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Unsteady MHD Free Convection Past an Impulsively
Started Isothermal Vertical Plate with Radiation and

Viscous Dissipation

Hawa Singh1, Paras Ram2 and Vikas Kumar3

Abstract: The fluctuating flow produced by magneto - hydrodynamic free con-
vection past an impulsively started isothermal vertical plate is studied taking into
account the effects of radiation and viscous dissipation. By using the similarity
transformation, the governing equations are transformed into dimensionless form
and then the system of nonlinear partial differential equations is solved by a pertur-
bation technique. The considered uniform magnetic field acts perpendicular to the
plate, which absorbs the fluid with a given suction velocity. A comparison is made
in velocity and temperature profiles for two particular cases of real and imaginary
time dependent functions. The effects of various parameters like Prandtl num-
ber, Grashof number, magnetic parameter, radiation parameter, Eckert number and
Schmidt number on the velocity and temperature profiles are studied quantitatively
and are shown graphically. In case of real function, the frequency of excitation
ω does not have much effect over temperature and velocity profiles, respectively,
whereas in case of imaginary function, it has a significant effect along the wall and
transverse to the wall.

Keywords: MHD, Schmidt number, Eckert number, radiation, perturbation method,
unsteady flow.

Nomenclature

u∗,v∗ Velocity components in x∗, y∗direction, respectively
y Non-dimensional distance to the surface
ū Uniform velocity of the plate

1 Deptt. of Mathematics, National Institute of Technology Kurukshetra, Haryana, India.
E-mail: hawasingh_nit@yahoo.com

2 Deptt. of Mathematics, National Institute of Technology Kurukshetra, Haryana, India.
E-mail: parasram_nit@yahoo.co.in

3 Deptt. of Mathematics, National Institute of Technology Kurukshetra, Haryana, India.
E-mail: vksingla.nitkkr@yahoo.com



522 Copyright © 2014 Tech Science Press FDMP, vol.10, no.4, pp.521-550, 2014

U∗(t) Dimensional free stream velocity
U(t) Dimensionless free stream velocity
V Constant suction velocity
t∗ Dimensional time
t Dimensionless time
B0 Magnetic induction
D Mass diffusion coefficient/ chemical molecular diffusivity
M Magnetic field parameter
g Acceleration due to Earth’s gravity
T ∗ Dimensional temperature
Tw Temperature at the wall
T∞ Free stream dimensional temperature
C∗ Dimensional concentration
C Dimensionless concentration
Cw Wall concentration
C∞ Concentration away from the wall
cp Specific heat at constant pressure
ke Mean absorption coefficient
k Thermal conductivity
qr Radiative heat flux
R Radiation parameter
Pr Prandtl number
Ec Eckert number (viscous dissipation parameter)
Sc Schmidt number
Gr Thermal Grashof number
Gm Solutal Grashof number

Greek Symbols

β ∗ Volumetric coefficient of concentration expansion
β Coefficient of thermal expansion
α Thermal diffusivity
θ Dimensionless temperature
ρ Fluid density
σ Fluid electrical conductivity
σs Stefan-Boltzmann constant
ε Scalar constant (perturbation parameter <1)
ω∗ Constant
ω Frequency of oscillation (� 1)
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ν Kinematic viscosity of the fluid at a point
∞ Ambient condition
∗ Dimensional properties

1 Introduction

The radiation effects are found to be more significant in the following areas of ap-
plications such as soil physics, geothermal energy extraction, chemical engineering,
glass production, furnace design, space technology application, fight aerodynam-
ics and plasma physics which operates at extremely high temperature. Also, the
application of radiation heat transfer becomes highly significant in the design of
pertinent equipment, viscous mechanical dissipation effects are important in geo-
physical flows and also in certain industrial operations and are usually characterized
by Eckert number. Recently, attention has been on the effects of transversely ap-
plied magnetic field and thermal perturbation on the flow of electrically conducting
viscous fluid such as plasma. Various properties associated with the interplay of
magnetic fields and thermal perturbation in porous medium past vertical plate find
useful applications in astrophysics, geophysical fluid dynamics and engineering.

Abd EI-Naby et al. (2003) presented the effects of radiation on MHD unsteady free
convection flow over vertical plate with variable surface temperature. Chamkha et
al. (2001) have studied the effects of radiation on free convection flow past a semi-
infinite vertical plate with mass transfer. Das et al. (1994) presented the effects of
mass transfer on flow past an impulsively started infinite vertical plate with constant
heat flux and chemical reaction concentration of the fluid under consideration. The
influence of viscous dissipation and radiation on unsteady MHD free convection
flow past an infinite heated vertical plate in a porous medium with time depen-
dent suction had been examined by Israel-Cookey et al. (2003). Israel-Cookey
and Nwaigwe (2010) have described an electrically conducting unsteady flow and
radiating fluid over a moving heated porous plate in the presence of an induced
magnetic field. The effect of radiation and first order homogeneous chemical reac-
tion with heat and mass transfer of a Newtonian, viscous, electrically conducting
and heat generation/ absorption fluid on a vertical surface have been investigated
by Ibrahim et al. (2008).

The effects of radiation on the flow past an impulsively started vertical plate in
the presence of mass transfer have been investigated by Loganathan and Ganesan
(2006). Subsequently, Muthucumaraswamy and Ganesan (1998, 2004) have ob-
tained the natural convection on flow past an impulsively started vertical plate with
variable surface heat flux and studied the problem of unsteady flow past an impul-
sively started isothermal vertical plate with mass transfer by an implicit finite dif-
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ference method. Makinde (2005) studied the problem of free convection boundary
layer flow with thermal radiation and mass transfer past a permeable vertical plate
moves in its own plane. Radiation and mass transfer effects on two-dimensional
flows past an impulsively started isothermal vertical plate have been studied by Ra-
machandra Prasad et al. (2007). Rapits and Perdikis (1999) analysed the effects of
thermal radiation on free convective flow past a moving vertical plate. The effects
of dissipation on an unsteady two-dimensional laminar convective boundary layer
flow along a semi - infinite vertical plate with suction were studied by Ramana
Murthy and Prasad (2011).

Ramana Murthy et al. (2010) studied the effects of thermal radiation on the natural
convective heat and mass transfer of a viscous incompressible fluid flowing past
an impulsively started moving vertical plate with viscous dissipation. Suneetha
et al. (2011) analyzed radiation and mass transfer effects on MHD flow past an
impulsively started vertical plate in the presence of heat source/ sink by taking
into account the heat due to viscous dissipation. Takhar et al. (2003) employed a
Runge-Kutta-Merson shooting quadrature and Rosseland diffusion algebraic radi-
ation model to analyze the mixed radiation-convection flow in a non-Darcy porous
medium, showing the temperature gradients are boosted with radiative flux. The
effects of porosity on unsteady MHD free convective boundary layer flow along a
semi-infinite vertical plate with time dependent suction by taking into account the
effects of dissipation has been examined by Ram et al. (2013).

In the present study, we have discussed the unsteady MHD free convection, in-
compressible, electrical conducting and radiating fluctuating flow by taking into
account the effects of viscous dissipation and described the comparison of velocity
and temperature profiles for two particular cases of real and imaginary time depen-
dent functions. The characteristic performance of various parameters that affects
the flow entities have been discussed quantitatively and illustrated graphically. This
problem, to the best of our knowledge, has not been investigated yet.

2 Mathematical formulation of the problem

An unsteady two dimensional laminar boundary layer flow of a viscous incom-
pressible, radiating and electrically conducting fluid along a semi-infinite vertical
plate with constant suction by considering the effects of viscous dissipation into ac-
count has been discussed. The x-axis is taken along the vertical plate in the upward
direction and y-axis is normal to the plate. Initially, it is assumed that the plate and
the fluid are of the same temperature and concentration in a stationary condition.
At the time t∗ > 0, the plate starts moving impulsively in the vertical direction with
constant velocity ū against the gravitational field. It is also assumed that there is no
chemical reaction between the diffusing species and the fluid. Then under the usual
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Figure a: Physical sketch of the Problem.

Boussinesq’s approximation, the unsteady flow past a vertical plate is governed by
the following equations:

∂v∗

∂y∗
= 0 (1)

∂u∗

∂ t∗
+ v∗

∂u∗

∂y∗
= gβ (T ∗−T∞)+gβ

∗(C∗−C∞)+ν
∂ 2u∗

∂y∗2
−σ

B2
0u∗

ρ
(2)

∂T ∗

∂ t∗
+ v∗

∂T ∗

∂y∗
= α

∂ 2T ∗

∂y∗2
− 1

ρcp

∂qr

∂y∗
+
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(
∂u∗

∂y∗

)2

(3)

∂C∗

∂ t∗
+ v∗

∂C∗

∂y∗
= D

∂ 2C∗

∂y∗2
(4)

The boundary conditions for the velocity, temperature and concentration fields are:

t∗ ≤ 0 : u∗ = 0, v∗ = 0, T ∗ = T∞ , C∗ =C∞

t∗ > 0 : u∗ = ū, v∗ =−V, T ∗ = Tw, C∗ =Cw at y∗ = 0
u∗ =U∗(t∗), T ∗ = T∞, C∗ =C∞ at x∗ = 0
u∗→U∗(t∗), T ∗→ T∞, C∗→C∞ as y∗→ ∞

 (5)

We assumed that thermal radiation in the form of a unidirectional flux in the y-
direction i.e., qr (transverse to the vertical surface). By using the Rosseland ap-
proximation [Brewster (1992)], the radiative heat flux qr is given by:

qr =−
4σs

3ke

∂T ∗
4

∂y∗
(6)
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If the temperature difference T ∗−T∞ within the flow is sufficiently small, the Taylor
series for T ∗

4
with neglect of the higher order terms is given by a linear temperature

function:

T ∗
4 ∼= 4T

3

∞T ∗−3T 4
∞ (7)

By using equations (6) and (7), equation (3) reduces to
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+

16σsT 3
∞
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Introduce the following dimensionless quantities:

y =
ū y∗

ν
, t =

ū2t∗

ν
, u =

u∗

ū
, U(t) =

U∗(t∗)
ū

, ω =
ω∗ν

ū2 , θ =
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ū3 , M =
σ β 2

0 ν
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ke k

4σs T 3
∞
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, Pr =
ν

α
, Sc =

ν

D
, Ec =

ū2

cp(Tw−T∞)
.


Equations (2), (4) and (8) reduce to the following non-dimensional form

∂u
∂ t
− ∂u

∂y
=

∂ 2u
∂y2 −Mu+Grθ +GmC (9)

∂θ

∂ t
− ∂θ

∂y
=

1
Pr

(
1+

4
3R

)
∂ 2θ

∂y2 +Ec
(

∂u
∂y

)2

(10)

∂C
∂ t
− ∂C

∂y
=

1
Sc

∂ 2C
∂y2 (11)

The corresponding initial and boundary conditions are as:

t ≤ 0 : u = 0, θ = 0, C = 0
t > 0 : u = 1, θ = 1, C = 1 at y = 0

u =U(t), θ = 0, C = 0 at x = 0
u→U(t), θ → 0, C→ 0 as y→ ∞

 (12)

3 Method of solution

Equations (9-11) are coupled non-linear partial differential equations and these
can’t be solved in closed form. However, these equations can be reduced to a set
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of ordinary differential equations and this can be done by representing the velocity,
temperature and concentration of the fluid in the neighbourhood of the plate as:

u(y, t) = u0(y)+ ε f (t)u1(y)
θ(y, t) = θ0(y)+ ε f (t) θ1(y)
C(y, t) =C0(y)+ ε f (t)C1(y)
Also
U(t) = (1+ ε f (t))

 (13)

Case (I): We consider a function of time in imaginary form, f (t) = eiω t .

Substituting the equation (13) into the equations (9-11), we obtain the following
equations by considering harmonic and non-harmonic terms while neglecting the
higher terms with order of O(ε)2

u
′′
0 +u

′
0−M u0 =−Gr θ0−GmC0 (14)

θ
′′
0 +N2θ

′
0 =−EcN2

(
∂u0

∂y

)2

(15)

C
′′
0 +Sc C

′
0 = 0 (16)

subject to the boundary conditions

u0 = 1, θ0 = 1, C0 = 1 at y = 0
u0→ 1, θ0→ 0, C0→ 0 as y→ ∞

}
(17)

First-order equations

u
′′
1 +u

′
1−N1u1 =−Gr θ1−GmC1 (18)

θ
′′
1 +N2θ

′
1−N3θ1 =−2N2Ecu

′
0u
′
1 (19)

C
′′
1 +Sc C

′
1−ωSc C1 = 0 (20)

subject to the boundary conditions

u1 = 0, θ1 = 0, C1 = 1 at y = 0
u1→ 1, θ1→ 0, C1→ 0 as y→ ∞

}
(21)

To solve the non- linear-coupled equations (14-16) and (18-20), we further assume
that the viscous dissipation parameter (Eckert number Ec) is very small for in-
compressible flows, and therefore, advance an asymptotic expansions for the flow
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velocity, temperature and concentration as follows:

u0(y) = u01(y)+Ecu02(y)
θ0(y) = θ01(y)+Ecθ02(y)
C0(y) =C01(y)+EcC02(y)
u1(y) = u11(y)+Ecu12(y)
θ1(y) = θ11(y)+Ecθ12(y)
C1(y) =C11(y)+EcC12(y)


(22)

Substituting the equation (22) into the equations (14-16) and (18-20), we obtain the
following sequence of approximations:

The zeroth order equations are:

u
′′
01 +u

′
01−M u01 =−Gr θ01−GmC01 (23)

u
′′
02 +u

′
02−M u02 =−Gr θ02−GmC02 (24)

θ
′′
01 +N2 θ

′
01 = 0 (25)

θ
′′
02 +N2 θ

′
02 =−N2

(
∂u01

∂y

)2

(26)

C
′′
01 +ScC

′
01 = 0 (27)

C
′′
02 +ScC

′
02 = 0 (28)

subject to the boundary conditions:

u01 = 1, u02 = 0, θ01 = 1, θ02 = 0, C01 = 1, C02 = 0 at y = 0
u01→ 1, u02→ 0, θ01→ 0, θ02→ 0, C01→ 0, C02→ 0 as y→ ∞

}
(29)

The first - order equations are:

u
′′
11 +u

′
11−N1u11 =−Gr θ11−GmC11 (30)

u
′′
12 +u

′
12−N1u12 =−Gr θ12−GmC12 (31)

θ
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11 +N2θ

′
11−N3θ11 = 0 (32)

θ
′′
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′
12−N3θ12 =−2N2u

′
01 u

′
11 (33)

C
′′
11 +ScC

′
11−ωScC11 = 0 (34)

C
′′
12 +ScC

′
12−ωScC12 = 0 (35)

where

N1 = M+ iω , N2 =
3RPrω

3R+4
, N3 =

3 iRPrω

3R+4
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Subject to the boundary conditions:

u11 = 0, u12 = 0, θ11 = 0, θ12 = 0, C11 = 0, C12 = 0 at y = 0
u11→ 1, u12→ 0, θ11→ 0, θ12→ 0, C11→ 0, C12→ 0 as y→ ∞

}
(36)

Equations (23 -28) are solved with the boundary conditions (29) and equations (30-
35) are solved with the boundary conditions (36), we get velocity, temperature and
concentration as:

u(y, t) =((α1 +α2)e−m1y +1−α1e−N2y−α2e−Scy)+Ec(α17e−m1y

−α10e−N2y −α11e−2m1y−α12e−2N2y−α13e−2Scy +α14e−[m1+N2] y

+α15e−[m1+Sc]y−α16e−[N2+Sc]y)+ εeiωt((1− e−m2y)

+Ec(α26e−m1y−α22e−m3y−α23e−[m1+m2]y +α24e−[N2+m2]y

+α25e−[Sc+m2]y)).

(37)

θ(y, t) =(e−N2 y +Ec(α9e−N2 y +α3e−2m1 y +α4e−2N2 y +α5e−2Scy

−α6e−[m1+N2]y−α7e−[m1+Sc]y +α8e−[Sc+N2]y))

+ εeiωtEc(α21e−m3 y +α18e−[m1+m2]y−α19e−[N2+m2]y

−α20e−[Sc+m2]y).

(38)

C(y, t) = e−Scy. (39)

Case (II): Now we consider a function of time in real form, f (t) = eω t .

By following the same procedure as in case I, we draw the graphs for velocity and
temperature profiles in this case.

4 Result and Discussion

Here, we have formulated and solved the problem of the MHD free convection of
a radiating electrically conducting fluid over a cooling (Gr > 0) vertical plate by
making fairly realistic asymptotic approximation and we depict the comparison of
the results of two particular cases. In numerical computation, the Prandtl number
(Pr = 0.7) corresponding to air and other values of the material parameters are
used. In addition, the boundary condition y→ ∞ is approximated by ymax = 30
and ymax = 18, which is sufficiently large for the velocity and temperature, respec-
tively to approach their free stream values. In the subsequent analysis, we started
with temperature profiles due to its primary importance in astrophysical environ-
ments. The temperature profiles are presented when the free convection currents
are cooling the plate.
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4.1 Effects of frequency of excitation over temperature profiles

The effect of frequency of excitation on the temperature profiles has been illustrated
in figures 1(a) and 1(b). From figure 1(a), it is clear that as we move far away
from the plate, initially the temperature increases rapidly and thereafter decreases
rapidly, whereas, in figure 1(b), the frequency of excitation has insignificant effect
over thermal boundary layer thickness i.e. the profiles are in very closer range.

Figure 1(a): Effect of frequency of excitation on temperature field.

Figure 1(b): Effect of frequency of excitation on temperature field.
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4.2 Effects of magnetic intensity over temperature profiles

The effect of magnetic intensity on the temperature profiles is shown through fig-
ures 2(a) and 2(b) and all other participating parameters in the temperature field are
held constant. From both figures, the effect of magnetic field is found to have zero
effect on the temperature throughout the thermal boundary layer thicknesses.

Figure 2(a): Effect of magnetic intensity on temperature field.

Figure 2(b): Effect of magnetic intensity on temperature field.
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4.3 Effects of Prandtl number over temperature profiles

Figures 3(a) and 3(b) exhibit the effect of Prandtl number on temperature profiles.
Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity i.e.
it controls the thickness of the thermal boundary layer and the rate of heat trans-
fer. For Pr = 1, the momentum and thermal boundary thicknesses, as described
Schlichting (1979), are approximately of equal extent. We, therefore, expect that
with an increase in Pr, the thermal boundary layer will be decreased in thickness
and there will be a corresponding uniformity of temperature distributions across the
boundary layer. The profiles in both figures attest that the maximum temperature
occurs corresponding to lowest Prandtl number, Pr = 0.1 (say).

Figure 3(a): Effect of Prandtl number on temperature field.

Figure 3(b): Effect of Prandtl number on temperature field.
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4.4 Effects of radiation parameter over temperature profiles

We observe from figures 4(a) and 4(b) that an increase in the conduction-radiation
parameter (R i.e Stark number) is associated with a decrease in temperature. An
increase in R corresponds to an increase in the relative contribution of conduction
heat transfer to thermal radiation heat transfer. As R→ ∞, heat transfer dominates
and the contribution of thermal radiative flux vanishes. The converse is true for
(R = 0) where thermal radiation dominates over conduction, Cookey (2003). Small
values of R therefore, physically correspond to stronger thermal radiation flux and
accordingly, the maximum temperatures are observed in both cases for R= 0.1. As
R increases to 0.4, 1 and 2, considerable reduction is observed in the temperature
values θ from the peak value at the wall y = 0, across the boundary layer regime
to the free stream at y = 30 and for onward values of R(> 2), the temperature
variations are negligible.
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Figure 4(a): Effect of radiation parameter on temperature field.

4.5 Effects of Schmidt number over temperature profiles

Figures 5(a) and 5(b) clearly indicate that Schmidt number does not have a notice-
able change in temperature field i.e the profiles are in very closer range. A rise
in Schmidt number from 0.1, 0.5, 1 and 10 all through induces a fall in tempera-
ture, where values of Sc= 0.3, 0.5, 0.6, 0.78 and 1 approximately represent helium,
water, water vapor, ammonia and Carbon Dioxide, respectively. Higher values of
Schmidt number are associated with hydrocarbon working fluids like (Sc = 2) for
Ethyl Benzene.
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Figure 4(b): Effect of radiation parameter on temperature field.

Figure 5(a): Effect of Schmidt number on temperature field.
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Figure 5(b): Effect of Schmidt number on temperature field.

4.6 Effects of Grashof number over temperature profiles

Figures 6(a) and 6(b) represent the temperature field for different values of Grashof
number. The results show that increased cooling (Gr > 0) of the plate leads to a
rise in the temperature field in both cases. As we move away from the plate, we
notice that, a smaller value of Grashof number does not contribute much on the
temperature field but a higher value contributes to the increase in the temperature.
A similar trend is observed for the solutal Grashof number, as shown in figures 7(a)
and 7(b). Again temperatures are seen to rise with a rise in solutal Grashof number
from 1 to 50, but in these figures, the peak values are 1.1590227 and 1.1405984,
respectively, corresponding to Gm = 50 at displacement y = 1.

4.7 Effects of Eckert number over temperature profiles

The variation in the temperature profiles with respect to viscous dissipation pa-
rameter is illustrated in figures 8(a) and 8(b).These graphs have the same trend as
described in figures 6(a) and 6(b), however, they have different peak values such as
1.6813321 and 1.2217963, respectively, corresponding to Ec = 1.2 at displacement
y = 1.

4.8 Effects of magnetic intensity over velocity

Figures 9(a) and 9(b) represent the dimensionless velocity profiles for different val-
ues of magnetic intensity. Smaller values of magnetic field have much effect over
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Figure 6(a): Effect of free convection parameter on temperature field.

Figure 6(b): Effect of free convection parameter on temperature field.

velocity profiles. For sufficiently higher values, the relation between the magnetic
parameter and velocity profiles is properly linear. In both figures, it is noticed that
as magnetic parameter increases the velocity profile decreases.
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Figure 7(a): Effect of solutal Grashof number on temperature field.

Figure 7(b): Effect of solutal Grashof number on temperature field.
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Figure 8(a): Effect of Eckert number on temperature field.

Figure 8(b): Effect of Eckert number on temperature field.
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Figure 9(a): Effect of magnetic intensity on velocity field.

Figure 9(b): Effect of magnetic intensity on velocity field.
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4.9 Effects of Prandtl number, radiation parameter and Schmidt number over
velocity profiles

Figures (10-12) display the effect of Prandtl number radiation parameter and Schmidt
number over velocity profiles, respectively. These graphs have the same trend i.e.
the velocity field is decreasing for increasing values of Pr, R and Sc. It is evi-
dent from all these graphs that velocity profiles remain the same after displacement
y = 260 onwards at its free stream values approximate to 1.0738906.

Figure 10(a): Effect of Prandtl number on velocity field.

Figure 10(b): Effect of Prandtl number on velocity field.
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Figure 11(a): Effect of radiation parameter on velocity field.

Figure 11(b): Effect of radiation parameter on velocity field.
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Figure 12(a): Effect of Schmidt number on velocity field.

Figure 12(b): Effect of Schmidt number on velocity field.
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4.10 Effects of Grashof number, solutal Grashof number and Eckert number
over velocity profiles

Figures (13-15) illustrate the influence of the thermal buoyancy effects, concentra-
tion buoyancy effects and viscous dissipation parameter over velocity profiles, re-
spectively. In these graphs, the velocity distribution attains a distinctive maximum
value in the vicinity of the plate surface and then decreases properly to approach
the free stream value. As expected, the fluid velocity increases and the peak value
becomes more distinctive for increasing values of Grashof number, solutal Grashof
number and Eckert number.

Figure 13(a): Effect of free convection parameter on velocity field.

Figure 13(b): Effect of free convection parameter on velocity field.
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Figure 14(a): Effect of solutal Grashof number on velocity field.

Figure 14(b): Effect of solutal Grashof number on velocity field.
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Figure 15(a): Effect of Eckert number on velocity field.

Figure 15(b): Effect of Eckert number on velocity field.
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4.11 Effects of frequency of excitation over velocity profiles

Figures 16(a) and 16(b) depict the effects of frequency of excitation versus y on ve-
locity profiles, for constant values of other parameters. It is noticed that as the fre-
quency of excitation increases, the velocity field decreases. Further, it is observed
that as we move far away from the plate, the velocity increases rapidly initially and
thereafter, the decrease is found to be slow. However, this parameter has insignifi-
cant effect over velocity profiles i.e. the profiles are in very closer range as shown
in figure 16(b), whereas, in figure 16(a) it shows relatively more effect on velocity
profiles.

Figure 16(a): Effect of frequency of excitation on velocity field.

Figure 16(b): Effect of frequency of excitation on velocity field.
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5 Concluding remarks

The governing equations for a problem of unsteady MHD free convection (pro-
ducing a fluctuating flow past an impulsively started isothermal vertical plate with
radiation and viscous dissipation) were formulated and solved. Such a study has
background applications in geophysical flows and in certain industrial situations.

The plate velocity was maintained at a constant value and the flow was subjected
to a transverse magnetic field. It was found in brief.

• Increasing the values of Pr and R reduces the temperature and velocity,
whereas a rise in Gr, Gm and Ec increases the temperature and velocity along
the wall and along the direction transverse to the wall.

• Schmidt number and Hartman number do not have much effect on tempera-
ture profiles.

• A rise in M and Sc induces a substantial fall in velocity.

• In figures 1(b) and 16(b), frequency of excitation does not have much effect
over temperature and velocity profiles, respectively.

• Whereas in figures 1(a) and 16(a), a rise in frequency of excitation increases
the temperature and velocity profiles along the wall and transverse to the wall
and the transverse direction.
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Appendix

m1 = 0.5[1+
√

(1+4M)]

m2 = 0.5[1+
√

(1+4N1)]

m3 = 0.5[N2 +
√
(N2

2 +4N3)]

α1 = Gr
/
(N2

2 −N2−M)

α2 = Gm
/
(Sc2

2−Sc−M)

α3 =
N2m2

1(α1 +α2)
2

4m2
1−2m1N2

α4 =
α2

1 N3
2

2N2
2

α5 =
α2

2 N2Sc2

4Sc2−2N2Sc

α6 =
2m1N2

2 (α1 +α2)α1

(m1 +N2)2−N2(m1 +N2)

α7 =
2m1N2 Sc(α1 +α2)α2

(m1 +Sc)2−N2(m1 +Sc)

α8 =
2α1α2N2

2 Sc
(N2 +Sc)2−N2(N2 +Sc)

α9 =−(α3−α4−α5 +α6 +α7−α8)

α10 =
Gr α9

N2
2 −N2−M

α11 =
Gr α3

4m2
1−2m1−M
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α12 =
Gr α4

4N2
2 −2N2−M

α13 =
Gr α5

4Sc2−2Sc−M

α14 =
Gr α6

(m1 +N2)2− (m1 +N2)−M

α15 =
Gr α7

(m1 +Sc)2− (m1 +Sc)−M

α16 =
Gr α8

(N2 +Sc)2− (N2 +Sc)−M

α17 = (α10 +α11 +α12 +α13−α14−α15 +α16)

α18 =
2m1 m2 N2 (α1 +α2)

(m1 +m2)2−N2(m1 +m2)−N3

α19 =
2α1 m2 N2

2
(N2 +m2)2−N2(N2 +m2)−N3

α20 =
2α2 N2 Sc

(Sc+m2)2−N2(Sc+m2)−N3

α21 =−(α18−α19−α20)

α22 =
Gr α21

m2
3−m3−N1

α23 =
Gr α18

(m1 +m2)2− (m1 +m2)−N1

α24 =
Gr α19

(N2 +m2)2− (N2 +m2)−N1

α25 =
Gr α20

(Sc+m2)2− (Sc+m2)−N1

α26 = (α22 +α23−α24−α25)


