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MHD Natural Convection in a Nanofluid-filled Enclosure
with Non-uniform Heating on Both Side Walls
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Abstract: This study examines natural convection in a square enclosure filled
with a water-Al2O3 nanofluid and subjected to a magnetic field. The side walls of
the cavity have spatially varying sinusoidal temperature distributions. The horizon-
tal walls are adiabatic. A Lattice Boltzmann method (LBM) is applied to solve the
governing equations for fluid velocity and temperature. The following parameters
and related ranges are considered: Rayleigh number of the base fluid, from Ra=103

to 106, Hartmann number from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4
and π) and solid volume fraction of the nanoparticles between φ= 0 and 6%. The
results show that the heat transfer rate increases with an increase in the Rayleigh
number but it decreases with an increase in the Hartmann number. For γ = π/2
and Ra=105 the magnetic field strengthens the effect produced by the presence of
nanoparticles. For Ha=0, the most evident influence of nanoparticles is achieved at
γ = 0 and π/4 for Ra=104 and 105 respectively.

Keywords: Lattice Boltzmann Method, Natural convection, nanofluid, magnetic
field, Sinusoidal temperature distribution.

Nomenclature

B Magnetic field (T)
c Lattice speed (m/s)
cs Speed of sound (m/s)
ci Discrete particle speeds (m/s)
cp Specific heat at constant pressure (JKg−1K−1)
F External forces (N)
f Density distribution functions (kg m−3)
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f eq Equilibrium density distribution functions (kg m−3)
g Internal energy distribution functions (K)
geq Equilibrium internal energy distribution functions (K)
~g Gravity vector (m s−2)
Ha Hartmann number
k thermal conductivity (Wm−1 K−1)
Ma Mach number
n Number of nodes
Nu Local Nusselt number
P Pressure (N m−2)
Pr Prandtl number
Ra Rayleigh number
T Temperature (K)
u(u,v) Velocities (m/s)
x(x,y) Lattice coordinates (m/s)

Greek symbols

∆x Lattice spacing (m)
∆t Time increment (s)
τα Relaxation time for temperature (s)
τν Relaxation time for flow (s)
ν Kinematic viscosity (m2 s−1)
α Thermal diffusivity (m2 s−1)
ρ Fluid density (kg m−3)
σ electrical conductivity (S/m)
ψ Non-dimensional stream function
φ Solid volume fraction
µ Dynamic viscosity (N s /m2)
γ phase deviation
θ Non-dimensional temperature

Subscript

b bottom
c cold
f fluid
h hot
l left
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m mean
n f nanofluid
p particle
r right

1 Introduction

The problem of natural convection in square enclosures has many engineering ap-
plications such as: cooling systems of electronic components, building and thermal
insulation systems, built-in-storage solar collectors, nuclear reactor systems, food
storage industry and geophysical fluid mechanics and many others [Ostrach (1988);
Al-Ajmi and Mosaad, (2012); Hamimid, Guellal, Amroune and Zeraibi, (2012);
Moufekkir, Moussaoui, Mezrhab, Naji and Bouzidi, (2012); Choukairy and Ben-
nacer, (2012); Arid, Kousksou, Jegadheeswaran, Jamil, Zeraouli, (2012); Dihmani,
Amraqui, Mezrhab and Laraqi, (2012); Shemirani and Saghir, (2013); Maougal
and Bessaïh, (2013); Kamath, Balaji and Venkateshan, (2013); Rtibi, Hasnaoui
and Amahmid, (2013); Mahrouche, Najam, El Alami, Faraji, (2013); Rana and
Thakur, (2013); Haslavsky, Miroshnichenko, Kit, and Gelfgat, (2013)]. In some
practical cases such as crystal growth, metal casting, fusion reactors and geother-
mal energy extractions, natural convection is under the influence of a magnetic field
[Moreau (1990); Ozoe and Okada (1989); Garandet et al. (1992); Venkatachalappa
and Subbaraya (1993); Alchaar et al. (1995); Rudraiah ett al. (1995)]. Khanafer
et al. (2003) numerically investigated natural convection heat transfer in a two-
dimensional vertical enclosure utilizing nanofluids. It was revealed that the heat
transfer rate increases with the increase of particle fraction at any given Grashof
number. Kahveci (2010) numerically studied the heat transfer enhancement of
water-based nanofluids in a differentially heated, tilted enclosure for a range of
inclination angles, nanoparticle volume fractions, and Rayleigh numbers. It was
concluded from the results that suspended nanoparticles substantially increase the
heat transfer rate and the average Nusselt number is nearly linear with the increase
of solid volume fraction. However, Putra et al. (2003) conducted experiments to
investigate natural convective heat transfer of aqueous CuO and Al2O3 nanofluids
inside a cylinder. They observed a systematic and significant deterioration in natu-
ral convective heat transfer at Rayleigh numbers from 106 to 109. The deterioration
increased with particle concentration and was more pronounced for CuO nanoflu-
ids. Wen and Ding (2005) reported that for a Rayleigh number less than 106, the
natural convection heat transfer rate increasingly decreases with the increase of par-
ticle fraction, particularly at low Rayleigh numbers. Pirmohammadi and Ghassemi
(2009) studied steady laminar natural-convection flow in the presence of a mag-
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netic field in a tilted enclosure heated from below and cooled from top and filled
with liquid gallium. They found that for a given inclination angle, as the value of
Hartmann number increases, the convection heat transfer is reduced. Furthermore
they obtained that at Ra=104, the value of Nusselt number depends strongly on the
inclination angle for relatively small values of Hartmann number.

Ece and Buyuk (2006) examined the steady and laminar natural convection flow
in the presence of a magnetic field in an inclined rectangular enclosure heated and
cooled on its adjacent walls. They found that the magnetic field suppressed the
convective flow and the heat transfer rate. They also showed that the orientation
and the aspect ratio of the enclosure and the strength and direction of the magnet-
ic field had significant effects on the flow and temperature fields. Sathiyamoorthy
and Chamkha (2010) numerically studied natural convection flow of electrically
conducting liquid gallium in a square cavity whereas the bottom wall is uniformly
heated and the left and right vertical walls are linearly heated while the top wall
is kept thermally insulated. They exhibited that the magnetic field with inclined
angle has effects on the flow and heat transfer rates in the cavity. Sivasankaran
and Ho (2008) studied numerically the effects of temperature dependent properties
of the natural convection of water in a cavity under the influence of a magnetic
field. They showed that the heat transfer rate was influenced by the direction of the
external magnetic field and was decreased with an increase of the magnetic field.
Oztop and Abu-Nada (2008) studied the effects of a partial heater on natural con-
vection using different types and concentrations of nanoparticles. They found that
heat transfer was strongly related to types and volume fractions of nanoparticles.
Abu-Nada (2009); Abu-Nada (2010) and Abu-Nada et al. (2010) studied the effect
of the variables properties of nanofluids in natural convection. They related the
deterioration in heat transfer of nanofluids in natural convection to the temperature
dependence of nanofluid properties. These findings were also supported by oth-
er studies [Abu-Nada and Chamkha (2010a); Abu-Nada and Chamkha (2010b)].
Alam et al. (2012) investigated natural convection in a rectangular enclosure due
to partial heating and cooling at vertical walls. Fattahi et al. (2012) applied Lattice
Boltzmann Method to investigate the natural convection flows utilizing nanofluids
in a square cavity. The fluid in the cavity was a water-based nanofluid containing
Al2O3 or Cu nanoparticles. The results indicated that by increasing solid volume
fraction, the average Nusselt number increased for both nanofluids. It was found
that the effects of solid volume fraction for Cu were stronger than Al2O3. Kefayati
et al. (2011) simulated by the Lattice Boltzmann method the natural convection
in enclosures using water/SiO2 nanofluid. The results showed that the average
Nusselt number increased with volume fraction for the whole range of Rayleigh
numbers and aspect ratios. Also the effect of nanoparticles on heat transfer aug-
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mented as the enclosure aspect ratio increased. Lai and Yang (2011) performed
mathematical modeling to simulate natural convection of Al2O3/water nanofluid-
s in a vertical square enclosure using the Lattice Boltzmann method. The results
indicated that the average Nusselt number increased with the increase of Rayleigh
number and particle volume concentration. The average Nusselt number with the
use of nanofluid was higher than the use of water under the same Rayleigh number.
Mahmoudi et al. (2011) presented a numerical study of natural convection cooling
of two heat sources vertically attached to horizontal walls of a cavity. The results
indicated that the flow field and temperature distributions inside the cavity were
strongly dependent on the Rayleigh numbers and the position of the heat sources.
The results also indicated that the Nusselt number was an increasing function of
the Rayleigh number, the distance between two heat sources, and distance from
the wall and the average Nusselt number increased linearly with the increase in the
solid volume fraction of nanoparticles. Kefayati et al. (2013) investigated Prandtl
number effect on natural convection MHD in an open cavity which has been filled
respectively with liquid gallium, air and water by Lattice Boltzmann Method. They
exhibited that heat transfer declines with the increment of Hartmann number, while
this reduction is marginal for Ra=103 by comparison with other Rayleigh numbers.
Lattice Boltzmann Method simulation of MHD mixed convection in a lid-driven
square cavity with linearly heated wall is investigated by Kefayati et al. (2012). It
was demonstrated that the augmentation of Richardson number causes heat trans-
fer to increase, as the heat transfer decreases by the increment of Hartmann number
for various Richardson numbers and the directions of the magnetic field. The LBM
is an applicable method for simulating fluid flow and heat transfer [Nemati et al.
(2010); Mehravaran and Hannani (2011); Pirouz et al. (2011); Mohamad (2007);
Succi (2001)]. This method was also applied to simulate the MHD [Martinez et al.
(1994)] and, recently, nanofluid [Nemati et al. (2010)] successfully.

The aim of the present study is to assess the ability of Lattice Boltzmann Method
(LBM) in solving a nanofluid and a magnetic field simultaneously in the presence
of a sinusoidal thermal boundary condition. Moreover, the effects of magnetic field
and phase deviations on the heat transfer in the cavity are considered in order to
identify the best situation for heat transfer and fluid flow.

2 Mathematical formulation

2.1 Problem statement

A two-dimensional square cavity is considered as shown in Fig. 1. The side walls
of the cavity have spatially varying sinusoidal temperature distributions. The hori-
zontal walls are adiabatic. The cavity is filled with water and Al2O3 nanoparticles.
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The nanofluid is assumed to be Newtonian and incompressible. The flow is con-
sidered to be steady, two dimensional and laminar, while the radiation effects are
assumed to be negligible. The thermo-physical properties of the base fluid and
the nanoparticles are given in Table 1. The density variation in the nanofluid is
approximated by the standard Boussinesq model.

 

Figure 1: Geometry of the present study with boundary conditions.

Table 1: Thermo-physical properties of water and nanoparticles. [Ghasemi and
Aminossadati (2010)]

ρ (kg /m3) Cp (J/kg K) K (W/mK) β (K−1)
Pure water 997.1 4179 0.613 21x10−5

Al2O3 3970 765 40 0.85x10−5

Cu 8933 385 400 1.67x10−5

TiO2 4250 686.2 8.9538 0.9x10−5
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The magnetic field (strength B0) is applied in the horizontal direction. It is assumed
that the induced magnetic field produced by the motion of an electrically conduct-
ing fluid is negligible compared to the applied magnetic field. Furthermore, it is
assumed that the viscous dissipation and Joule heating can be neglected.

Therefore, governing equations are written in dimensional form as:

∂u
∂x

+
∂v
∂y

= 0 (1)

ρn f (u
∂u
∂x

+ v
∂u
∂y

) =−∂ p
∂x

+µn f (
∂ 2u
∂x2 +

∂ 2u
∂y2 ) (2)

ρn f (u
∂v
∂x

+ v
∂v
∂y

) =−∂ p
∂y

+µn f (
∂ 2v
∂x2 +

∂ 2v
∂y2 )+Fy (3)

u
∂T
∂x

+ v
∂T
∂y

= αn f (
∂ 2T
∂x2 +

∂ 2T
∂y2 ) (4)

Where Fy is the total body forces at y direction and it is defined as follows:

Fy =−
Ha2µn f

H2 v+(ρβ )n f g(T −Tm) (5)

Where Ha is Ha = HB0

√
σn f
µn f

The classical models reported in the literature are used to determine the properties
of the nanofluid [Xuan and Roetzel (2000)]:

ρn f = (1−φ)ρ f +φρp (6)

(ρcp)n f = (1−φ)(ρcp) f +φ(ρcp)p (7)

(ρβ )n f = (1−φ)(ρβ ) f +φ(ρβ )p (8)

αn f =
kn f

(ρcp)n f
(9)

In the above equations, φ is the solid volume fraction, ρ is the density, σ is the
electrical conductivity, α is the thermal diffusivity, cp is the specific heat at con-
stant pressure and β is the thermal expansion coefficient of the nanofluid, γ is the
phase deviation. The effective dynamic viscosity and thermal conductivity of the
nanofluid can be modelled by Brinkman (1958); Maxwell (1873):

µn f =
µ f

(1−φ)2.5 (10)
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kn f = k f
kP +2k f −2ϕ(k f − kP)

kP +2k f +φ(k f − kP)
(11)

The governing equations are subject to the following boundary conditions:

Bottom wall u = v = 0
∂T
∂y

∣∣∣∣
y=0

= 0

Top wall u = v = 0
∂T
∂y

∣∣∣∣
y=H

= 0

Left wall u = v = 0T (0,y) = TC +Al sin(2πy/H)

Right wall u = v = 0T (H,y) = TC +Ar sin(2π
y
H

+ γ)

(12)

2.2 Simulation of MHD and nanofluid with Lattice Boltzmann Method

For the incompressible non isothermal problems, the Lattice Boltzmann Method
(LBM) is based on two distribution functions, f and g, for the flow and temperature
fields respectively.

For the flow field:

fi (x+ ci∆t, t +∆t) = fi (x, t)−
1
τν

(
fi (x, t)− f eq

i (x, t)
)
+∆tFi (13)

For the temperature field:

gi (x+ ci∆t, t +∆t) = gi (x, t)−
1

τα

(
gi (x, t)−geq

i (x, t)
)

(14)

Where the discrete particle velocity vectors defined by ci, ∆t denotes lattice time
step which is set to unity. τν , τα are the relaxation time for the flow and temperature
fields, respectively. f eq

i , geq
i are the local equilibrium distribution functions that

have an appropriately prescribed functional dependence on the local hydrodynamic
properties which are calculated with Eqs. (15) and (16) for flow and temperature
fields respectively.

f eq
i = ωiρ

[
1+

3(ci.u)
c2 +

9(ci.u)2

2c4 − 3u2

2c2

]
(15)

geq
i = ω

′
i T
[
1+3

ci.u
c2

]
(16)

u and ρ are the macroscopic velocity and density, respectively. c is the lattice speed
which is equal to ∆x/∆t where ∆x is the lattice space similar to the lattice time step
∆t which is equal to unity, ωi is the weighting factor for flow, ω

′
i is the weighting
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factor for temperature. D2Q9 model for flow and D2Q4 model for temperature are
used in this work so that the weighting factors and the discrete particle velocity
vectors are different for these two models and they are calculated with Eqs (17-19)
as follows:

For D2Q9

ω0 =
4
9
,ωi =

1
9

for i = 1,2,3,4andωi =
1
36

for i = 5,6,7,8 (17)

ci =


0 i = 0

(coscos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4
√

2(cos[(i−5)π/2+π/4],sin[(i−5)π/2+π/4])c i = 5,6,7,8

(18)

For D2Q4
The temperature weighting factor for each direction is equal to ω

′
i = 1/4 .

ci = (cos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4 (19)

The kinematic viscosity ν and the thermal diffusivity αare then related to the re-
laxation time by Eq. (20):

ν =

[
τν −

1
2

]
c2

s ∆t α =

[
τα −

1
2

]
c2

s ∆t (20)

Where cs is the lattice speed of sound witch is equals to cs = c/
√

3. In the simula-
tion of natural convection, the external force term F appearing in Eq. (14) is given
by Eq. (21)

Fi =
ωi

c2
s

F.ci (21)

Where F = Fy

The macroscopic quantities, u and T can be calculated by the mentioned variables,
with Eq. (22-24).

ρ = ∑
i

fi (22)

ρu = ∑
i

fici (23)

T = ∑
i

gi (24)
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2.3 Boundary conditions

The implementation of boundary conditions is very important for the simulation.
The distribution functions out of the domain are known from the streaming process.
The unknown distribution functions are those toward the domain.

2.3.1 Flow

Bounce-back boundary conditions were applied on all solid boundaries, which
mean that incoming boundary populations are equal to out-going populations af-
ter the collision.

2.3.2 Temperature

The bounce back boundary condition is used on the adiabatic wall. Temperature
at the left and the right walls are known. Since we are using D2Q4, the unknown
internal energy distribution functions are evaluated as:

Right wall: g3 = T (y)−g1−g2−g4 (25)

Left wall: g1 = T (y)−g2−g3−g4 (26)

2.4 Non-dimensional parameters

By fixing Rayleigh number, Prandtl number and Mach number, the viscosity and
thermal diffusivity are calculated from the definition of these non dimensional pa-
rameters.

ν f = N.Ma.cs

√
Pr
Ra

(27)

Where N is number of lattices in y-direction. Rayleigh and Prandtl numbers are
defined as Ra = gβ f H3(Th−Tc)

ν f α f
and Pr = ν f

α f
respectively. Mach number should be less

than Ma = 0.3 to insure an incompressible flow. Therefore, in the present study,
Mach number was fixed at Ma = 0.1. The Hartmann number has a very important
role for the control of the effect of the magnetic field Ha = HB0

√
σn f
µn f

. Nusselt
number is one of the most important dimensionless parameters in the description
of the convective heat transport. The local Nusselt number (Nul and Nur), the
average Nusselt number (Nu) and the dimensionless average Nusselt number (Nu*)
are calculated as:

Nul =−
kn f

k f

H
Th−Tc

∂T
∂x

∣∣∣∣
x=0

(28)
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Nur =−
kn f

k f

H
Th−Tc

∂T
∂x

∣∣∣∣
x=H

(29)

Nu =
1
H

Nur dy∫
heating hal f

+
1
H

Nul dy∫
heating hal f

(30)

Nu∗ (φ) = Nu(φ)
Nu(φ = 0)

(31)

3 Grid testing and validation code:

3.1 Grid testing:

A Lattice Boltzmann Method scheme was used for the numerical simulations. Fig.
2 shows the effect of grid resolution and lattice sizes (20x20), (40x40), (60x60),
(80x80) and (100x100) for Ha=0 and φ = 0. By calculating the average Nusselt
number for Ra=103 and 105, it was found that a grid size of (100x100) ensures a
grid independent solution.

Figure 2: Average Nusselt number for different uniform grids (φ = 0, γ = π/2 and
Ha=0).
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(a) 
 

 

 

(b) 
 

Figure 3: Comparison of the streamlines and isotherms for Ra=105 and Pr = 0.7
between (a) numerical results by Deng et al. (2008) and (b) the present result.

3.2 Validation code:

In order to check on the accuracy of the numerical technique employed for the
solution of the considered problem, the present numerical code was validated by
comparison with the study by Deng and Chang (2008) for the same cavity with
sinusoidal boundary conditions for γ = π/2, Ra=105 and Pr=0.7. The results are
presented in Fig.3. The results of another validation study comparison with Ghase-
mi et al. (2011) are presented in Fig. 4 which shows the dimensionless temperature
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 Figure 4: Comparison of the temperature on axial midline between the present
results and numerical results by Ghassemi et al., (2011) (φ = 0.03, Ra=105).

 

Figure 5: Comparison of the temperature on axial midline between the present
results and numerical results by Khanafer et al., (2003) and jahanshahi et al., (2010)
(Pr = 6.2,φ = 0.1,Gr=104).
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along the horizontal axial midline of the enclosure for three values of the Hartmann
number, for Ra=105 and for a solid volume fraction φ= 0.03 (excellent agreement
is also found). The present code was also validated with the results of Khanafer et
al. (2003) and Jahanshahiet al. (2010) for natural convection in an enclosure filled
with water/Cu nanofluid for Ra=6.2x105 and φ=0.1 as shown in Fig.5.

4 Results and discussion:

Fig.6 and 7 illustrate the effect of Hartmann number for different values of the
Rayleigh number (Ra = 103, 104, 105 and 106) and for γ = π/2 on the isotherms and
streamlines of nanofluid (φ=0.04) and pure fluid (φ=0). For all Rayleigh number
it demonstrates that the effect of nanoparticles on the isotherms decreases with the
augmentation of Hartmann number. The thickness of the boundary layer decreases
with the rise of Rayleigh number, the opposite effect occurs with the increase of the
Hartmann number. Fig.8.a shows the variation of average Nusselt number as func-
tion of Hartmann number for different Rayleigh number, the increase of Rayleigh
number increases the heat transfer rate, on the contrary, the increase of the Hart-
mann decreases the heat transfer rate. The streamlines shows that the flow behavior
is affected with the change in the Rayleigh number and the Hartmann number. At
Ra = 103-104 and in the absence of magnetic field, the flow is characterized by two
cells, one above the other, rotating in opposite direction inside the enclosure. The
minor cell near the let-top corner is elongated when the Hartmann number is in-
creased to 30 and 60 and when Rayleigh number is increased to 105 and 106 also a
third cell appears near the right-bottom corner. The strength of these cells increases
as the Rayleigh number increases and decreases as the Hartmann number increas-
es. For all values of Rayleigh number, the application of the magnetic field has the
tendency to slow down the movement of the fluid in the enclosure. The braking
effect of the magnetic field is observed from the maximum intensity of circulation
|ψ|max (Fig.8.b) presents the variation of the maximum value of the stream function
as a function of Hartman number for several values of Rayleigh number for φ=0
and γ = π/2. It is observed that the effect of Hartmann number is opposite to the
effect of Rayleigh number. For Ra = 103 and 104, |ψ|max is constant and small for
all values of Hartmann number. The conduction is dominant. For Ra = 105 and
106, the convection is dominant for low values of Hartmann number, more than the
Hartmann number increases convection is more disadvantaged, until reaching the
conductive regime.

Fig.9. a and b illustrate the variations of the local Nusselt numbers along the left
sidewall and right sidewall at various Rayleigh numbers for Ha=0 and 60. For both
walls, the curves drawn for the Nusselt numbers against y/H are approximately
of sinusoidal shape like the thermal boundary. This indicates that the local heat
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 Figure 6: isotherms for different Hartmann and Rayleigh numbers and for γ = π/2,
(—) φ = 0.04 and (- - -) φ = 0.
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 Figure 7: Streamlines for different Hartmann and Rayleigh numbers and for γ =
π/2, (—) φ = 0.04 and (- - -) φ = 0.
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(a) 

 
(b) 

 
 
Figure 8: Variation of the maximum of the average Nusselt number (a) and stream
function (b) with Hartmann number for different Rayleigh number for γ = π/2 and
φ = 0.
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transfer is directly affected by the temperature distribution on the surface. In other
words, larger heat transfer occurs when the temperature is higher. In the left side-
wall, it is obviously understood that the lower half (0 ≤y/H≤ 0.5) is the heating
half and the upper half (0.5 ≤y/H≤1) is the cooling half. The variations of the
local Nusselt numbers along the left sidewall and the right sidewall are exhibited in
Fig.10.a and b for various Hartmann numbers. At Ra≤104 the heat transfer gets no
remarkable change on both sidewalls even if the Hartmann number is increased but
for 104 <Ra≤106 it seems that the Nusselt number decreases while the Hartmann
number is increased.

  
(a) 

 

  

(b) 
 

 

  

 
Figure 9: Variation of the local Nusselt number on the left and the right walls for
different Rayleigh number for Ha=0 (a) and Ha=60 (b) for γ = π/2 and φ = 0.
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Figure 10: Variation of the local Nusselt number on the left and the right walls for
different Hartmann number for Ra=104 (a) and Ra=106 (b) for γ = π/2 and φ = 0.

Fig.11 shows comparison of the average Nusselt number and the dimensionless
average Nusselt number for various Hartmann and Rayleigh numbers at different
volume fractions for γ = π/2. The average Nusselt number demonstrates that heat
transfer increases with the enhancement of Hartmann number at Ra=103. For 104

heat transfer declines with the enhancement of Hartmann number from Ha=0 to
30 but the average Nusselt number of Ha=90 is more than Ha=60. Indisputably,
the best parameter for showing the effect of the addition of nanopaticles to the
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Figure 11: Variation of the average Nusselt number and dimensionless average
Nusselt number as function of solid volume fraction for different Hartmann number
for γ = π/2, Ra=103 (a) Ra=104 (b) and Ra=105 (c).
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Figure 12: Variation of the local Nusselt number on the left and the right walls for
different solid volume fraction at γ = π/2, Ra=105 for Ha=0 (a) and Ha=90 (b).

pure fluid is the dimensionless average Nusselt number. At Ra=103, the best effect
of nanoparticles is obtained for Ha = 0, by increasing the Hartmann number the
effect of nanoparticles decreases. At Ra=104 the lowest effect of nanoparticles is
obtained for Ha = 0, for Ha=30-90 the nanoparticles have the same tendency to the
increase of the solid volume fraction. At Ra=104 the lowest effect of nanoparticles
is obtained for Ha = 0, for Ha=30-90 the nanoparticles have the same tendency to
the increase of the heat transfer. At Ra=105, the augmentation of Hartmann number
play a positive role in the improvement of nanoparticles effect on heat transfer albeit
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Figure 13: Isotherms for different Rayleigh number and phase deviations for Ha=0,
(—) φ = 0.04 and (- - -) φ = 0.
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Figure 14: Streamlines for different Rayleigh number and phase deviations for
Ha=0, (—) φ = 0.04 and (- - -) φ = 0.
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Figure 15: Variation of the local Nusselt number on the left and the right walls for
different phase deviations at Ha =0 and φ = 0 for Ra=103 (a) and Ra=105 (b).

the tendency ceases from Ha=60 to 90.

Fig.12.a and b indicate the local Nusselt number on the right and left sidewalls
for various volume fractions at Ra=105, γ = π/2 and Ha=0-90. It is shown that
the effect of nanoparticles is more significant for Ha = 90 which is consistent with
Fig.11.

Fig.13 and 14 illustrate the effect of Rayleigh number (Ra=103,104 and 105) for
different phase deviation (γ = 0, π/4, 3π/2 and π) and for Ha=0 on the isotherms
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Figure 16: Variation of the average Nusselt number and dimensionless average
Nusselt number as function of solid volume fraction for different phase deviations
for Ha=0, Ra=103 (a) Ra=104 (b) and Ra=105 (c).
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Figure 17: Comparison between different nanofluids at γ = π/2, Ha =0 and Ra=105.

and streamlines of nanofluid (φ=0.04) and pure fluid (φ=0). It shown the isotherms
along the left sidewall are retained. Hence, the heat transfer on the left sidewall
is kept fixed, but that on the right sidewall is varied. At γ = 0, for Ra<105 four
cells are formed with approximately symmetries about middle of the cavity, for
Ra=105symmetry is broken only for φ=0. As the phase deviation increases up
to γ = π/4, a multi-cellular flow structure is formed in the cavity with one large
diagonal cell and two smaller corner cells. As the phase deviation increases, the size
of the upper left-corner cell is enlarged but the lower right-corner cell disappears.
At γ = π , the flow structure is of two identical cells in the enclosure.

Fig.15. a and b show the effect of the phase deviation for Ra=103 and 105 on the
local Nusselt number along the y coordinates of the two vertical sidewalls at φ=0
and Ha=0. At Ra=103 it is observed that the heat transfer of the left wall is not
affected so much on changing the phase deviation, but the heat transfer of the right
wall is affected significantly on changing the phase deviation from γ = 0 to π . The
local Nusselt number curves are approximately of sinusoidal shape like the thermal
boundary along the vertical walls. This clearly shows that the local heat transfer
is directly affected by the temperature distribution on the surface. It is also found
that a higher heat transfer occurs where the temperature is higher. At Ra=105 the
local Nusselt number along the right side wall is greatly affected by changing the
phase deviation. It is also found that the local Nusselt number is increased as the
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Rayleigh number increases.

Fig.16 shows the effects of volume fractions and phase deviations for various
Rayleigh numbers on the average Nusselt number and the dimensionless average
Nusselt number. For all Rayleigh number and phase deviations the heat transfer
increases with the rise of volume fraction. For Ra=103heat transfer decreases from
γ= 0 to π/4 and increases from γ = π/2 to π . Moreover, the dimensionless average
Nusselt number has the same trend in different phase deviations. The nanofluids
have effects very similar for all phase deviations. At Ra =104 and 105 heat transfer
increases with the rise of phase deviations, the most heat transfer was obtained in
γ = π . the best effect of nanoparticles for Ra =104 and 105 is obtained in γ = 0 and
π/4 respectively.

Fig.17 shows the effect of nature of nanoparticles on heat transfer. Three nanopar-
ticles are compared at Ra =105, Ha=0 and γ = π/2. The heat transfer depends
strongly on the nano thermal conductivity, so water-Cu nanofluid enhances the heat
transfer compared with water-Al2O3 and water-TiO2. Table 1 shows the propor-
tionally to the solid volume fraction.

5 Conclusions:

In this paper the effect of a magnetic field on a nanofluid flow in a cavity with a
sinusoidal thermal boundary condition has been analyzed in the framework of a
Lattice Boltzmann Method. The main conclusions can be summarized as follows:

• The good agreement with earlier numerical results demonstrates that the Lat-
tice Boltzmann Method is an appropriate technique for these problems.

• for γ = π/2, heat transfer and fluid flow decrease with an increase in the Hart-
mann number while they increase with an increase in the Rayleigh number.

• At γ = π/2, the growth of nanoparticles volume fraction improves heat trans-
fer for Hartmann number from Ha=0 to 90 and for Rayleigh number from
Ra=103 to 105. For Ra=105 the most evident effect of nanoparticles is ob-
tained for Ha=90.

• For all phase deviations the growth of nanoparticles volume fraction im-
proves heat transfer. At Ra=105 and Ha=0 the heat transfer rate increases
with the rise of phase deviations, the most evident effect of nanoparticles is
obtained for γ = π/4.
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