
Copyright © 2014 Tech Science Press FDMP, vol.10, no.4, pp.491-501, 2014

Rayleigh-Taylor Instability of a Two-fluid Layer Subjected
to Rotation and a Periodic Tangential Magnetic Field
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Abstract: The Rayleigh-Taylor instability (RTI) of two superposed ferrofluids
subjected to rotation and a periodic tangential magnetic field is considered. Rele-
vant solutions and related dispersion relations are obtained by using the method of
multiple scales.
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1 Introduction

The Rayleigh-Taylor instability (RTI) of magnetic fluids has been the subject of
much research [Chakraborty (1982); Shivamoggi (1988); Davalos-Orozco et al.
(1989)] because of its implications on the stability of stellar and planetary interiors
and many other problems related to materials science (production of semiconductor
materials, metal alloys, etc., see also Gedik et al. (2012) and Lappa (2012) for
other relevant references). The fundamental RTI problem consists of a heavier
fluid supported by a lighter fluid. As the gravity destabilizes the interface, this
configuration is unstable. However, if surface tension exists between the two fluids,
it has a stabilizing effect on the configuration.

From a historical standpoint, RTI for two superposed fluids has been investigated
by many authors. Cowley and Rosensweig (1967) considered the linear stability of
two superposed magnetic fluids in the presence of an externally applied magnetic
field. Zelazo and Melcher (1969) and Rosensweig (1985) investigated theoretically
as well as experimentally the propagation of plane waves in the presence of a tan-
gential magnetic field. Kant and Malik (1985) studied the propagation of weakly
nonlinear waves in a Rayleigh-Taylor magnetic fluid system. They found that the
tangential magnetic field plays a dual role in the stability criterion.
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Malik and Singh (1984) discussed the motion of an inviscid, incompressible fer-
rofluid under the influence of magnetic field, surface tension and gravity. They
showed how the magnetic field and surface tension stabilize the interface, conserv-
ing contours and found that the nonlinear modulation instability cannot be sup-
pressed by the application of a strong magnetic field. Hennenberg et al. (2007)
considered the coupling between stationary Marangoni and Cowley-Rosensweig
instabilities in a deformable Ferrofluid layer.

Lizuka and Wadati (1990) considered the nonlinear RTI under the effect of surface
tension between two superposed fluids in the absence of a magnetic field. Elhef-
nawy (1993) investigated the nonlinear behaviour of two-dimensional RTI for two
magnetic fluids of finite thickness, taking into account of the effect of surface ten-
sion and a tangential magnetic field.

Nonlinear wave propagation on the surface between two superposed magnetic flu-
ids stressed by a tangential periodic magnetic field was also examined by El-Dib
(1993) using the method of multiple scales.

Nonlinear RTI of two superposed magnetic fluids under parallel rotation and a tan-
gential magnetic field was analysed by Anjalidevi and Jothimani (2001). Anjalidevi
and Hemamalini (2007) considered the effect of parallel rotation and a normal mag-
netic field. RTI in three dimensions was studied by Stone and Gardiner (2007). Yu
and Livescu (2008) discussed RTI in a cylindrical geometry with compressible flu-
ids. RTI in dielectric fluids was examined by Joshi et al (2010). On the long time
simulation of the RTI was analysed by Lee et al (2011). Wang et al (2012) con-
sidered density gradient effects in weakly nonlinear ablative RTI . Tao et al (2013)
analysed the nonlinear RTI of rotating inviscid fluids. Rayleigh-Taylor stability
boundary at solid-liquid interfaces was discussed by Priz et al. (2013). An ex-
perimental study of two-phase flow in porous media with measurement of relative
permeability was conducted by Labed and Bennamoun (2012).

2 Basic equation and formulation

We consider finite-amplitude two-dimensional wave propagation on the interface
z=0 separating two magnetic fluids. Fluid with density ρ2 and permeability µ2 oc-
cupies the region z >0.Whereas the region z <0 is occupied by a fluid of density
ρ1 and magnetic permeability µ1. The fluids are assumed to be inviscid and in-
compressible. The motion is assumed to be rotational with gravity g acting in the
negative y direction.

The system is stressed by a periodic tangential magnetic field H= ε
1
2 H0 cosωt~i in

the x direction where ε is a small dimensionless parameter, H0 is the amplitude of
the magnetic field, ω is the field frequency and~i is the unit vector in the xdirection.
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The system is subjected to rotation with a constant angular velocity ΩΩΩ(1,0,0) par-
allel to the direction of the flow. The interface between the two fluids is described
by z = η (x, t) or z - η (x, t) = 0. When it is completely flat then it is represented by
η = 0.

The governing equations of the problem are:

∇ ·qqq = 0 (1)

ρ
dqqq
dt

+2ρ(ΩΩΩ×qqq) =−∇p + (ρ +δρ)ggg+
(

µ−µ0

2

)
∇(HHH0 +hhh)2 (2)

d
dt
(ρ +δρ) = 0 (3)

∇ ·BBB = 0 (4)

∇×HHH = 0 (5)

where qqq = (u,v,w), ΩΩΩ = (Ω,0,0), p is the total pressure and µ0 = 1.

The magnetic potential ψ (hhh = -ε
1
2 ∇ψ) satisfies

∇
2
ψ

(1) = 0, −∞ < z < η(x, t)

∇
2
ψ

(2) = 0, η(x, t)< z < ∞
(6)

where η(x, t) is the elevation of the free surface from the unperturbed level.

The boundary conditions at the interface z = η (x, t) are

∂η

∂ t
+ui ∂η

∂x
−wi = 0 i = 1,2 (7)

∧
n ·qqq(1) = ∧n ·qqq(2) (8)

µ1H1n = µ2H2n (9)

H1t = H2t (10)

[[−p +
µ

2
(H2

n − H2
t ) ]] =

−T ηxx

(1+ η2
x )

3
2

(11)

where
∧
n = (−ηx,0,1)√

1+η2
x

and [[ ]] denotes the jump in the quantity across the interface.

To obtain an approximate solution to the above system of equations the method of
multiple scales as formulated by Weissman (1979) and Murakami (1988) is em-
ployed to investigate the interaction of finite amplitude waves by introducing the
scales tn = εnt, xn = εn x(n = 0,1,2), assuming a smallness parameter ε expressing
the steepness ratio of the wave.
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The various physical quantities are

η(x, t) =
3

∑
n=1

ε
n

ηn (x0,x1 ,x2 ; t0 , t1 , t2 ) + O(ε4) (12)

qqq(x,z, t) =
3

∑
n=1

ε
n qqqn (x0,x1,x2,z ; t0, t1, t2) + O(ε4) (13)

ψ(x,z, t) =
3

∑
n=1

ε
n

ψn (x0,x1,x2,z ; t0, t1, t2) + O(ε4) (14)

and similarly for other variables also.

To evaluate boundary conditions (7) - (11), we use the Maclaurin series expansions
at z = 0 for the quantities involved. Then on substitution of the above expansions
(12) - (14) into the set of equations (1) - (11) and equating terms of equal powers
of ε we obtain three sets of equations.

3 Linear theory

The solution of the first- order problem comes out to be

η1 = A(x1,x2; t1, t2)exp i(kx0−ω0t0)+ c.c (15)

u(1)1 =
Aδ

k
ω0 exp(iθ +δ z), z < 0 (16)

u(2)1 =−Aδ

k
ω0 exp(iθ −δ z), z > 0 (17)

v(1)1 = 2ΩAexp(iθ +δ z), z < 0 (18)

v(2)1 = 2ΩAexp(iθ −δ z), z > 0 (19)

w(1)
1 =−iAω0 exp(iθ +δ z), z < 0 (20)

w(2)
1 =−iAω0 exp(iθ −δ z), z > 0 (21)

ψ
(1)
1 =

H0 cosω t iA(1−µ)

(1+µ)
exp(iθ + kz), z < 0 (22)

ψ
(2)
1 =

H0 cosω t iA(1 − µ)

(1+µ)
exp(iθ − kz), z > 0 (23)

where θ = kx0−ω0t0, δ = k
(

1− 4Ω2

ω2
0

) 1
2
.
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The first- order problem leads to the dispersion relation

δ1ω
2
0 (ρ1 +ρ2) = (ρ1 − ρ2)gk−

H2
0 cos2 ωt(1−µ)2µ2

(1+µ)
k2 +T k3 (24)

where µ = µ1
µ2

, δ1 =
(

1 − 4Ω2

ω2
0

) 1
2
.

The linear dispersion relation (24) was initially discussed as the result of a linear
perturbation by Chandrasekhar (1961) in the absence of rotation and magnetic field.

Further in the absence of rotation, the neutral stability occurs at ω0= 0 and the
neutral stability curve H2

0 Vs k is then furnished by (24).

This curve has a minimum H2
c for a finite

Kc =

(
(ρ1 − ρ2)g

T

) 1
2

where

H2
c =

2(1+ µ)

(1−µ)2 [(ρ1 − ρ2)gT ]
1
2

The instability sets in H2 ≥ H2
c . It is interesting to note that the system is hydro

dynamically stable for ρ1 > ρ2, introduction of the magnetic field H greater than
Hc renders the system is unstable. These aspects are not restricted with respect to
rotation.

4 The second- order problem

If we carry the problem to the second-order set of equations, we can substitute the
solution of the first-order problem into the second-order and solve the resulting
equations.

Second order solutions are

η2 = ΛA2 exp(2iθ)+ c · c (25)

u(1)2 =
i
k

{(
−ω0δ 2

k
z
)

∂A
∂x1

+
(

δ +
c

2δ
(1 + zδ )

)
∂A
∂ t1

}
eiθ +δ z

+
2ω0A2

k
(Λ−δ )α e2iθ +2α z, z < 0

(26)

u(2)2 =− i
k

{(
ω0δ 2

k
z
)

∂A
∂x1

+
(

δ +
c

2δ
(1 − zδ )

)
∂A
∂ t1

}
eiθ−δ z

− 2ω0A2

k
(Λ+δ )αe2iθ−2α z, z > 0

(27)
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v(1)2 =
i
k

{
−2Ωδ z

∂A
∂x1

+
Ωkcz
ω0δ

∂A
∂ t1

}
eiθ +δ z +2ΩA2(Λ−δ ) e2iθ +2α z, z < 0

(28)

v(2)2 =
i
k

{
2Ωδ z

∂A
∂x1
− Ωkcz

ω0δ

∂A
∂ t1

}
eiθ−δ z+2ΩA2(Λ+δ ) e2iθ−2α z, z> 0 (29)

w(1)
2 =

{
−ω0δ z

k
∂A
∂x1

+
(

1+
cz
2δ

)
∂A
∂ t1

}
eiθ+δ z−2iω0A2(Λ−δ )e2iθ+2αz, z < 0

(30)

w(2)
2 =

{
ω0δ z

k
∂A
∂x1

+
(

1 − cz
2δ

)
∂A
∂ t1

}
eiθ−δ z−2iω0A2(Λ+δ )e2iθ−2α z, z > 0

(31)

where

δ = k
(

1 − 4Ω2

ω2
0

) 1
2

, α = k
(

1 − Ω2

ω2
0

) 1
2

, c = k2 − δ
2 +

4Ω2 k2

ω2
0

=
8Ω2 k2

ω2
0

ψ
(1)
2 =−(µ−1)H0 cosωt

(µ +1)
z

∂A
∂x1

eiθ+kz + iH0 cosωtA2 (1−µ)

(1+µ)
(Λ− k)e2iθ+2kz (32)

ψ
(2)
2 =

(µ−1)H0 cosωt
(µ +1)

z
∂A
∂x1

eiθ−kz + iH0 cosωtA2 (1−µ)

(1+µ)
(Λ+ k)e2iθ−2kz (33)

where

Λ =

{
2ω2

0 αδ

k2 (ρ2−ρ1)−
ω2

0 δ 2

k2 (ρ2−ρ1) + H2
0 cos2 ωtk2

(
1−µ

1+µ

)[
4− µ2(1−µ)2

(1+µ)

]}
−2ω2

0 α

k2 (ρ1 +ρ2) + 2H2
0 cos2 ω tkµ2

(
(1−µ)2

1+µ

)
− (ρ2−ρ1)g+4T k2

5 Third order problem and nonlinear evolution equation

Substituting from the first and second order solution already derived into the equa-
tions governing the third-order problem, the third-order dispersion relation is ob-
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tained.

∂ 2A
∂x12

{
ω0ρ1c1 i

k2 − ω0ρ2c4 i
k2 +

ω2
0 δ (ρ1 +ρ2)

k4

− T − H0 cosω t
(

1−µ

1+µ

)
[iH0 cosω t k(µ2−1)(4kµ− i(3+µ))

− 1
4k

(2k−1)(µ2−1) + iH0 cosω t k(µ1−1)(4k+ i(3 −µ))

+
H0 cosω t

4k
(1−2k)(µ1−1)]

}
+

∂ 2A
∂x1∂ t1

{
ω0ρ2

k

(
δ

k2 +
4Ω2

δω2
0
− c5 i

k

)
+

ω0ρ1

k

(
δ

k2 +
4Ω2

δω2
0
− c2 i

k

)
+

2ω0δ

k3 (ρ1 +ρ2)+
c
k3 (ρ1 +ρ2)

}
+

∂ 2A
∂ t12

{
−ω0ρ2c6 i

k2 +
ω0ρ1c3 i

k2 − i
k
(δ + c)(ρ1 +ρ2)

}
− ∂A

∂x2

{
2iω2

0 δ

k3 (ρ1 +ρ2) +H0 cosω t
(

1−µ

1+µ

)[
2iH0 cosω t k

1+µ
(µ2−1)

+

(
1+ ikµ

H0 cosω t kµ1(1−µ)

µ

)
−2iH0 cosω t

(µ1−1)
1+µ

]
+2T ik

}
+

∂A
∂ t2

{
2iω0δ

k2 (ρ1 +ρ2)

}
+A2Ā

{
4ω2

0 α2

k2 (ρ2(Λ + δ ) −ρ1(Λ − δ ))

+
2ω2

0
k

(ρ2(Λ + δ ) −ρ1(Λ + δ ))
(
αδ − 2α

2 − iδ 2)
−

4H2
0 cos2ω t

k2

(
(1−µ)

1+µ

)
[(µ2−1)(Λ + k) +(µ1−1)(Λ − k)]

− 1
2k2 ω

2
0 δ

3(ρ1 +ρ2) +
H2

0 cos2ω tk2

2
(1−µ)2

(1+µ)
µ2

−4µ2(1−µ)k2
Λ + 2k3H2

0 cos2
ω t

(1−µ)2

(1+µ)
µ2

− H2
0 cos2

ω tk3
µ2

(1−µ)

µ

[
2i
(

1−µ

1+µ

)
+ 4Λ

(
1−µ

1+µ

)
− 2
]
+

9
2

k4

− 2k2H2
0 cos2

ω t
(
(1−µ)

1+µ

)2

[(Λ + k)(2µ +1) − (Λ − k)(2µ −1) +2k ]

(34)
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−4k2H2
0 cos2

ω t
(
(1−µ)

1+µ

)
[(Λ + k)(µ2 −1) +(Λ − k)(µµ2 −1) ]

+ 2k2H2
0 cos2

ω t Λ

(
(1−µ)

1+µ

)
−

kH2
0 cos2ω t(1−µ)

2(1+µ)2

[−k2(µ2−1)(2k(µ +3) + (1−µ)(1+6Λ) −4Λ)

+(µ1−1)
(
2k2(µ +3) + k(1−µ)(1+6Λ) − 4(1+µ)

)
]

}
where

c1 =
i

2k2δ
, c2 =

−i k2

4δ 2

[
8Ω2δ

kω2
0
− δ 3

k3 +
δ

k
+

4Ω2δ

kω2
0

]
,

c3 =
−i k2

4δ 2ω0

[
4Ω2 kδ

ω2
0
− 16Ω4k2

δω4
0
− 4Ω2k2

δω2
0

]
, c4 =

−iω0δ

2k2 ,

c5 =
−ik
4δ 2

[
δ 3

k2 −
12Ω2

ω2
0
− δ

]

c6 =
−i k

4ω0δ 2

[
4Ω2k2

δ 2ω2
0
−4Ω

2
δ − 1

]
The above third order dispersion relation is reduced to the well known Schrödinger
equation

i
∂A
∂τ

+α
∗
1k

∂ 2A
∂ξ 2 +α

∗
k

∂A
∂ξ

+Qk |A|2 A = 0 (35)

where

α
∗
1k =

i
J5k

[J1k−CgkJ2k +C2
gkJ3k]

α
∗
k = i

(
J4k

J5k
−Cgk

)
Qk =

i
J5k

Q1k where Q1k =
∂D

∂ |A|2
and Cgk =−

Dk
Dω

with

Dk = (ρ1−ρ2)g−2kH2
0 cos2

ω t
(1−µ)2

(1+µ)
µ2 +3T k2
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Dω = 2(ρ1 +ρ2)(ω
2
0 − 2Ω

2)(ω2
0 − 4Ω

2)
−1
2 .

J∗1k, J∗2k, J∗3k, J∗4k and J∗5k respectively represent the coefficients of the terms ∂ 2A
∂x2

1
,

∂ 2A
∂x∂

1 t1
, ∂ 2A

∂ t2
1

, ∂A
∂x2

and ∂A
∂ t2

of equation (34).

Following the lines of El-Dib (1993), we can examine the stability criteria by as-
suming that the solution varies with time only.

i.e., A = m exp(iQkm2
τ), where m is a constant. (36)

The above time-dependent solution is now perturbed as

A = [m+A1k(ξ ,τ)+ iB1k(ξ ,τ)] exp(iQkm2
τ) (37)

where A1k and B1k are real functions.

Substitution of (37) in Nonlinear Schrödinger equation (35) yields the dispersion
relation

ω
2
1k +

[
α
∗2
1k k4

1− k2
1α
∗2
k −2ik3

1α
∗
k α
∗
1k
]

= 0 (38)

where k1 is the wave number and ω1k is the disturbance frequency.

6 Discussions and Conclusions

The linear dispersion relation for the case of a periodic tangential magnetic field
coincides with the linear dispersion relation in the case of tangential magnetic field
when the field frequency ω = 0. It is found that in general, the system is unstable
when the effects of rotation and tangential magnetic field are coupled (see also
Anjalidevi and Jothimani, 2001).

The instability sets in when H ≥ Hc. The system bifurcates into a new steady state
for the post critical values of the magnetic field. Cowley and Rosensweig (1967)
have experimentally verified the value of the critical magnetic field is given by
H2

c = 2(1+µ)
(1−µ)2 [(ρ1 − ρ2)gT ]

1
2 .

It was pointed out by Malik and Singh(1984) and Kant and Malik (1985) that when
k2 = 1

2 [(ρ1 − ρ2)g/T ] the second order solutions have a singularity. Physically
this represents a second harmonic internal resonance. The wave number ′k′ here
is independent of the magnetic field. For ordinary surface capillary gravity waves,
the resonant wave number is given by k = (ρ1g/2T )

1
2 and the perturbation expan-

sions are no longer uniformly valid for the second order problem due to nonlinear
focusing [MCGoldrick (1970)].

The homogeneous part of the third-order problem has a nontrivial solution that is
the same as the first order problem. The inhomogeneous problem has a solution if
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and only if the inhomogeneous part is orthogonal to every solution of the adjoint
homogeneous problem.

A nonlinear Schrödinger equation with complex coefficients has been derived
from the solvability conditions and used to analyse the stability of the system. A
quadratic dispersion relation with complex coefficients has been obtained.
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