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Effect of Porosity and Magnetic Field Dependent Viscosity
on Revolving Ferrofluid Flow in the Presence of a

Stationary Disk

Anupam Bhandari1 and Vipin Kumar2

Abstract: The purpose of this paper is to study the flow characteristics of a fer-
rofluid revolving through a porous medium with a magnetic-field-dependent vis-
cosity in the presence of a stationary disk. A Finite Difference Method is employed
to discretize the set of nonlinear coupled differential equations involved in the prob-
lem. The discretized nonlinear equations, in turn, are solved by a Newton method
(using MATLAB) taking the initial guess with the help of a PDE Solver. Results
displayed in graphical form are used to assess the effect of the variable viscosity
and porosity parameters on the velocity components. The displacement thickness
of the boundary layer is also calculated for different values of these parameters by
the Simpson’s three-eight’s rule of numerical integration. Further, the skin friction
coefficients in the tangential and radial direction are determined.

Keywords: MFD viscosity, porosity, boundary layer, ferrofluid, finite difference
method, displacement thickness, shear stress.

1 Introduction

Ferromagnetic fluids (ferrofluids) are colloidal liquids made of nanoscale ferromag-
netic, or ferrimagnetic, particles suspended in a carrier fluid. The hydro-dynamics
of such fluids are a (challenging) subject of interest for several reasons ranging from
fundamental fluid mechanics to a variety of applications in engineering. After their
first stable synthesis in the early 1960s, development of these suspensions in carrier
liquid proved the high potential for new technological applications, thereby open-
ing a new field of research, generally referred to as “ferrohydrodynamics”. One of
the many fascinating features of the ferrofluids is the prospect of influencing flow
by a magnetic field and vice-versa [Engel et al. (2003)].
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As outlined above, ferrofluids do not exist in nature; they are synthesized fluids.
The principal type is the “colloidal” ferrofluid, a suspension of finely divided par-
ticles in a certain medium which settles out slowly. Such ferrofluids are composed
of small (3-15nm) particles of solid magnetite coated with a molecular layer of a
dispersant and suspended in a liquid carrier. Thermal agitation keeps the particles
suspended because of Brownian motion and coating prevents the particles from
sticking to each other [Rosensweig (1985)]. Detailed accounts of magneto viscous
effects in ferrofluids have been given in a monograph by Odenbach (2002).

A typical ferrofluid contains 1023 particles per cubic meter.

A study of flow within the boundary layer and its effect on the general flow around
the body, in detail, are given in Schlichting (1960). A revolving flow of an ordinary
viscous fluid in the presence of a stationary disk is also explained in Schlichting
(1960) by using similarity transformation. The pioneering study of ordinary vis-
cous fluid flow due to the infinite rotating disk was carried by Von Karman (1921).
He introduced the famous transformation which reduces the governing equations
into nonlinear differential equations in dimensionless form. Cochran(1934) ob-
tained asymptotic solutions for the steady hydrodynamic problem formulated by
Von Karman. Benton (1966) improved Cochran’s solutions, and solved the un-
steady case. Bar-Yoseph et al. (1981) studied the effect of inertia on flow between
a rotating and stationary disk in tilted position with respect to the axis of rotation.
Rashidi et al. (2011) have studied the MHD convective and slip flow due to a rotat-
ing disk. Attia (1998) investigated the unsteady MHD flow near a rotating porous
disk with uniform suction or injection. The steady flow of ordinary viscous fluid
due to a rotating disk with uniform high suction was studied by Mithal (1961). At-
tia (2004) discussed about flow due to an infinite rotating disk in the presence of an
axial uniform magnetic field by taking Hall effect into consideration. The swirling
flow of a viscoelastic fluid with rotating disk was studied by Itoh et al. (2006).

Nanjundappa et al. (2010) studied Benard-Marangoni ferroconvection in a fer-
rofluid layer in the presence of a uniform vertical magnetic field with magnetic
field dependent (MFD) viscosity. Ram et al. (2010, 2013) solved the nonlinear dif-
ferential equations under Neuringer-Rosensweig model for ferrofluid flow by using
power series approximations and discussed the effect of magnetic field-dependent
viscosity on the velocity components and pressure profile. Further, the effect of
porosity and variable viscosity on the ferrofluid flow due to a rotating disk by using
power series approximation have studied by Ram et al. (2010a, 2010b).

In the present paper, the effects of porosity and MFD viscosity on the revolving
ferrofluid flow in the presence of the stationary disk considering that the angular
velocity (ω) is uniform at large distance from the plate. However, the centrifugal
force is balanced by the pressure and the magnetization force in the radial direction.
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 Figure 1: Revolving ferrofluid near a stationary disk.

We take cylindrical coordinates r,θ ,z, where z-axis is normal to the plane and this
axis is considered as the axis of rotation. The boundary layer equations together
with boundary conditions are solved numerically. This problem of revolving fer-
rofluid flow in the presence of stationary disk, to the best of our knowledge, has not
been investigated yet.

2 Mathematical formulation of the problem

The constitutive set of equations is as follows:

The equation of continuity

∇∇∇.vvv = 0 (1)

The equation of motion

ρ

ε

[
∂v
∂ t

+
1
ε
(vvv.∇∇∇)v

]
=−∇∇∇p+

µ

ε
∇

2v+µ0 (MMM.∇∇∇)HHH +
1
ε

I
2τs

∇∇∇× (ωωω p−ΩΩΩ) (2)

The equation of rotational motion

I
dωp

dt
= µ0 (MMM×HHH)− I

τs
(ωωω p−ΩΩΩ) (3)

The Maxwell’s Relations

∇∇∇×HHH = 0, ∇.(HHH +MMM) = 0; with MMM = χHHH, MMM×HHH = 0
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Here ρ is the ferrofluid density, d
dt =

∂

∂ t + vvv.∇∇∇, vvv is the fluid velocity, p is the
pressure, µ is the reference viscosity, µ0 is magnetic permeability of free space, MMM
is the magnetization, HHH is the magnetic field intensity, ε is the porosity parameter,
ωωωp is the angular velocity of the particle, ΩΩΩ is the vorticity of the flow, BBB is the
magnetic induction, χ is the magnetic susceptibility, t is the time d τs is the Neel
relaxation time and I is sum of the particle moment of inertia

Here, the inertial term is negligible in comparison with relaxation term i.e. I dωp
dt �

I ωp
τs

, therefore, the equation (3) can be written as:

ωωω p = ΩΩΩ+µ0
τs

I
(MMM×HHH) (4)

Now due to (4), equation (1) is modified as:

ρ

ε

[
∂v
∂ t

+
1
ε
(vvv.∇∇∇)vvv

]
=−∇∇∇p+µ0 (MMM.∇∇∇)HHH +

µ

ε
∇

2vvv+
1
ε

µ0

2
∇∇∇× (MMM×HHH) (5)

Two torques are acting on the particles which is called magnetic torque and viscous
torque. Magnetic torque is denoted by MMM×HHH and the viscous torque is defined as
the speed of the particles differing from the vorticity of the flow i. e. (ωωω p−ΩΩΩ)
[Bacri et al. (1995)]. The equilibrium of both torques, which leads to the hindrance
of the particle rotation, can thus be written from the equation (4) as:

µ0 (MMM×HHH) =−6µφ (ΩΩΩ−ωωω p) (6)

The expression for mean magnetic torque becomes as:

µ0
(
MMM×HHH

)
=−6µφgΩΩΩ (7)

Now, we calculate

1
ε

µ0

2
∇∇∇×MMM×HHH =

1
2ε

∇∇∇×−6µφgΩΩΩ

=− 3
2ε

µφg∇(∇.vvv)+
3
2

µ

ε
φg∇

2vvv =
3
2

µ

ε
φg∇

2vvv (8)

Here g is the effective magnetization parameter given by Bacari(1995) and φ is the
volume fraction. Now with the help of (8), the equation of motion can be written
as:

ρ

ε

[
∂v
∂ t

+
1
ε
(vvv.∇∇∇)vvv

]
=−∇∇∇p+µ0 (MMM.∇∇∇)HHH +

µ

ε

(
1+

3
2

φg
)

∇
2vvv (9)

In equation (9), 3
2 φg = δδδ .BBB where δδδ is the linear measurement of the viscosity in

the direction of the applied magnetic field.
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Equations (1) and (9) can be written in the cylindrical form:

∂vr

∂ r
+

vr

r
+

∂vz

∂ z
= 0 (10)

− 1
ρ

∂ p
∂ r

+
µ

ρ
|MMM| ∂

∂ r
|HHH|+ν1

ε

[
∂ 2vr

∂ r2 +
∂

∂ r

(vr

r

)
+

∂ 2vr

∂ z2

]
=

1
ε2

[
vr

∂vr

∂ r
+ vz

∂vr

∂ z
−

v2
θ

r

]
(11)

ν1

ε

[
∂ 2vθ

∂ r2 +
∂

∂ r

(vθ

r

)
+

∂ 2vθ

∂ z2

]
=

1
ε2

[
vr

∂vθ

∂ r
+ vz

∂vθ

∂ z
+

vrvθ

r

]
(12)

− 1
ρ

∂ p
∂ z

+
µ

ρ
|MMM| ∂

∂ z
|HHH|+ ν1

ε

[
∂ 2vz

∂ r2 +
1
r

∂vz

∂ r
+

∂ 2vz

∂ z2

]
=

1
ε2

[
vr

∂vz

∂ r
+ vz

∂vz

∂ z

]
(13)

where vr, vθ and vz are velocity components in the radial, tangential and axial
direction, respectively. Here, ν1 =

µ(1+δ .B)
ρ

is kinematic variable viscosity, δδδ .BBB is
a dimensionless parameter.

Here the fluid at large distance from the disk is revolving with uniform angular
velocity ω . The boundary conditions for the revolving flow of ferrofluid in the
presence of the stationary disk used by Schlichting (1960) are given as follows

at z = 0; vr = 0, vθ = 0 vz = 0
at z→ ∞; vr→ 0, vθ → rω

}
(14)

Here, vz does not vanish at z→ ∞, but tends to a finite value.

Using the boundary layer approximation 1
ρ

∂ p
∂ r −

µ0
ρ
|MMM| ∂

∂ r |HHH|= rω2 and similarity

transformations vr = rωE (β ) ,vθ = rωF (β ) ,vz =
√

νωG(β ) , where = z
√

ω

ν
, the

system reduces into a set of nonlinear coupled differential equations in the form of
E, F and G as follows:

G′+2E = 0 (15)

εkE ′′−GE ′−E2 +F2− ε
2 = 0 (16)

εkF ′′−GF ′−2EF = 0 (17)

Here,

E (0) = 0, F (0) = 0, G(0) = 0
E (∞) = 0, F (∞) = 1

}
(18)

In equations (15)-(17), E ′ (β ) = dE
dβ

, E ′′ (β ) = d2E
dβ 2 , F ′ (β ) = dF

dβ
, F ′′ (β ) = d2F

dβ 2 ,

G′ (β ) = dG
dβ

, and v1
v = 1+δδδ ·BBB = k, where k represents a MFD viscosity parameter.
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3 Solution of the problem

Equations (16)-(17) can be written with the help of (15) as:

2εkG′′′−2GG′′+
(
G′
)2−4F2 +4ε

2 = 0 (19)

εkF ′′−GF ′+G′F = 0 (20)

Finite difference method is used to discretize (19)-(20) as:

2εk
[

1
2h3 (Gi+2−2Gi+1 +2Gi−1−Gi−2)

]
−2Gi

[
1
h2 (Gi+1−2Gi +Gi−1)

]

+
1

4h2 (Gi+1−Gi−1)
2 +4F2

i +4ε
2 = 0 (21)

εk
[

1
h2 (Fi+1−2Fi +Fi−1)

]
−Gi

[
1

2h
(Fi+1−Fi−1)

]
+Fi

[
1
2h

(Gi+1−Gi−1)

]
= 0

(22)

The solution of this boundary value problem is obtained in the range β = 0 to β = 5,
where the interval is differing by h. We divide the whole length into 100 equal parts
as:

We take h = 1
20 ; β0 = 0, β100 = 5

Now, (21) and (22) can be written as:

8×103
εk (Gi+2−2Gi+1 +2Gi−1−Gi−2)−8×102Gi (Gi+1−2Gi +Gi−1)

+102 (Gi+1−Gi−1)
2−4F2

i +4ε
2 = 0

(23)

4×102
εk (Fi+1−2Fi +Fi−1)−10Gi (Fi+1−Fi−1)+10(Gi+1−Gi−1)Fi = 0 (24)

The equations (23) and (24) for 1≤ i≤ 99 , we get a set of 99 equations as:

From Equation (23):

8×103εk (G3−2G2 +2G0−G−1)−8×102G1 (G2−2G1 +G0)+102(G2−G0)
2−4F2

1 +4ε2=0
8×103εk (G4−2G3 +2G1−G0)−8×102G2 (G3−2G2 +G1)+102(G3−G1)

2−4F2
2 +4ε2=0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

8×103εk(G101−2G100+2G98−G97)−8×102G99 (G100−2G99+G98)+102(G100−G98)
2−4F2

99+4ε2=0


(25)
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From Equation (24):

4×102
εk (F2−2F1 +F0)−10G1 (F2−F0)+10(G2−G0)F1 = 0

4×102
εk (F3−2F2 +F1)−10G2 (F3−F1)+10(G3−G1)F2 = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

4×102
εk (F100−2F99 +F98)−10G99 (F100−F98)+10(G100−G98)F99 = 0


(26)

Using the boundary conditions, the following relations are obtained as:

E (β ) =−G′(β )
2 so that G′ (0) = 1

2h (G1−G−1) and G′ (100) = 1
2h (G101−G99)

Implying G1 = G−1 and G101 = G99

Also, we have F100 = 1, F0 = 0; G0 = 0

Using the above relations in equations (25) and (26), a system of nonlinear equa-
tions is formed of n variables and n equations. Their solution can be found with the
help of Newton method as:

Let fi and gi, respectively, are functions defined for equations (25) and (26) as:

fi (G1, G2, . . . . . . ,G99;F1, F2, . . . . . . ,F99) = 0
gi (G1, G2, . . . . . .G99;F1, F2, . . . . . . ,F99) = 0

}
for 1≤ i≤ 99 (27)

By using equation (25):

∂ f1

∂G1
=−8000εk−800G2 +3200G1 (28)

Similarly, other derivative of functions f1 are calculated as:

∂ f1

∂Gi
; for 2≤ i≤ 99 and

∂ f1

∂Fi
; for 1≤ i≤ 99 (29)

As above, the partial derivative of f j can be computed as:

∂ f j

∂Gi
,

∂ f j

∂Fi
for 2≤ j ≤ 99, 1≤ i≤ 99 (30)

By using equation (26):

∂g1

∂G1
=−10F2 (31)

Similarly, other derivative of functions g1 are calculated as :

∂g1

∂Gi
; for 2≤ i≤ 99 and

∂g1

∂Fi
; for 1≤ i≤ 99 (32)
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As above, the partial derivative of g j can be computed as:

∂g j

∂Gi
,

∂g j

∂Fi
for 2≤ j ≤ 99, 1≤ i≤ 99 (33)

Now, we initialize the values of G1, G2, . . . . . ., G99 and F1, F2, . . . . . ., F99 as follows:

G1
1 = G0

1 +a1, G1
2 = G0

2 +a2, . . . . . . , G1
99 = G0

99 +a99 (34)

F1
1 = F0

1 +b1, F1
2 = F0

2 +b2, . . . . . . , F1
99 = F0

99 +b99 (35)

Similarly, we write set of 2nd iterated values as:

G2
1, G2

2, . . . . . . , G2
99; F2

1 , F2
2 , . . . . . . , F2

99. (36)

Here, superscript 0 denote the initial value and superscript 1 denote the improved
value after iteration. As in present case, the initial guess is very close to the actual
value, therefore it converges after 2nd iteration only. However, if the initial guess is
too far from the actual value, the solution may not converge.

In equations (34) and (35), a1, a2, . . . . . . . , a99; b1, b2, . . . . . . . , b99 are the perturba-
tions from the actual values. It may be either positive or negative. If the initial guess
is close to the actual value, the perturbation will be close to zero; as perturbation
tends to zero, actual solution of the problem is obtained.

Equations (25) and (26) are transformed in linear equations as:

f1 (G1 . . . . . .G99;F1 . . . . . .F99)+∑
99
i, j=1

(
ai

∂ f1
∂Gi

+b j
∂ f1
∂Fj

)
f2 (G1 . . . . . .G99;F1 . . . . . .F99)+∑

99
i, j=1

(
ai

∂ f2
∂Gi

+b j
∂ f2
∂Fj

)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

f99 (G1 . . . . . .G99;F1 . . . . . .F99)+∑
99
i, j=1

(
ai

∂ f99
∂Gi

+b j
∂ f99
∂Fj

)


(37)

g1 (G1 . . . . . .G99;F1 . . . . . .F99)+∑
99
i, j=1

(
ai

∂g1
∂Gi

+b j
∂g1
∂Fj

)
g2 (G1 . . . . . .G99;F1 . . . . . .F99)+∑

99
i, j=1

(
ai

∂g2
∂Gi

+b j
∂g2
∂Fj

)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

g99 (G1 . . . . . .G99;F1 . . . . . .F99)+∑
99
i, j=1

(
ai

∂g99
∂Gi

+b j
∂g99
∂Fj

)


(38)
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We write the equations (37) and (38) in 98×98 matrix form as:
∂ f1
∂G1

· · · ∂ f1
∂F99

...
. . .

...
∂g99
∂G1

· · · ∂g19
∂F99


 a1

...
b99

=

 f1 (G1,G2, . . . . . .G99;F1,F2, . . . . . .F99)
...

g99 (G1,G2, . . . . . .G99;F1,F2, . . . . . .F99)


(39)

Here a1, a2, . . . . . . ., a99; b1, b2, . . . . . . ., b99 can be calculated numerically with the
help of MATLAB. After 2nd iteration, the convergent result is obtained; however,
the initial guess is taken with the help of Flex PDE. The Numerical data, which was
taken from Flex PDE, are verified by MATLAB. The actual values of E, F and G
come very close when a1, a2, . . . . . . ., a99; b1, b2 ,. . . . . . ., b99 tend to zero.

The boundary-layer displacement thickness is calculated as

d =
1

rω

∞

∫
0

vθ dz =
∞

∫
0

F (β )dβ (40)

The displacement thickness of the boundary layer is presented in the following
tables as:

Table 1: Displacement thickness (d) for various values of porosity and MFD vis-
cosity parameters.

HH
HHHHε

k
1.1 1.2 1.3

0.7 3.3896 3.2456 3.1287
0.8 3.8658 3.7425 3.6328
0.9 4.3268 4.1628 4.0698

However, the displacement thickness (d) is 4.872905 for ordinary case where there
is no effect of porosity and MFD viscosity parameters on the ferrofluid flow.

The expressions for shear stress on the wall of the disk (τw) and its surface (τs) are
as follows:

τw = µ

[
∂vθ

∂ z + 1
r

∂vz
∂θ

]
z=0

τs = µ

[
∂vz
∂ r + ∂vr

∂ z

]
z=0

 (41)

By using similarity transformation, the skin friction coefficient in the tangential
direction (cw) and in the radial direction (cs) can be calculated as:
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Table 2: Skin friction coefficient cw for different values of ε and k.
HHH

HHHk
ε

ε = 1 ε = 0.7 ε = 0.8 ε = 0.9

1 0.7736 0.5414 0.6188 0.6962
1.1 0.7375 0.5161 0.5899 0.6637
1.2 0.7061 0.4939 0.5647 0.6354
1.3 0.6784 0.4743 0.5423 0.6104

Table 3: Skin friction coefficient cs for different values of ε and k.
HH

HHHHk
ε

ε = 1 ε = 0.7 ε = 0.8 ε = 0.9

1 0.9429 0.6602 0.7545 0.8487
1.1 0.8988 0.6295 0.7192 0.8090
1.2 0.8603 0.6027 0.6886 0.7745
1.3 0.8263 0.5790 0.6614 0.7438

4 Results and Discussion

The problem considered here involves a number of parameters, on the basis of
which a wide range of numerical results has been derived. Of these results, a small
section is presented here for brevity. A case of motion near a stationary disk, which
is being at z = 0, the fluid at large distance from it rotates at constant angular
velocity (ω). The fluid particles which rotate at a large distance from the wall are
in equilibrium due to centrifugal force.

Figures 1-3 show the radial velocity profile for different values of MFD viscos-
ity and porosity parameters. It is evident from the figures 1-3, for ε = 0.7, the
radial velocity gets less negative value in comparison to ordinary case. However,
increasing values of porosity parameter (ε), flow is directed radiially inward. And,
at ε = 1, we reach the state, where there is no effect of porosity parameter. At
a large distance from the plate (large values of β ) , the flow is directed radially
outward. Negative values of the radial velocity indicate that the flow is directed
radially inward and positive values shows that it is directed radially outward.. Also
it is clear from the figures that MFD viscosity parameter has less effect on the ve-
locity profiles in comparison to porosity parameter. Further, we observe that at
porosity ε = 0.9, radial velocity becomes positive at less axial distance from the
disk in comparison to the porosity ε = 0.7,0.8 . However, for k = 1, ε = 1, the
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problem reduces to the ordinary case (Schlichting 1960), where there is no effect
of porosity and MFD viscosity parametres. In the ordinary case, the radial velocity
is negative for starting values of β because the particle near the wall to flow radially
inwards so the tangential velocity is reduced thus decreasing the centrifugal force.

Figure 2: Radial velocity profile for various values of k at ε = 0.7.

Figures 4-6 show the tangential velocity profile. In the ordinary case, the tangen-
tial velocity increases continuously for increasing values of β . However, the fluid
particle rotates at large distance from the plate about the z axis with constant an-
gular velocity ω . Due to porosity parameter, the tangential velocity decreases in
comparison to the ordinary case. For increasing values of porosity parameter, the
tangential velocity increases and at ε = 1, the state is reached where there is no
effect of porosity

Figures 7-9 indicate the axial velocity profile. Here it is observed that the axial
velocity does not depend much on radius of the disk but only on the distance from
the ground. Due to the effect of porosity, the axial velocity decreases, however, for
increasing values of MFD viscosity parameter, the axial velocity increases.

The displacement thickness is also calculated for different values of porosity and
MFD viscosity parameters by Simpson’s three-eight’s rule. From the table, it is
clear that for increasing the porosity parameter the displacement thickness of the
boundary layer increases. However, in the ordinary case, the displacement thick-
ness becomes 4.8729. In tables 2 and 3, the skin friction coefficients are calculated
in the radial and tangential directions respectively. In case of without porosity, the
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Figure 3: Radial velocity profile for various values of k at ε = 0.8.

Figure 4: Radial velocity profile for various values of k at ε = 0.9.
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Figure 5: Tangential velocity profile for various values of k at ε = 0.7.

Figure 6: Tangential velocity profile for various values of k at ε = 0.8.
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Figure 7: Tangential velocity profile for various values of k at ε = 0.8.

Figure 8: Axial velocity profile for various values of k at ε = 0.7.
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Figure 9: Axial velocity profile for various values of k at ε = 0.8.

Figure 10: Axial velocity profile for various values of k at ε = 0.9.



374 Copyright © 2014 Tech Science Press FDMP, vol.10, no.3, pp.359-375, 2014

radial skin friction coefficient, cs, and tangential friction coefficient, cw, decrease
for increasing values of MFD viscosity parameter. However, these coefficients i.e.
cs and cw, increases for increasing the porosity parameter.

5 Conclusions

The present results clarify the effect of porosity and MFD viscosity on the velocity
components of a revolving ferrofluid flow in the presence of a stationary sisk. These
results indicate that there is a dominant effect of the porosity parameter on the flow
characteristics while the influence of the MFD viscosity parameter is rather limited.
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