
 

 

 

Copyright © 2016 Tech Science Press                          FDMP, vol.12, no.1, pp.1-14, 2016 

Natural Convection in a Square Cavity: Numerical Study for 

Different values of Prandtl Number 

ADNANI Massinissa
1
, MEZIANI Bachir

2
, OURRAD Ouerdia

2
 and ZITOUNE Mounir

1
 

Abstract   A numerical study of natural convection in a square cavity subjected to the 

thermals boundary conditions on the sidewalls is presented and discussed. The fluid is 

Newtonian and equations governing the flow field and the heat transfer are given in 

dimensionless form. The finite volume method was adopted to solve the algebraic system. 

Influence of the Prandtl and the Rayleigh numbers on heat transfer and the flow field is 

illustrated and discussed as the stream functions, isotherms, horizontal velocity, local and 

average Nusselt numbers. Results indicate that improved heat transfer is more 

pronounced with increasing Rayleigh number. In particular, at low Rayleigh numbers, the 

flow field is slightly pronounced with increasing Prandtl number and decreases by 

increasing the Rayleigh number. In contrast, the heat transfer is not affected by variations 

of Prandtl number at low Rayleigh numbers and decrease with increasing the Prandtl 

number especially for very high Rayleigh numbers. 

Keywords:  Natural convection, square cavity, boundary conditions, finite volume 

method. 

Nomenclature 

g gravitational acceleration, m s
-2

 

H cavity height, m 

NuLocal local Nusselt number along the haut walls 

Nu average Nusselt number  

P dimensionless pressure  

Ra Rayleigh number 

Pr Prandtl number 

T Temperature, K 

U,V dimensionless velocity components 

u, v velocity components, m s
-1

  
X, Y dimensionless cartesian coordinates 

x, y cartesian coordinates, m 
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Greek Symbols 

 dynamic viscosity, Pa.s 
 mass density, kg/m

3
 

α thermal diffusivity, m
2
 s

-1
 

β coefficient of thermal expansion, K
-1

 

Ψ 

  

dimensionless stream function 

dimensionless temperature 

 

Subscripts 

c cold 

h hot  

max maximum values 

local local values 

1 Introduction 

Natural convection that develops in a closed cavity finds applications in many fields. We 

quote thermal power, petrochemical industries, aerospace and construction. Several 

studies have been conducted to understand this phenomenon. A numerical study of 

laminar natural convection in a rectangular and square cavity was carried and discussed 

by [De Vahl Davies (1968, 1983)]. An analytical study was presented by Misici (1984). 

The sensibility of fluid properties, namely the effect of the Prandtl number, on the natural 

convection widely documented by [Lage, Bejan, and Georgiadis (1991); Bejan, 

Georgiadis (1992)]. [Yoo (1999)] investigated transition of free-convective flows in a 

wide-gap horizontal annulus. They found that bifurcation points are functions of the 

Prandtl number. [Poujol, Rojas and Ramos (2000)] analyzed the natural convection 

problem in a square cavity for high Prandtl number. It happens that the natural 

convection quantitatively and qualitatively depends on the combination of the boundary 

conditions imposed on the walls, as well as the position of the cavity with respect to the 

gravity center [Cianfrini, Corcione, and Dell’Omo (2005); Basak, Roy, and Balakrishnan 

(2006); Corcione, (2003); Huelez, Rechtman (2013)]. Buoyancy forces entrained by 

temperature gradients tend to increase heat transfer and natural convection pronounces 

increasingly with increasing temperature gradient. [Mahmoudi, (2011); Sadaoui, Sahi, 

Hamici, Meziani and Amoura (2015)] have conducted numerical studies on natural 

convection in square cavities in the presence of a thin plate subjected to a hot temperature 

inside the enclosure. They examined the effect of the plate on the heat transfer and the 

flow field. The heat transfer depends essentially on the geometry and position of the plate. 

Thus, the heat transfer is more pronounced with increasing Rayleigh number. 

[Aminossadati, Ghasemi and Kargar (2014)] have studied laminar natural convection in a 

square cavity with a thin fin under the influence of a uniform magnetic field. Results 

indicate that, at higher Rayleigh numbers, the flow and temperature fields and the heat 

transfer rate of the cavity are all influenced by the magnetic field. [Oztop, Zaiguo, Bo and 

Wei (2011)] performed a numerical study of fluid flow and heat transfer due to buoyancy 

forces in a tube inserted in a square cavity filled with fluid. The results indicate that the 



 

 

 

Natural Convection in a Square Cavity                                                                             3 

heat transfer and the flow field depend on the position of the inserted tube and are 

affected by the variation of the Rayleigh number. 

Regarding the numerical associated with experimental studies, heat transfer by natural 

convection and thermal radiation on a solar open cubic cavity- type receiver, studied by 

[Montiel, Hinojosa, Villafan, Bautista and Estrada (2015)], show that experimental and 

theoretical results comparison is better when using model with variable thermophysical 

properties than Boussinesq approximation. [Nardini and Paroncini (2012)] investigate 

effects of the different sizes and positions of the heat sources on the natural convective 

heat transfer. A comparison between the experimental data and numerical data presents a 

good level of agreement for the Rayleigh numbers ranging from 10
4
 to 10

5
. Development 

of the natural convection heat transfer increase with increasing Rayleigh numbers and the 

velocity field is influenced by the size and the positions of the heat sources. Other studies 

are focused on the triangular geometry. [Mahmoudi, Mejri, Abassi and Omri (2013)] 

carried a numerical study of natural convection in an inclined triangular cavity for 

different thermal boundary conditions and observed that the heat transfer mainly depends 

on the inclination angle. [Koca, Oztop and Varol (2007)] conducted a numerical study of 

natural convection in triangular enclosures. Results showed that both flow and 

temperature fields are affected with the changing of Prandtl number, location and length 

of heater as well as Rayleigh number. For cylindrical cavity, natural convection heat 

transfer from a heated horizontal semi-circular cylinder has been investigated by 

[Chandra and Chhabra (2012)]. They have developed predictive correlations to estimate 

Nusselt number value based on Prandtl and Grashof numbers in a new application. Cavity 

heated through the side walls at low Prandtl numbers with large density differences has 

been investigated numerically and theoretically by [Pesso and Piva (2009)]. Analysis 

indicate that the heat transfer increases with the Prandtl number, particularly, for very 

high Rayleigh numbers. At last, three dimensional numerical investigation of natural 

convection in an isothermal open cavity were presented by [Hinojosa and Cervantes-de 

Gortari (2010)]. 

All these works clarify a set of physical phenomena observed in natural convection in 

cavities. To provide further clarifications, we analyze the effect of boundary conditions 

imposed on the side walls of the cavity for different values of Rayleigh and Prandtl 

numbers. 

2 Mathematical formulation 

2.1  Problem description 

We considered a square cavity, filled with a Newtonian fluid. As shown in Fig.1, the 

upper and lower horizontal walls are kept adiabatic. The side walls are composed of two 

parts of the same dimension, the lower half of the side walls is maintained at a hot 

temperature and the upper half is maintained at a cold temperature. The X axis is parallel 

to the adiabatic walls, the Y axis is parallel to the side walls and the gravity is directed 

downwardly. 
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Figure 1 : Physical model. 

2.2  Governing equations 

To model the problem, we consider the two-dimensional steady laminar flow of an 

incompressible Newtonian fluid. Transfers by radiation are negligible, viscous dissipation 

is neglected in the energy equation and Boussinesq approximation is adopted. 

Considering the following dimensionless variables: 
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We take into account assumptions cited with introduction of the dimensionless variables, 

the dimensionless continuity, momentum and energy equations are written as follows: 
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Considering no slip condition at the walls, the dimensionless boundary conditions are: 
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U(X, 0) = U(X, 1) = U (0, Y) = U (1, Y) = 0 

X = 0, X = 1, 0 ≤ Y ≤ 0.5,   = 1 

 X = 0, X = 1, 0.5 ≤ Y ≤ 1,   = 0     

0 ≤ X ≤ 1, 0
10





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



 YY YY


                                                                                     (6) 

The fluid motion is displayed using the stream function obtained from the velocity 

components U and V. The relationships between the stream function and the velocity 

components for two-dimensional flows are: 
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Which yield to a single equation: 
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Nusselt number is one of the most important dimensionless parameters in describing the 

convective heat transport. The local Nusselt number at the hot wall calculated as: 
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The average Nusselt number on the hot walls is given by: 
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3 Procedure and numerical validation 

Eqs. (2)-(5) are integrated on control volumes in order to obtain an algebraic equation 

system more accessible to the resolution [Patankar (1980)]. The SIMPLE algorithm is 

used to solve the coupled system of algebraic equations. Spatial discretization of the 

continuity, momentum and energy equations is done by a second order upwind scheme. 

The interpolation of the pressure is carried out by the PRESTO scheme. The calculation 

is performed using the commercial finite volume code FLUENT. To check the 

convergence of the sequential iterative solution, normalized residual respectively for the 

continuity, momentum and energy equation is calculated, convergence is obtained when 

the residual becomes smaller than 10
-9

. 

3.1  Grid independence study 

In order to determine a proper grid for the numerical simulation, a square cavity filled 

with air, Pr = 0.71 at Ra = 105 is chosen. Eight different uniform grids, namely, 51X51, 

61X61, 81X81, 101X101, 121X121, 141X141, 161X161 and 181 X181 are employed for 

the numerical simulation. The average Nusselt number on the hot side walls and the 

maximum of the stream function for these grids are shown in Table 1. As can be 
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observed from the table, a uniform 121X121 grid is sufficiently fine for the numerical 

calculation. This grid gives the best compromise between cost and accuracy calculations. 

Table 1: Grid independence results (Pr = 0.71 and Ra = 10
5
) 

Grid 51X51 61X61 81X81 101X101 121X121 141X141 161X161 181X181 

Nu 4.2038 4.3175 4.5005 4.6442 4.7621 4.8620 4.9485 5.0249 

ψmax 0.4962 0.4955 0.4941 0.4935 0.4933 0.4930 0.4930 0.4930 

3.2  Code validation 

To validate the proposed numerical scheme, the steady of laminar natural convection 

flow in a square cavity with uniformly heated bottom wall and adiabatic top wall 

maintaining constant temperature of cold vertical walls is analyzed using the presented 

code, and the results are compared with the results of [Basak, Roy, and Balakrishnan 

(2006)] for the same problem. Fig. 2 shows the local Nusselt number of heated bottom 

wall obtained by the present simulation and the results of [Basak, Roy, and Balakrishnan 

(2006)]. Another comparison was mad with cavity heated from the left wall and cooled 

from the right isothermally and horizontal walls were adiabatic using the presented code, 

and the result are compared with the results of [De Vahl Davies (1983); Hortmann, Peric 

and Scheuerer (1990)]. Tab. 2 shows the average Nusselt number of the left wall obtained 

by the present simulation and the results of [De Vahl Davies (1983); Hortmann, Peric and 

Scheuerer (1990)]. As can be observed from the Fig.2 and the Tab. 2, very good 

agreements exist between our results and those given by the references which justified 

the accuracy of our numerical results. 

 
Ra = 103, Pr = 0.7 

 
Ra = 105, Pr = 0.7 

 
Ra = 105, Pr = 10 

Figure 2: Comparison between our results and those of [Basak, Roy, and Balakrishnan 

(2006)] for local Nusselt number of heated bottom wall 

Table 2: Comparison between our results and those of [De Vahl Davies (1983); 

Hortmann, Peric and Scheuerer (1990)] for average Nusselt number 

Ra Nu(this study) Nu (De Vahl Davies (1983)) Nu (Hortmann, Peric and 

Scheuerer (1990)) 

10
5
 4.53 4.50 4.55 

10
6
 8.92 9.035 9.00 
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4 Results and discussion 

In order to see the influence of the parameters governing the flow field and heat transfer 

on natural convection, the variations of the Rayleigh number (10
3
 ≤ Ra ≤ 10

6
) and Prandtl 

number (0.71 ≤ Pr ≤ 7) are illustrated and discussed. The results are given in the form of 

streamlines, isotherms, horizontal velocity, local and average Nusselt number. 

The flow fields given by the streamlines are shown in Fig.3 for different Rayleigh 

numbers (10
3
 ≤ Ra ≤ 10

6
) and Prandtl numbers (0.71 ≤ Pr ≤ 7). 

For Ra=10
3
, Pr = 0.71 to Pr = 7, four counter rotating cells and symmetrical with respect 

to the cavity axes plane (X, Y) appear. The stream functions are very low and a minimal 

increase of maximum stream functions (Ψmax) noted when the Prandtl number becomes 

important. At Ra = 10
4
, the flow near the central region of the cavity becomes more and 

more important. The two cells located on the diagonal tend to approach and form a large 

main cell rotating counterclockwise and the stream functions increase with increasing 

Prandtl number. Indeed, at low temperature gradients, the flow field is slightly 

pronounced with increasing Prandtl number. 

When Rayleigh number increases up 10
5
, at Pr = 0.71, the flow is characterized by a 

strong circulation in the middle of the cavity and a large main cell rotating 

counterclockwise is formed on the diagonal enclosure with two small secondary cells 

occupy the high left and low right portions of the cavity rotating clockwise. When Prandtl 

number increases to Pr=7, the large main cell undergoes a deformation and a 

compression on the part the two cells located near the side walls which tend to return to 

their initial physical states with a high counterclockwise circulation. However, the 

opposite effect of Prandtl number on the maximum of stream functions is noted in this 

case (Ra = 10
5
), so the maximum of the stream functions are less pronounced with 

increasing Prandtl number. 
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Figure 3: Rayleigh and Prandtl numbers effects on stream lines 

At Ra = 10
6
, considerable deformation of the stream functions is observed. For Prandtl 

number Pr = 0.71, the large cell is deformed into two cells occupying the diagonal part of 

the enclosure. Theses cells become more and more symmetric with respect to cavity 

plane axis and the maximum of the stream functions are less pronounced with increasing 

Prandtl number. 

The heat transfer given by the isotherms is shown in Fig.4 for different values of 

Rayleigh number (10
3
 ≤ Ra ≤ 10

6
) and Prandtl number (0.71 ≤ Pr ≤ 7). 

At Ra = 10
3
, in all situations (Pr = 0.71 to 7), the isotherms occur symmetrically with 

respect to the cavity axis. Indeed, the isotherms are not affected by the variation of the 

Prandtl number and the heat transfer is mainly due to conduction. Furthermore, the 

isotherms begin to move toward the side walls and tend to deform when Ra = 10
4
.  In this 

case, the isotherms are slightly affected by the variations of the Prandtl number. As 

shown in Fig.4, when the Prandtl number increases up Pr = 2.8, the isotherms are shifted 

slightly toward the top and bottom walls, then, tend to invariant situations when the 

Prandtl number increases up Pr = 7. However, the heat transfer by natural convection 

becomes more and more important in the cavity center. 

At Ra = 10
5 

and 10
6
, more pronounced compression of the isotherms towards the side 

walls of the enclosure occurs. As shown in the figure, when the Prandtl number increases, 

the isotherms are attracted to the middle of the cavity central zone and tend towards an 

axial symmetry. Therefore, the opposite effect of Prandtl number is observed when the 

Rayleigh number becomes important, consequence of thermal effects that become very 

low in front of the viscous effects. In fact, the temperature gradient in the vicinity of the 

side walls becomes important for the development of a thermal boundary layer and the 

heat transfer corresponds to a natural convection. 

Fig.5 show the horizontal velocity profiles in the middle of the cavity (X = 0.5, Y = 0      

to 1) for Ra = 10
3
 to 10

4
 and 0.71 ≤ Pr ≤ 7. 

At Ra = 10
3
, the flow is very low along this section of the cavity, the velocity tends to 

zero for Pr =0.7 and an increase is noted for Pr = 7. Therefore, at low temperature 

gradients, the horizontal velocity profile seems slightly significant with increasing 
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Prandtl number. Obviously, the flow velocity is more pronounced for Rayleigh number 

Ra = 10
4
. As shown in the figure, symmetry of the flow can be seen with respect to the 

median cavity plane. Therefore, the velocity becomes important at the top and bottom of 

the cavity with a zero value in the middle.  

In addition, the flow increases slightly with increasing Prandtl number at the top of the 

cavity and less pronounced at the bottom with identification in the middle of the cavity.  

When Ra = 10
5
 and Ra = 10

6
, the flow becomes more significant when the Rayleigh 

number increases. However, there is a reverse effect of Prandtl number compared to the 

low temperature gradients. In this situation, the flow is less pronounced by increasing the 

Prandtl number. Therefore, the viscosity effects become more important as Prandtl 

increases which will result in the weakening of the flow field. 

The heat transfer given by the local Nusselt number along the left hot wall is illustrated in 

Fig.6 for Ra = 10
3
 to 10

6
 and Pr = 0.71 to 7. 

For Ra = 10
3
, local Nusselt number undergoes exponential growth along the hot wall. 

When Ra = 10
4
, the profiles of the Nusselt keep a substantially constant evolution along 

the wall until Y = 0.7 and then greatly increase. It is evident to note that in this situation 

the heat transfer is not affected by the Prandtl number, in particular for low values of the 

Rayleigh number and the heat transfer corresponds to the conduction. When Rayleigh 

number increases up Ra = 10
5
, the Nusselt number increases significantly compared to 

the previous cases. Indeed, we note that the heat transfer is affected Prandtl number 

variations. In fact, at the extremities of the heated wall, heat transfer by conduction seems 

to dominate as seen from the growth of local Nusselt profiles. In this case, the heat 

transfer is less pronounced for Prandtl number equal to 0.71.  
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Figure 4: Effect of Rayleigh and Prandtl numbers on isotherm 

  

  

Figure 5: Horizontal velocity in the middle of the cavity (X = 0.5, Y = 0 to1) for various 

Rayleigh and Prandtl numbers 

In the middle of the wall (0.25 ≤ Y ≤ 0.75) the profiles of local Nusselt undergo a 

decreasing evolution and heat transfer by natural convection becomes important. 

Therefore, the heat transfer is less pronounced along this area by increasing Prandtl 

number. 

When Ra = 10
6
, the local Nusselt number decreases along the hot wall, especially for      

Pr ≥ 2.8. At Pr = 0.71, the profile of local Nusselt number follow a slight increase at the 
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bottom of the wall to reach a critical value then decrease along the rest of the wall. The 

Nusselt number is less pronounced along the hot wall by increasing the Prandtl number 

and the heat transfer corresponds to a natural convection for great values of the Rayleigh 

number. However, for the large temperature gradients, heat transfer seems invariant when 

Pr ≥ 4.9 and local Nusselt number profiles remain constant. 

Figure 7 illustrate the heat transfer given by the average Nusselt number for different 

values of Rayleigh (Ra = 10
3
 to 10

6
) and Prandtl (Pr = 0.71 to 7). It is evident to note that 

the heat transfer increases significantly when the Rayleigh number increase and, 

particulary, for of very high Rayleigh numbers. For low temperature gradients, the heat 

transfer is not affected by the Prandtl number variations. Both average Nusselt profiles 

for Ra = 10
3
 and 10

4
 follow constant evolution according to Prandtl number. At Ra = 10

5
 

and 10
6
, significant improvement in heat transfer is noted. However, for very high values 

of the Rayleigh number, the average Nusselt number undergoes an approximately 

constant decrease when Prandtl increases, indeed, the heat transfer is less pronounces 

with increasing Prandtl. 

  

  

Figure 6: The local Nusselt number at the hot wall for various Rayleigh and Prandtl 

numbers  
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Figure 7: The average Nusselt number at hot side walls versus Prandtl number for 

various Rayleigh numbers  

5   Conclusions       

In this work a numerical study of the steady natural convection in a square cavity subject 

to the boundary conditions on the side walls is performed. The fluid considered is 

Newtonian. The equations governing the flow and heat transfer are given in 

dimensionless form. The finite volume method was adopted to solve the algebraic system. 

The setting in dimensionless form of the governing equations brings up the dimensionless 

numbers, namely the Rayleigh and the Prandtl numbers. In order to see the influence of 

these numbers on the flow field and the heat transfer, the review was done for different 

values of Ra and Pr.  

The results indicate that: 

 The heat transfer and flow field are more pronounced with increasing Rayleigh 

number and the thermal boundary layer tends to grow towards the side walls for 

very high Rayleigh numbers. 

 At low Rayleigh numbers, the flow field is slightly pronounced with increasing 

Prandtl number and decreases by increasing the Rayleigh number, as well as the 

heat transfer is not affected by variations of Prandtl number for low Rayleigh 

numbers and, is less pronounced by increasing the Prandtl number for very high 

Rayleigh numbers. 
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