√(𝐻𝑎
2+ 2  ) 

+
𝐴1𝛼

2  

𝛽𝑘 
 (
𝐼1(𝛽𝑘.𝑟)

𝐼0 (𝛽𝑘 ) 
) 𝑒𝑖𝑡                                                     (47) 

The vorticity is plotted using MATLAB as a function of radius r, for different values of 

Darcy number, frequency, phases and different ratios of amplitudes. 
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Figure 6: Vortex profiles when 𝐻𝑎 = 0, 𝑅𝑒𝜔 = 10, 𝐴1 = 50, (a) 2 → 0, (b) 2 = 100 

 

Figure 7: Vortex profiles when 𝑅𝑒𝜔 = 10,𝐴1 = 50, (a) 𝐻𝑎 = 0, (b) 𝐻𝑎 = 5 

Then we can develop the following discussion: 

For high amplitudes through non-porous medium 

The influence of the amplitude is shown in Fig. 5. The results indicate that the values of 

the vorticity are higher at high amplitude values. By comparing our results with those found 

by Majdalani [Majdalani (2008)], without magnetic field through non-porous medium, for 

an amplitude  𝐴1 = 50 and frequency 𝑅𝑒𝜔 = 10, we note that they are in good agreement. 
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For a low Darcy number and high amplitudes 

Fig. 6 shows the effect of the porosity on the radial profile of vorticity. We note that the 

magnitude of the vortices is higher at low Darcy numbers. It should be noted that the effect 

of the porosity parameter, is significant only in the vicinity of the wall and when the 

porosity increases at the Darcy number 𝐷𝑎 = 0.01.The vorticity can expect values up to 

five times the value in the absence of the porosity. This causes a swirling movement within 

the flow.  

For high amplitudes through non-porous medium in the presence of magnetic field 

(Ha=5) 

The influence of the amplitude is shown in Fig. 7. The results indicate that the values of 

the vorticity are higher in the presence of magnetic field. By comparing our results with 

those found by Khechiba et al. [Khechiba and Ghezal (2013)], in the presence of magnetic 

field through non-porous medium, for an amplitude 𝐴1 = 50 and frequency 𝑅𝑒𝜔 = 10, we 

note that they are in good agreement. A very important result is that the low Hartmann 

number or low Darcy number have the same effect on the vorticity.  

5 Conclusion 

The dynamic behavior of a pulsatile flow, electrically conducting through porous medium 

in a cylindrical conduit under the influence of a magnetic field has been carried out. we 

have computed the stress coefficient based on the one-dimensional case used in some 

works, since the calculation in the case of bi-dimensional unsteady flow presents some 

difficulties due to the change of sign of the velocity value over a cycle. The analytical study 

has permitted us to establish expressions reflecting the velocity profile, the variation of the 

stress coefficient and vorticity as a function of Darcy and Hartmann numbers. It has also 

shown that the stress coefficient has a sinusoidal aspect and it increases with the decrease 

of the Darcy number and the amplitude of the vorticity is higher when the Darcy number 

is low. It should be noted that the effect of magnetic field on the vorticity is visible only 

from 𝐷𝑎 = 0.01. 
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