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Transient Heat Conduction in Materials with Linear Power-Law 

Temperature-Dependent Thermal Conductivity: Integral-Balance 

Approach 

Antoine Fabre1,  Jordan Hristov2* and Rachid Bennacer 1 

Abstract   Closed form approximate solutions to nonlinear transient heat conduction with 

linear power-law  0 1 mk k T   temperature-dependent thermal diffusivity have been

developed by the integral-balance integral method under transient conditions. The 

solutions use improved direct approaches of the integral method and avoid the commonly 

used linearization by the Kirchhoff transformation. The main steps in the new solutions 

are improvements in the integration technique of the double-integration technique and the 

optimization of the exponent of the approximate parabolic profile with unspecified 

exponent. Solutions to Dirichlet boundary condition problem have been developed as 

examples by the classical Heat-balance Integral method (HBIM) and the Double-

integration method (DIM).  

Keywords: Non-linear heat conduction, integral-balance solutions, temperature-

dependent thermal diffusivity. 

a Thermal diffusivity, 2 1m s

0a Thermal diffusivity at the reference temperature 2 1m s

p
C Heat capacity, 1 1Jkg K 

k Heat conductivity, 1 1.W m K 

0k Heat conductivity, at the reference temperature 1 1.W m K 

m Dimensionless parameter of non-linearity 

n  Dimensionless exponents of the assumed profile 

T Temperature, K  

0T Reference temperature at 0t   , K   

sT Surface temperature at 0x   , K
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reffT Reference temperature, K

t Time, s   

Greek Symbols 

  Dimensionless factor 

   Penetration depth, m  

s Mass density, 3.kg m

Subscripts 

HBIM Heat Balance Integral Method 

DIM Double Integration Method  

1   Introduction 

Most diffusion models concerning transport of heat (or mass) occur nonlinearly. Except 

some limited number of problems, there are no exact analytical solutions and, in general, 

numerical approaches have to be applied. However, in some cases approximate analytical 

solutions are possible.  The present work reports new solutions of a non-linear transient 

heat conduction by Heat-balance Integral method (HBIM) [Goodman (1964)] and the 

Double-integration method (DIM) [Volkov and Li-Orlov (1970); Myers (2009)]. 

The communication considers a transient heat condition problem in a semi-infinite 

medium with temperature-dependent thermal diffusivity modelled by the equation  

 p

T T
C k T

t x x


   
  

   
        (1a) 

 
T T

a T
t x x

   
  

   
          (1b) 

 0 1 ma a T   ,  0m            (1c) 

The relationship (1c) is related mainly to the temperature-dependent thermal conductivity 

 0 1 mk k T  assuming the product 
p
C temperature-independent [Cobble (1967); 

Sucec and Hedge (1978); Lin (1978); Noda (1993)]. 

The difficulties inherent in obtaining solutions for this class of equations have motivated 

a variety of solution methods, both exact and approximate ones. There exist several 

approaches to solve Eq. (1a) , among them: orthogonal collocation method [Lin(1978)], 

Green function method [Liu et al. (2015)], perturbation method [Khaleghi et al. (2007); 

Aziz and Benzies (1976); Aziz (1977)] variational iteration method [Khaleghi et al. 

(2007)], homotopy-perturbation method [Khaleghi et al. (2007)], direct variational 

method [Krajewski (1975)], the least squares method [Aziz and Bouaziz (2011)], 

networks models [Alhama  and Zueco (2007)], iterative solutions with the solution of the 
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linear problem as initial approximation [Mehta (1979)], finite difference solutions [Sucec 

and Hedge (1978)], Lattice Boltzmann method [Das et al. (2009)], numerical solutions 

[Parveen and Alim (2013)], etc. The Kirchhoff transformation [Tomatis (2013)] is the 

common approach to transform eq. (1c) into a linear diffusion equation by applying (2a), 

namely  

 
2 2

0 0 0 2

0

1
2

T
T w w

w a T dT a T a
t x




 
     

   (2a,b,c) 

The heat-balance integral method is among the approximate analytical methods allowing 

to develop closed-form solutions of the problem (1), but its simple form known as Heat-

balance integral method [Goodman (1964)] has been used accidentally [Goodman (1964); 

Yen (1989)] for solutions of the problem (1). The main approach in these solutions is the 

initial non-linear transform 
0

v

T

pC dT   to linearize eq. (1b) and then applying HBIM

with assumed cubic polynomial profiles. It is worthnoting, that in these solutions 

[Goodman (1964); Yen (1989)] the non-linear transform is mainly applied to the surface 

temperature (at  0)x . These solutions are not popular due to the inherent property of 

HBIM to predetermine the accuracy of approximation when a fixed order of the assumed 

profiles is used [Goodman (1964); Myers (2009)] as well as due to the difficulties 

emerging in the reversion of the solution in the terms of  T , when the order of the 

polynomial approximation is high [Cobble (1967)].  

The recent applications of the simple heat-balance integral method (HBIM) [Hristov 

(2005a) and the double-integral balance method (DIM) [Hristov (2016)] to eq. (1b), when 

the thermal diffusivity is a of a power-law functional dependence of the temperature 

0

ma a T  , demonstrate a new solution strategy were the non-linear Kirchhoff 

transformation can be avoided. The present article reports new solutions to equation (1b) 

with the additive functional relationship (1c) about the temperature-dependent diffusivity, 

using the technique of HBIM and DIM and the solution strategies developed in [Hristov 

(2016)].    

The general task of the present study is the development of approximate integral-balance 

solutions of the model (1a,b) in avoiding the Kirchhoff linearization transformation of the 

thermal diffusivity (1c). The solutions developed refer to the cases with Dirichlet and 

Neumann boundary conditions. The approximate solution are developed by HBIM and 

DIM applying an assumed parabolic profile with unspecified exponent [[Hristov (2005a); 

Hristov (2009, 2015b); Mitchell and Myers (2008, 2010); Sadoun et al. (2006)]  

1.1   Background of the integral-balance solution 

The integral-balance method is based on the concept that the diffusant (heat or mass) 

penetrates the undisturbed medium at a final depth . Therefore, the common boundary 

conditions at infinity  

  0T    and   0
T

x


 


(3) 
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can be replaced by 

  0T    and   0
T

x






 (4a,b) 

The conditions (4a,b) define a sharp-front movement  t  of the boundary between

disturbed and undisturbed medium when an appropriate boundary condition at 0x   is 

applied. The position  t  is unknown and should be determined trough the solution.

When the thermal diffusivity is temperature-independent, the integration of eq.(1b) over a 

finite penetration depth  yields (5a) 

  2

0 2

0 0

,T x t T
dx a dx

t x

  


          (5a) 

 or 

   0

0

, 0,
d T

T x t dx a t
dt x




 
   (5b) 

Applying the Leibniz rule to the left-side of (5a) we get (5b) .Equation (5b) is the 

principle relationship of the simplest version of the integral-balance method known as 

Heat-balance Integral Method (HBIM) [1]. After this first step, replacing T by an 

assumed profile
aT  (expressed as a function of the relative space co-ordinate x ) the 

integration in (5b) results in an ordinary differential equation about  t [1,3,20]. The

principle problem emerging in application of (5a,b) is that its right-side depends on the 

type of the assumed profile.  

An improvement, avoiding the principle problem of HBIM is the double integration 

approach (DIM) [Volkov and Li-Orlov (1970)] recently renewed by Myers as Refined 

integral Method (RIM) [ Mitchell and Myers (2008, 2010)]. The first step of DIM is 

integration of (1b) from 0  to x   and then the resulting equation is integrated again from 

0  to   . The principle equation of DIM, following Myers [Mitchell and Myers (2008, 

2010)]is  

   0

0

, 0,
d

xT x t a T t
dt



 (6) 

An alternative expression of the DIM principle relationship can be easily derived, too. 

Representing the integral in the left-side of (5a) as      
0 0

x

x

f dx f dx f dx

 

•  •  •  

[ Hristov (2015b, 2016)] we get 

 
0

0

0,x

x

T tT T
dx dx a

t t x

  
  

      (7) 

Subtracting (5b) from (7) and integrating the resulting equation from 0 to   one obtain  
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 0

0

0,
x

T
dx dx a T t

t

  
 

 
            (8) 

If the thermal diffusivity is non-linear, as a power-law
0

ma a T  ( 0m  ) then (6) and (8) 

take the forms [Hristov (2016)] 

   
1

0

0

, 0,
1

mad
xT x t T t

dt m




            (9a) 

 
1

0

0

0,
1

m

x

aT
dx dx T t

t m

 
 

       
     (9b) 

The integral relations presented by (9a) and (9b) will be used further in this work in the 

development of the problems at issue. 

1.2   Aim 

In this study, the focus will be on a temperature dependent diffusivity namely: 

   0 1
m

sa T a T T  
 

       (10) 

where sT  is the temperature at 0x   and   could be either positive or negative. 

In order to simplify the problem development, the dimensionless variable  su T T  is 

used and therefore, the governing equation can be presented as 

 1 mu u u
u

t x x


   
     

       (11a) 

with boundary conditions 

 0,1 1u  ,  , 0u t   and 0
x

u
k

x 

 
 

 
      (11b,c,d) 

2   Solution strategies 

2.1   HBIM solution 

If we apply the classical HBIM to our equation we obtain: 

0

0 0

(1 )mu u
dx a u dx

t x x

 


   

  
   
        (12) 

Now applying the solution strategy of [21] represented by (9) and (10) we get 

1

0

0 0
1

m

x

u u
udx a

t x m x


 



   
   

    
    (13) 

Equation (13) is the principle equation of the DIM solution relevant to the problem at 
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issue. Indeed if the transformation is not applied we do not find the same result as it is in 

the literature when a  is temperature independent. Hence it is possible to solve non-linear 

heat conduction equations. Moreover this method will be tested next for a fixed 

temperature boundary condition. 

2.2   DIM solution 

Applying the DIM we get 

0 0

00 0 0

(1 ) (1 )

x

m m

x

u u u
dx dx a u a u

t x x

 

 


      
               

                      (14) 

If the double integral of (14) is integrated by parts, we obtain: 

1
0

0

( )
1

mxudx a u u
t m


 

  
              (15) 

Equation (15) is the principle equation of the DIM solution relevant to the problem at 

issue.  

2.3   Assumed profile 

The solutions use an assumed parabolic profile with unspecified exponent [Hristov (2009, 

2015a, 2005b, 2016); Mitchell and Myers (2008, 2010); Sadoun et al. (2006)]  

1

n

a s

x
T T



 
  

 
    (16) 

The profile (16) satisfies the Goodman boundary conditions (4a, b), namely 

 0, sT t T   or 0

0x

T
k q

x 

 
 

 
  (17a,b) 

  0, 0T t T     or 0
x

T
k

x 

 
 

 
       (18a, b) 

2.4   Scaling and governing equations 

The scaled thermal diffusivity is commonly expressed as  
m

refa f T T 
  

 where refT  is 

a reference temperature which differs from the initial medium temperature 0T  . The 

functional relationship can be expressed as a simple power-law 0

ma a T  [Alhama and 

Zueco (2007); Hristov (2015a, 2016] or as a linear relationship  0 1
m

refa a T T  
  

 , 

where  m   and   are dimensionless constants. In this context, when 0 0refT T   the 

power-law can be rescaled as  0 0

mm

eff Ta u a k T T  where  0u T T , 
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 0 .
m

T refk T T const   and 0eff Ta a k . Therefore the relationship for 1m    can be 

presented as  0 1
m

T refa a k T T  
  

.When 0 0refT T  , we get 1Tk  .  

In order to be correct in the solutions performed next and for the sake of clarity of the 

expressions, we have to mention that the common literature data about the heat 

conductivity of the materials are presented in dimensional form as
0 1 mk k T    . It is

easy, to transform this relationship into  0 1
m

T refa a k T T  
  

by a simple rescaling 

procedure which affects only the pre-factor 
Tk . 

3   Solution example 

3.1   Dirichlet problem 

In the case of the Dirichlet problems using the dimensionless variable 

   0 0su T T T T    or su T T  the dimensionless assumed profile is

 1
n

au x   , a a su T T      (19a) 

satisfying the boundary conditions (11), namely 

 0,1 1au   ,   , 0u t    , 0
x

u
k

x 

 
 

 
 (19b) 

Now, the governing equation is eq. 10. 

3.1.1   HBIM solution 

The application of eq. (15) of HBIM with a dimensionless profile  1
n

au x   and

fixed temperature boundary condition yields  

1

0 0

0

(1 )
1

m

x

u u n
a a

x m x










  
     

   
     (20a) 

0
1

udx
t t n


    

         
    (20b) 

2

0 ( 1)(1 )a n n
t





  


        (20c) 

0 2 ( 1)(1 )HBIM a t n n                                                                                        (20d) 

If the thermal diffusivity is a constant with respect to temperature (i.e. 0   ), then  (20d) 

reduces to the solution developed by Myers [23], i.e. ( 0) 0 2 ( 1)HBIM a t n n    . 
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It is worthnoting that the non-linearity represented by the exponent m  disappears and 

therefore the approach of HBIM cannot be applied when 1m  . Hence, for the Dirichlet 

problem at issue an advanced solution should be developed, as it is demonstrated next. 

Moreover, commonly 1  and according to (20d) we have ( 0)HBIM HBIM    when 

0  . Oppositely, there is a front retardation when 0  . 

3.1.2   DIM solution 

The application of the DIM relationship (15) yields 

1
0 0

0

1
1 1

m

x

a u u a
m m

 



   
       

    
       (21a) 

2

0

1

(2 )(1 )
xudx

t t n n


 


         (21b) 

2

0

1
1

( 1)( 2) 1
a

t n n m

   
  

    
   (21c) 

0

( 1)( 2)
( 1 )

1
DIM

n n
a t m

m
 

 
  


                                                                  (21d) 

For 0   we have the linear case and we find the result developed by Myers [Mitchell 

and Myers (2010)], i.e. ( 0) 0 ( 1)( 2)DIM a t n n     . Hence if 0m    and   0  it is 

obvious that 0DIM DIM    which is related to the fact that if m  or   increases the 

depth penetration decreases due to the increased thermal diffusivity of the medium. 

3.2   Approximate profiles 

Therefore the approximate solutions are 

HBIM 

 
0

1
2 ( 1)(1 )

n

a HBIM

x
u

a t n n 

 
  
   

   (22) 

DIM 

 

0

1

( 1)( 2)(1 )
1

n

a DIM

x
u

a t n n
m



 
 
  
 

   
 

 (23) 

4   Optimization of the approximate profile 

In the general moment method [Ames (1965); Prasad and Salomon (2005)] a desired 
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accuracy in approximation can be attained be increasing the number of terms in the 

series  
1

1 j

N
n

a j

j

u a x 


    (see ref. 22 for comments), i.e. by increase in the order of the 

moments involved in the solution. Since both HBIM and DIM are restricted to the zeroth 

moment they use only the first term of the series. Therefore, the accuracy of 

approximation depends on the values of the exponent n  because the 

coefficient
1 sa u depends on the boundary condition 0x  . The classical applications 

[Goodman (1964); Hristov (2009, 2015b)] are with 2n   and 3n  .  However, when the 

exponent n  is stipulated the approximation error is predetermined.   

4.1   Definition of n by matching HBIM and DIM penetration depths 

Since the penetration depth is physically well defined, it should be one and the same 

irrespective of the method of integration applied. From this point of view and the results 

developed, we have HBIM DIM  , that is 

2( 1) (1 ) ( 1)( 2)(1 )
1

n n n n
m


     


     (24) 

solution of (24) with respect to n  is 

,

2( 1 )

1 2
m

m
n

m m




 

 


  
       (25a) 

If m   then we may simplify (25a) as 

, ,

1
12 2

1 2
1

m m
mn n

m
m

 






  




   (25b) 

For 0   we get the Goodman exponent 0 2n   and this is the limit when m  . 

Therefore, the increase in the nonlinearity through the values of m  does affect 

significantly the values of ,mn   because in general m   because the classical values 

of beta are around 410  [Shelton, 1934; Y et al. (2011)] (see more details in Fabre and 

Hristov, 2016)]. The data summarized in Tab.1 and the plots shown in Fig 1 are related to 

the most frequent case of 1m  .  

Table 1: Exponent determined by matching the penetration depths determined of HBIM 

and DIM 
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  0.01 0.1 1 0.01 0.1 1 

,mn 
1.98 1.826 1.2 1.97 1.74 0.91 

Approximation 

Error, ne

0.0222 0.0557 0.025 0.0204 0.0415 0.0594 

The approximation error ne  presented in Tab.1 is the mean squared error over the 

penetration depth. Details about calculations of ne  are presented in the next point. 

4.2   Global minimization approach 

4.2.1   Approximation error and restrictions on the exponent  

Now, we focus the attention on the optimization of the exponent n  in order to obtain 

solutions with minimal approximation errors bearing in mind that the approximate profile 

satisfies the integral-balance relations (13) and (15b) but not the original heat conduction 

equation (10). Hence, the residual function   ,au x t  can be defined from the 

requirement that the approximate solution should satisfy the governing equation (10) 

    0, 1 ma a
a a

u u
u x t a u

t x x
 

   
   

   
                                     (26a) 

If au  matches the exact solution then   , 0au x t  , otherwise it should attain a 

minimum for a certain value of the exponent n , which is the only unspecified parameter 

of the approximate profile. 

With  1
n

au x   , at the boundary  0x , we have 

2

( 1) ( ( 1) 1)
(0, )

n n n n m
t






   
            (26b) 

and looking for positive n  we get 

1

1 ( 1)
n

m








 
   (27a) 
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Figure1: Dimensionless temperature profiles with exponents established by matching the 

penetration depths of HBIM and DIM for fixed temperature boundary condition and 

1m   . 0x a t   is the Boltzmann -similarity variable. 

Hence, n  must be positive and therefore the heat conduction equation will be satisfied 

for    1 1 ( 1)n m     .  

Meanwhile, we have to verify the Goodman boundary condition at x   

where    min 1 1 ( 1)n n m      . Thus, the estimation of n  through matching the

penetration depth of HBIM and DIM solutions, established in the previous paragraph (see 

eqs. 25a, b) is satisfied too because comparing (28a) and (25a) we have  

   
2( 1 )

1 1 ( 1)
1 2

m
m

m m


 

 

 
   

  
        (27b) 

when m 

Further, for x    we have: 

2 ( 1) 2

2 2

( 1) ( ( 1) 1)
( , ) lim(1 / ) lim(1 / ) 0n n m

x x

n n n n m
t x x

 


   

 

  

 

  
      (28) 

Thus, the heat diffusion equation is satisfied at x   when 2 / 1n m   . This restriction 

is obeyed when 0m   where 2n   is the principle condition of the HBIM solution 

[Hristov (2009, 2016); Mitchell and Myers (2010)].  

4.2.2   Optimal exponents  

The optimization will be done thanks to the minimization method of Langford [Langford 

(1973)]. The method consists in minimization the square of the function   over the entire 
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penetration depth    

2

0

0

( , , ) (1 )ma a
L a

u u
E n t a u dx

t x x



 
    

    
    

                    (29) 

As example demonstrating the approach we will use the case with 1m  . 

4.2.2.1   The HBIM solution 

From the solution developed we have 

1
2

3

( 1)( 1)
1

n

a

HBIMHBIM

u n x n x

t






   

  
  

  (30a) 

2 2 2

2 2

( 1) (2 1)
(1 ) 1 1

n n

a
a

HBIM HBIMHBIM HBIM

u n n x n n x
u

x x




  

 
      

        
                      (30b) 

Then, from (30) we get 

     1 2, , ,LE n AF n BF n         (31a) 

  4 3 2 3 2
1

4 3 2

, 2 7 6 2 1 (2 11 3

(2 2 3 ))

F n n n n n n n n

n n n n

 



         

   
   (31b) 

  5 4 3 2
2

5 4 3 2

, 96 448 614 401 115 12

(60 264 339 231 66 6)

F n n n n n n

n n n n n





      

     
  (31c) 

3/2

2 2 2

2 ( 1)( 1)

4( 1) ( 1) (2 3)(4 1)

n n t
A

n n n





 


   
   (32a) 

3/2

2 2

2 ( 1)( 1)

4( 1) ( 1) (3 1)(3 2)(3 3)(4 3)

n n t
B

n n n n n

 



 


     
    (32b) 

Hence   3/2,L nE n e t  , where 
n
e   depends only on n  and   . Therefore, the function 

ne  has to be minimized with respect to n for given    in order to find the optimal 

exponent. The optimal exponents assuring minima of the squared errors function of 

approximations 
n
e are summarized in Tab. 2.  

Table 2: Exponents defined by the global minimization approach for 1m   

  0 0.0001 0.001 0.01 0.1 1 

ne 0.0169 0.0169 0.017 0,0178 0.022 0.007 

minn 1 1 1 1 0.0257 0.094 

optn 2.335 2.234 2.235 2.249 2.339 2.404 
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In the literature the coefficient   is between 0.001  and 0.0001  [Shelton (1934); Y et al. 

(2011); Fabre and Hristov (2016)], and for these classical values,   has no significant 

effect on the determination of the optimal exponent. 

4.2.2.2    The DIM solution 

With the DIM solution and for 1m   we have 

1

3

( 1)( 2)( 2)
1

4

n

a

DIMDIM

u nx n n x

t






    

  
  

  (33a) 

2 2 2

2 2

( 1) (2 1)
(1 ) 1 1

n n

a
a

DIM DIMDIM DIM

u n n x n n x
u

x x




  

 
      

        
      

 (33b) 

The values of optimal exponents are summarized in Tab. 3. 

Table 3: Optimal exponents of the DIM solution for 1m   

  0 0.0001 0.001 0.01 0.1 1 

minn 0.0167 0.0167 0.0169 0,0191 0.0419 0.319 

optn 2.218 2.2186 2.2182 2.214 2.173 2 

For the case 1m   the effect on the optimal exponents is shown in Fig. 2. 

Figure 2: Effect of the parameter 1m   on the optimal exponents (DIM solution) 

The comparisons with the approximate solutions to the numerical ones demonstrate 

acceptable accuracy of approximation sufficient for the thermal engineering practice 

(details are availed elsewhere [Fabre and Hristov (2016)]).  

5   Comparison to numerical solution with real values of   

The numerical simulations in the preceding sections were performed for values of   



82     Copyright © 2016 Tech Science Press     FDMP, vol.12, no.2, pp.69-85, 2016 

larger than those corresponding to some real materials (see Table 4) because the goal as 

to demonstrate the features of the approximate solutions and thus presenting disguisable 

approximate profiles.   

Now, in order to demonstrate the effect of the factor   related to real materials plots of 

pointwise (absolute) errors are shown in Fig.3. Since, the problem at issue has no exact 

solutions, the accuracy of the approximate one were compared to numerical calculation 

carried out by the Runge-Kutta solutions of 4th order as it is explained next.  

With the Boltzmann transform 
0x a t  and  / / ( )X x f n     the governing 

equation (1a) ( with the relationship 1c) can be presented in the form ( case of 1m  ) 

22 2

2

( ) ( ) ( ) ( )
0

2 1 ( )

f n u X u X u X
X

X u X X X





   
   

    
,      1f n   (34) 

2 2

2

1 ( ) ( ) ( )
0

2 1 ( )

u u u

u

   

    

   
   

    
  ,      1f n     and X     (35) 

Here, the normalizing function ( )f n  is introduced for consistency with the concept of 

the finite penetration depth   which is missing in the classical solution of the linear 

equation expressed by the Gaussian error function.  Actually, with   1f n    the initial

problem is transformed to a boundary value problem with  ( 0) 1u X     and  

( 1) 0u X    allowing to compare the integral-balance solutions with the numerical ones 

in the domain 0 1X  .  

The solutions were developed by Maple 13 where Runge-Kutta solutions of 4th order are 

possible with absolute error less than 610 . The normalizing function ( )f n  for each   is 

expressed through the optimal n  developed by minimization of the residual function (see 

Table 2 and Table 3) and it is equal either to the numerical factors of the penetration 

depth  ,HBIM HBIMF n     or  ,DIM DIMF n     which are dependent on the

integration method applied. 

As a general outcome of these numerical experiments it may be stated that when 0  , 

that is the case of most native materials as pure metals [Shelton (1934); Y et al. (2011); 

Fabre and Hristov (2016)] the accuracy of the integral-balance solutions is better than 

when 0   (the case of alloys, composites, wood, etc. –see Table 4). Generally, the 

conductivity-temperature relationship can be written as  0 1a a T   where the

positive sign means that the thermal diffusivity increases with the temperature, while the 

negative sign corresponds to the opposite tendency. 

As an expected result, the accuracy of DIM is better that that exhibited by HBIM (see Fig. 

3b). The range of variations of the pointwise errors is typical for the integral-balance 

solutions [Goodman (2009); Mitchell and Myers (2010)], i.e. less than 0.003 . In general, 

the increase in the absolute value of   leads to increased errors of approximations.  
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Figure 3: Pointwise errors of DIM solution calculated with respect to numerical (Runge-

Kutta – 4th order) solutions for real values of  in cases of . a) Pure Aluminum ( 0  ), b) 

Pure Iron ( 0  )   and c) for wood with 0  .  / / ( )X x f n  
.
 

6   Conclusions 

The article presents approximate integral-balance solutions to one-dimensional non-linear 

transient heat conduction problem. 

The technique developed in [Fabre and Hristov (2016)] allows the integral-balance 

methods (mainly DIM) to handle non-linear problems and provide approximate closed 

form solution. 

The DIM solution handles successfully the solution of the non-linear heat-conduction 

problems, under Dirichlet boundary condition, with well distinguished effect in the final 

closed form solution. In contrast, the simple integration technique (HBIM) cannot be 

applied successfully because the non-linear effect vanishes trough the solution.  
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