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MHD Effect on Relative Motion of Two Immiscible Liquid
Spheres
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Abstract: We examine the motion of the two concentric immiscible liquid
spheres with different viscosities in an electrically conducting fluid in the presence
of transverse magnetic field. The inner sphere is assumed to move at a constant
velocity. The Stoke’s equation along with the Lorentz force is considered to model
the resulting fluid flow, analytical solutions being obtained by the similarity solu-
tion method in terms of modified Bessel’s functions. Streamlines related to the fluid
circulation in the annulus between the two liquid spheres and inside the inner liquid
sphere are presented for different combinations of the governing non-dimensional
parameters.
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1 Introduction

The motion of particles relative to a fluid is often of interest in the field of chem-
ical, biomedical, environmental engineering and sciences. In these transport phe-
nomena’s, the flow characteristics can be developed to understand many practical
systems and industrial process. Such as sedimentation, flotation of oil fields / reser-
voirs during oil recovery, electrophoresis, agglomeration, lubrication and motion of
blood cell in artery or vein. Further in many realistic applications like in dispersion
of fine particles in geophysical flows and planetary atmosphere, floc sedimentation,
paints and lubricant industries, etc. the force experienced by a body or fluid, when
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they are in relative motion is of great practical importance. In these kinds of motion,
the multiple particle systems are more important than the single particle, in deter-
mining the effect of neighboring particles or boundaries on the movement of the
particles. In the literature several investigations are reported on the flow of Newto-
nian fluids while considering the relative motion of solid or liquid spheres/cylinder.

Happel (1958) studied the slow motion of fluids relative to beds of spherical par-
ticles. The relation for the rate of sedimentation or pressure drop as a function of
void volume was obtained. Also, the results are in good agreement with Carman-
kozeny equation. Bernner (1961) analyzed the viscous flow for steady motion of a
solid sphere towards or away from a plane surface of infinite extent. The exact so-
lution was obtained using bi-polar co-ordinate system and was applied to determine
the end-effect correlation in falling-ball viscometer. Wacholder and Weihs (1972)
presented the study of Stokes flow in and around a spherical fluid particle in the
presence of another fluid particle or of a plane surface normal to the settling veloc-
ity. The exact solutions are obtained using bi-spherical co-ordinates. The motion
of two spherical particles (solid particle or liquid droplets or gas bubbles) along
their line of centers was studied by Rushton and Davies (1978). They carried out
these results for quasi-steady creeping flow condition and presented the results for
drag coefficients and streamlines. The results are applied to the gravity settling of
droplets and coalescence of droplets.

The hydrodynamic deformation of a solid elastic sphere, immersed in a viscous
fluid and in close motion towards another sphere or plane solid surface was pre-
sented by Davis et al (1986). The rotational criteria that a solid particle will stick or
rebound subsequent to the impact was established with intend of application in the
course of filtration or coagulations where viscous forces are important. Masliyah
et al (1987) solved the creeping flow of an incompressible fluid past an isolated
composite sphere with a permeable shell for constant permeability and arbitrary
thickness. The continuity of velocity and stress across the interface between porous
and clear fluid are used as the boundary conditions. Palaniappan et al. (1994) stated
and proved the theorem for non-axi symmetric Stokes flow of a viscous fluid for a
sphere. It was noticed that the expression for drag on the fluid sphere was a linear
combination of rigid and shear free drags. They also obtained the existing sphere
theorem as a special their results. The uniform motion of a drop of one fluid moving
in another immiscible unbounded fluid was presented by Paranjape and Paranjape
(1996). They analyzed the condition of normal stress balance across the interface
of the two fluid spheres.

Palaniappan (2000) presented a general solution for the creeping flow equations
which are bounded by a non-deforming planar interface. The expression for gen-
eral reflection theorem was derived for a fluid-fluid interface containing Lorentz
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reflection formula. The theorem allows a better interpretation of the image system
for various singularities in the presence of a planar interface. Relative motion of liq-
uid spheres of different viscosities when the surface of the outer sphere was free has
been considered by Bhatt and Shirley (2002). The two dimensional viscous flows
in a granular material with void of arbitrary shape was carried out by Rajasekhar
and Sano (2003) because of its importance in formation of waterway networks and
estimation of underground water velocity. An experimental study of the wetting
and evaporation of sessile drops under the influence of atmospheric pressure was
presented by Sefiane (2005). Adaptive sharp interface numerical technique was
used by Sussman and Ohta (2007) to solve two phase flows.

The motion of conducting fluids in an electromagnetic field finds applications in
many physical, geophysical and industrial fields. In these practical applications
there is a scope to control the motion of the fluid past solid bodies with Magne-
tohydrodynamics (MHD) effects. Thus Hartmann flow is a classical problem that
has important application in MHD power generators and pumps, aerodynamics,
heating, polymer technology, the petroleum industry, purification of crude oil, and
design of various heat exchangers. Also, in the recent developments in rocketry and
space craft have given rise to study of conducting fluids past solid bodies of various
shapes. In the literature several works have been done on the flow of an electri-
cally conducting fluid past a sphere / cylinder to understand the effect of applied
magnetic field.

Stewartson (1956) analyzed the steady motion of a perfectly conducting sphere in
an inviscid conducting fluid in the presence of a strong magnetic field. It was no-
ticed that the streamlines outside the sphere are straight lines if the sphere moves
in the direction of the field and execute sharp turns if it moves at right angles to
the field. Childress (1963) has investigated the effect of magnetic field on the flow
of a conducting fluid past a body of revolution when both the magnetic field and
the streaming motion of the fluid at infinity are uniform and parallel to the axis of
symmetry of the body. Nigam (1978) has studied the problem of two dimensional
non-uniform flow of an infinitely conducting, inviscid, incompressible fluid past a
non-conducting circular airfoil in the presence of magnetic field in the direction of
the flow. The drag and lift experienced by the airfoil due to the external magnetic
field have been discussed. Sanyal and Roy Chowdhury (1984) have studied two di-
mensional, non-uniform flow of an infinitely conducting, inviscid, incompressible
fluid past a cylinder having the cross section bounded by two circular arcs in the
presences of magnetic field along the flow direction. Anjali Devi and Raghavachar
(1987) investigated the upward flow of a vertically stratified, electrically conduct-
ing fluid past a non conducting sphere in the presence of uniform magnetic field for
diffusive medium. Quasi-steady approximation was made allowing for time depen-
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dent buoyancy force. Matching asymptotic expansion was employed to obtain the
drag exerted on the sphere for small value of stratification parameter.

Kyrlidis et al. (1990) presented the study of conducting fluid past axi-symmetric
bodies in the presence of magnetic field in the limit of small inertial and magnetic
Reynolds numbers. The objective was to control the particle settling in metallic
systems. The steady, viscous, electrically conducting fluid flow around a circular
cylinder in the presence of magnetic field applied parallel to the main flow was
investigated by Raghava Rao and Sekhar (2000). Sekhar et al. (2003) presented
the effect of applied magnetic field parallel to the main flow for low and moder-
ate Reynolds number of a steady, incompressible, viscous, conducting fluid flow
past a sphere. A numerical simulation for liquid metal channel flow under inho-
mogeneous magnetic field was analyzed by Votyakov and Zienicke (2007). Keh
and Hsieh (2010) presented the MHD effect on a translating and rotating colloidal
sphere in an arbitrary electrolyte solution. A general flow field was considered for
a steady state with uniform magnetic field. Stokes equation along with Lorentz
force was used to describe the flow. The effect of MHD on the particle movement
associated with translation and rotation of the particle and fluid flow are discussed.
Pal and Talukdar (2011) analyzed the unsteady flow of a laminar two-dimensional
oscillatory flow of an incompressible electrically conducting viscous fluid between
two non-conducting parallel plane surfaces in the presence of suction / injection.

The use of magnetic field to control the flow processes in different domains under
different types of boundaries place a vital role in modern metallurgical and metal
working processes. This has led to considerable interest in the study of boundary
layer flows subjected to an externally applied magnetic field. Keeping in view of
vast area of practical importance, in this paper we present the analytical solution for
relative motion of two concentric immiscible liquid spheres with different viscosity
under the influence of applied magnetic field.

2 Mathematical Formulation

The study of relative motion of the two concentric immiscible liquid spheres with
different viscosity in an electrically conducting fluid is presented in the presence
of transverse magnetic field. The inner liquid sphere of radius a with the viscosity
µ 1, moving with the velocity V is embedded in another liquid sphere of radius
b with the viscosity µ2. Here the two liquid fluids are considered as immiscible
fluids, thereby the flow region is divided into two regions namely region I from
0 < r ≤ a and region II from a < r ≤ b. Let the index i in the subscript of any
flow property Xi, i = 1, 2 represents region I and region II respectively. Using
Stokes approximation (see Happel (1958)) along with the additional body force in
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the momentum equation is given by:

∇ ·→qi = 0, (1)

∇pi = µi∇
2→qi +µ

2
h σe

(→
qi×

→
H
)
×
→
H, (2)

where
→
qi (ui , vi wi) is the velocity of the fluid, pi is the hydrostatic pressure of the

fluid, µi is the viscosity of fluids, µh is the magnetic permeability, σe is electrical
conductivity and

→
H is applied magnetic field.

The governing equations (1) and (2) are Non- dimensionalised using the transfor-
mations:

r∗ =
r
a
,

→
q∗i =

→
qi

V
, p∗i =

api

µ V
,

→
H∗ =

→
H
H0
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Where H0 is the uniform magnetic field. Using the transformation from equation
(3) in equation (1) and (2), for spherical polar co-ordinates in presence of transverse
magnetic field and for axi-symmetry, takes the form:
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(6)

As the motion is axi-symmetrical, the present problem is readily treated by means
of stream function, ψ (r,θ). In terms of stream function the velocity components
in spherical polar co-ordinates (r,θ ,0) take the form:

ui =
1

r2 sinθ

∂ ψi

∂ θ
; vi =

−1
r sinθ

∂ ψi

∂ r
. (7)

Using equation (7) in equations (5) and (6) and on cross differentiation, we get(
E4−M2E2)

ψi = 0, (8)
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where E 2 = ∂ 2

∂ r2 +
sinθ

r 2
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(
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)
is the Laplacian operator and
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√

µ 2
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is the Hartmann number.

The boundary conditions for the problem which are physically realistic and mathe-
matically stable are:

The normal and tangential velocity remains finite as r→ 0, i.e. u 1 and v 1 remains
constant for r→ 0,

at r = a,

u 1 = 0 = u 2
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∂
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(
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r 2
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where λ = µ2
µ1

is the viscosity ratio.

At r = b

u 2 = V cosθ

r ∂
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( v 2
r
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+ 1

r
∂ u2
∂ θ
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}
. (10)

3 Method of Solution

The solution of the Eq. (8) is considered in the form of (see Pop et al. 2010):

ψi (r,θ) = fi (r) sin2
θ . (11)

On substituting equation (11) in equation (8), the partial differential equation of
fourth order in stream function ψi (r,θ) reduces to ordinary differential equation of
order four in f (r) as:

f 1V
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To find the solution for the equation (12), we take the transformation as

√
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Substituting the equation (13) in the equation (12), we get
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Equation (14) is the modified Bessel differential equation of order 3/2 and the so-
lution in terms modified Bessel functions as:

gi (r) = Ci I 3
2
(rM) + Di K 3

2
(rM) , (15)

where I 3
2
(rM) and K 3

2
(rM) are the modified Bessel’s function of first and second

kind respectively of order 3/2, and Ci and Di are arbitrary constants of integration.
Substituting equation (15) in equation (13), fourth order ordinary differential equa-
tion reduces to second order with variable co-efficient as:

f
′ ′
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r I 3

2
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√
r K 3

2
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Equation (16) is linear differential equation of order two with variable co-efficient
form and is solved completely using method of variation of parameter, the solution
is:
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r
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√
rMI 3

2
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rMK 3

2
(rM) . (17)

where A i and B i are also arbitrary constants. From Eq. (17) we can write the
solution in both the regions as:
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r
+ B1r2 + C1
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2
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2
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The validity of the solution, from equation (18) is true for the flow in the region I
provided A1 = 0 and D 1 = 0 when r → 0. Therefore the solution in, region I, is
given by

f 1 (r) = B 1 r 2 + C 1
√

r M I 3
2
(rM) , 0≤ r < a , (20)

here B1, C1, A2, B2, C2 and D2 are arbitrary constants. Also the respective boundary
conditions, from equations (9) and (10) in f (r) as

at r = a
f1 (r) = 0 = f2 (r) ,
f
′
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′
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at r = b
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2 ,
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′
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}
. (22)

The constants in the solution of equations (19) and (20) are obtained with the help
of the boundary conditions from equations (21) and (22), and are given in the ap-
pendix.
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4 Results and Discussion

In the study, relative motion of two immiscible liquid spheres with the same ori-
gin of different viscosity is investigated for an electrically conducting fluid in the
presence of applied magnetic field. The uniform magnetic field is applied in the
direction perpendicular to the flow. The modified Stokes equation is considered to
describe the flow in both the domains. The induced magnetic field is assumed to be
negligible since the magnetic Reynolds number of the present study is very small.
An analytical solution, in terms of stream function is obtained using similarity so-
lution method. The obtained solution consists of modified Bessel’s function of first
and second kind of order 3/2. The constants are evaluated using Happel (1958) cell
boundary conditions on the surface of the outer liquid sphere. The fluid flow is
studied in terms of streamlines for various non-dimensional parameters present in
the problem.

 

 

     
 

       
  

 

(a) 

(c) 

(b) 

(d) 

Figure 1: Streamlines for different values of M with λ = 0.5 (a) M = 0 (b) M = 2
(c) M = 3 (d) M = 5.
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The effect of magnetic field is considered on the streamlines pattern for a fixed
viscosity ratio λ . The streamline patterns for λ = 0.5(λ < 1) are illustrated in Fig.
1. The flow is uniform for M = 0 when the inner fluid sphere is moving with the
constant velocity V . As the magnetic field strength M increases to 2, the fluid is
circulating in the inner fluid sphere and a uniform fluid flow is observed outside
the sphere. Further, an increase in the Hartmann number to 3 and 5, the fluid
circulation is visible in the outer sphere also. It is also, noted that the streamlines
outside the sphere are concentrated on the surface of the inner sphere forM = 3.
But streamlines are considerably free on the surface of the inner sphere for M = 5
and the amount fluid flow inside the sphere is also less.

The streamlines are studied for various Hartmann numbers when viscosities of the
fluids remain same (λ = 1), and the same is illustrated in Fig. 2. It is observed that
the circulation of the fluid appear both in inner and outer sphere. Also the amount
of fluid flow in the inner sphere is more when the Hartmann number is increased.

    

    
 

  

 

(a) (b) 

(d) (c) 

Figure 2: Streamlines for different values of M with λ = 1 (a) M = 0 (b) M = 2 (c)
M = 3 (d) M = 5.



352 Copyright © 2014 Tech Science Press FDMP, vol.10, no.3, pp.343-356, 2014

Further, Fig. 3 reveals the streamlines for different Hartmann numbers when the
viscosity of the fluid for outer sphere is more than that of inner sphere. In this
case it has been noticed that the circulation of the fluid in and around the inner
sphere and the streamlines are uniform in absence of magnetic field. The increase
in magnetic field strength leads to the fluid circulation in the inner and outer sphere.
The meandering of streamlines around the inner sphere amplifies by amplifying the
Hartmann number. Thus, it can be concluded that the effect of magnetic field is to
reduce the flow circulation for a fixed value of viscosity ratio.

Streamlines are also discussed for various viscosity ratios with fixed Hartmann
number and are illustrated in Fig. 4. The fluid flow past an inner sphere is observed
for lower values of viscosity ratio, but the circulation of the fluid in the inner spher-
ical region is noticed and illustrated in Fig. 4.

     
 

     
 
  

 

(a) (b) 

(d) (c) 

Figure 3: Streamlines for different values of M with λ = 1.5 (a) M = 0 (b) M = 2
(c) M = 3 (d) M = 5.
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(a) (b) 

(d) (c) 

Figure 4: Streamlines for different values of λ with M = 1 (a) λ = 0.001 (b) λ = 0.1
(c) λ = 0.5 (d) λ = 1.0.

5 Conclusions

The phenomenon, concerning the flow of immiscible fluids has a definite role in
chemical engineering and medicine. In the view of this, here we have considered
the steady flow related to two immiscible fluid spheres of different viscosities in
the presence of a transverse magnetic field for the case in which the inner sphere
moves with a constant velocity. The modified Stokes equations have been con-
sidered to describe the flow field. The flow has been assumed two dimensional
and axi-symmetric. Hence, the analytical solution has been obtained in terms of
stream function by a similarity solution method (the obtained solution is a function
of modified Bessel’s function of order 3/2).

Streamlines have been plotted to understand the fluid flow behavior when the
strength of the magnetic field is increased.
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Appendix

D2 =
−n3n4

n1n5−n4n2
, C2 =

1
n1

(n3−n2D2) ,

B2 =
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m1a3−m2
{(m3−m1l2)C2 +(m4−m1l3)D2} ,

A2 =
−1
m1
{m2B2 +m3C2 +m4D2} , B1 =

l1D1

a3
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sinhM1a

M1
,

l5 = e−M2a
(

M2a2 +a+
1

M2

)
,

l6 = (M2a−1)a coshM2a+
sinhM2a

M2
,

l7 = a(5−2M1a)coshM1a+
(
(M1a1)

3− (M1a)2−4
) sinhM1a

M1

l8 = λ

[
(M2a)3 +(3M2a)2 +4M2a+4

] e−M2a

M2
,

l9 = λ a (5-2M2a)coshM2a+λ

[
(M2a)3− (M2a)2−4

] sinhM2a
M2

l10 =

(
b+

1
M2

)
e−M2b, l11 = (bcoshM2b)− sinhM2b

M2
,

l12 =
b3v
2

, l13 =

(
3+

2
b

)
,

l14 =

[
(bM2)

3 +2(bM2)
2 +3(bM2)+2M2 +2+

2
b

]
e−M2b

M2

l15 =
(
4b−M2b2 +2

)
coshM2b+

[
(M2b)3− (M2b)2−3− 2

b

]
sinhM2b

M2
.


