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Numerical Simulation of Liquid Phase Diffusion Growth
of SiGe Single Crystals under Zero Gravity
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Abstract: Liquid Phase Diffusion (LPD) growth of SixGe1−x single crystals
has been numerically simulated under zero gravity. The objective was to examine
growth rate and silicon concentration distribution in the LPD grown crystals under
diffusion dominated mass transport prior to the planned LPD space experiments on
the International Space Station (ISS). Since we are interested in predicting growth
rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was
neglected and the gravity level was taken as zero for simplicity.
A fixed grid approach has been utilized for the simulation. An integrated top-level
solver was developed in OpenFOAM to carry out numerical simulations for the
melting and solidification periods of the LPD growth process. The solver employs
the well-known enthalpy method for modeling the initial melting process and uses
the virtual front-tracking method, originally developed to model dendritic growth.
This simulates the solidification as driven by saturation and precipitation as is the
case for this solution growth technique. The melting simulation determines the
initial conditions for growth interface, temperature, and concentration. The solver
then calculates the onset of solidification, the evolution of the growth interface. In
addition, the concentration and temperature fields are calculated in the melt and
grown crystal.
The present simulation results agree qualitatively with the radial and axial silicon
distributions in the grown crystals of the Earth-bound experiments, and also with
those previously predicted numerically. The computed total growth rate also agrees
quantitatively with that of the experiment. However, the simulation shows slight
differences in the interface shapes and predicts faster initial growth rate. Such a
small discrepancy is expected since the contribution of natural convection in the
melt was not included in the present simulation. A well-design LPD space experi-
ment may shed light on this prediction.
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1 Introduction

SixGe1−x is an alloy semiconductor material possessing a complete solid and liquid
miscibility, making it an attractive choice for both epitaxial and bulk crystal growth
processes. Its properties can be adjusted for the needs of a variety of applications
[Kasper (1995), Yonenaga (2005)]. Various melt growth techniques have been used
to grow bulk single crystals of SixGe1−x [see for instance the review article of
Schilz and Romanenko (1995), and also Yonenaga et al. (1995), Wollweber et
al. (1996a,b), Abrosimov et al. (1996, 1997), Dold et al. (1998), Campbell et al.
(2001), Volz et al. (2002), Usami (2011)]. However, growing bulk SixGe1−xsingle
crystals of uniform composition by the melt growth techniques is still a challenge.
This is primarily due to the large miscibility gap in the silicon germanium phase
diagram that requires silicon be replenished during melt growth [Abrosimov et al.
(1997) and Usami (2011)].

Liquid Phase Diffusion (LPD) is a solution growth technique that was originally
developed by Nakajima et al. (1999) as a variant of multicomponent zone melting
growth [Nakajima et al. (1996), and Suzuki et al. (1996)], who utilized it to grow
bulk SixGe1−x crystals with an initial graded composition region (from x = 0 to
x = 0.02) followed by a uniform region at x = 0.02. This technique was then
utilized by Yildiz et al. (2005) to grow graded bulk crystals from the germanium
side with the main objective of production of seed crystals for successive crystal
growth techniques, such as Czochralski and Liquid Phase Electroepitaxy (LPEE).
Further research has been carried out on SiGe growth by LPD by Armour and Dost
(2010a,b,c) where the effects of rotating and static magnetic fields on the transport
process were investigated.

LPD growth is based on the principle of saturation and precipitation like all solution
growth techniques. This differs from melt growth where solidification is achieved
by cooling the melt below its melting point. A schematic description of the LPD
growth crucible is given in Figure 1. The growth cell consists of a Germanium sin-
gle crystal seed at the bottom, Silicon source material at the top and polycrystalline
Germanium solvent material sandwiched in the middle. This configuration is sub-
jected to an axial temperature gradient such that the Germanium solvent material
melts completely and the Germanium seed only partially melts back. The extent of
melt back establishes the initial growth interface. The source material (Si) remains
solid because of its higher melting point. The area of contact between the silicon
source and the Si-Ge solution (initially pure Ge) forms the dissolution interface.
The dissolved Si is primarily transported through the solution, towards the growth
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Figure 1: Schematic diagram of the LPD growth system: applied temperature pro-
file on left, and half of the crucible domain on right.

interface, by diffusion. The phase diagram governs the solubility of silicon in the
germanium melt. The solubility of the silicon changes throughout the melt due to
the applied temperature gradient. The temperature in the immediate vicinity of the
growth interface is the lowest, and accordingly the solubility is the lowest in this
region. Silicon is incorporated into the melt at the dissolution interface at a higher
concentration, due to the higher temperature at that point. With transport of silicon
from the dissolution to growth interface, the solubility limit of the silicon around
the growth interface is exceeded and growth occurs. A SiGe crystal with a graded
Si composition from the Ge side is produced. The growth continues with time with
increasing Si composition until the process is terminated.

In terms of modeling, bulk crystal growth consists of various processes occurring
at scales varying from microscopic to macroscopic. This makes the development
of a comprehensive model almost impossible as clearly pointed out by Yeckel and
Derby (2005). Based on the model objectives, models can be classified as process
models or defect models where crystal defects are related to process conditions
[Muller and Friedrich (2004)]. Global or overall models, as termed in the literature,
refer to a modeling approach in which the furnace is also part of the computational
domain rather than using boundary conditions on the growth crucible to account for
the effect of the furnace [Van den Bogaert and Dupret (1997)]. Although significant
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progress has been made in modeling of transport phenomena in crystal growth,
it still continues to be a challenge due to the various complexities involved. In
particular, the handling of the moving interface inherent in most growth processes
continues to be difficult [Fischer et al. (2005)].

There are various numerical techniques for handling a moving boundary problem.
These techniques fall into two main groups: i) Lagrangian methods that utilize an
interface adjusting moving grid, and ii) Eulerian techniques that are based on a
fixed grid approach and the interface position is obtained as part of solution [Shyy
et al. (1996)]. While each of these two approaches has its own advantages and
disadvantages, the important advantage of the fixed grid approach lies in its relative
simplicity. The basic approach is to represent the entire domain by a single set of
field equations. Detailed derivation of these equations using the continuum mixture
theory for solidification/melting problems can be found in Bennon and Incropera
(1987). The enthalpy-porosity technique, given by Voller and Prakash (1987), is
based on the fixed grid approach and has been successfully used to simulate various
melt growth techniques [see for instance Ouyang and Shyy (1996, 1997), Jarvinen
et al. (1997), Morvan et al. (1999), Martinez-Tomas and Munoz (2001), El Ganaoui
et al. (2002) and Nikrityuk et al. (2012)].

Yildiz et al. (2005) and Yildiz and Dost (2005) developed a numerical simulation
model to predict experimental results in which the moving grid approach was em-
ployed and the effect of natural convection was included. Simulations shed light
on the LPD process and showed close agreement with experiments. The combined
effects of static and rotating magnetic fields in this growth system was also studied
numerically by Yildiz et al. (2006) and Yildiz and Dost (2007).

In the present work, we were interested only in growth rate (the evolution of the
growth interface) and silicon concentration in the grown crystals under micrograv-
ity conditions. Thus the effect of fluid flow in the melt under the microgravity level
(about 10−4g to 10−5g) of the ISS is neglected by taking the gravity level as zero
(diffusion driven transport). We have also neglected the gravity fluctuation (g-jitter)
of the ISS in the simulation since mass transport is usually not so responsive to the
g-jitter of the ISS [Okano et al. (2001), (2003) and (2006), and Takagi (2012)].

We have selected the fixed grid approach. This was motivated by the simplicity and
widespread usage of the approach in obtaining numerical solutions of solidification
problems [Shyy et al. (1996)]. This also allowed us to carry out simulation for
a longer duration (up to 132 h). Section 2 describes the model equations used to
simulate the melting and solidification processes. A brief discussion of the solu-
tion algorithm and numerical solution procedure is given in Sections 3 and 4. The
simulation results are presented in Section 5. Results are compared with the Earth-
bound LPD experiments and also with those earlier numerical simulation results.
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2 Model description

From a numerical simulation point of view, the LPD growth process consists of
two main stages: the melting period and the following solidification process. Dur-
ing melting, the Ge molten section (melt) and the initial growth and dissolution
interfaces form. Models used for simulating each of these two stages are presented
below.

2.1 Modeling the melting of germanium

The well-known enthalpy-porosity method given by Voller and Prakash (1987) was
used to model the melting of pure germanium. In this method, a single set of field
equations is used to model the entire domain (molten and solid). The interface is
computed as part of the solution rather than tracking it explicitly. To account for the
absorption of latent heat during melting, a sink term is added to the energy equa-
tion. Depending upon the manner in which liquid fraction is updated after each time
step there are two variants of this method called the T -based and H-based methods
[Shyy et al. (1996)]. In the T -based method, liquid fraction for each cell is updated
based on its temperature but the update expression assumes that a phase change
occurs over a range of temperatures, which is not realistic for the phase change
of pure components. The H-based method uses an inverted enthalpy-temperature
relationship, i.e. it uses T = T (H) rather than H = H(T ). Since temperature is a
continuous function of enthalpy for the phase change process, this approach elim-
inates the need to make the assumption that phase change occurs over a range of
temperature, and is well suited for modeling an isothermal phase change. The H-
based method was utilized in the model presented.

2.2 Modeling the solidification of SixGe1−x single crystal

As described earlier, solidification in the LPD process occurs due to saturation and
precipitation. The use of the conventional enthalpy method is not appropriate as it
is not well suited to model solidification processes that are not driven by cooling
the melt. However, it is possible to model the LPD process using a virtual front
tracking model, as given by Zhu and Stefanescu (2007). This approach was de-
veloped for modeling dendritic growth where the solidification process also occurs
due to saturation and precipitation. This approach was utilized in the present work
since the contribution of natural convection was not included.

In the present model, solidification in a computational cell is predicted when con-
centration in the cell exceeds the equilibrium concentration of silicon, as computed
from the phase diagram using the local temperature. The release of latent heat dur-
ing solidification is accounted for by including a sink term in the energy equation.



336 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.331-351, 2013

The solidification of SiGe causes the melt in the region of growth to deplete in
silicon due to the miscibility gap in the phase diagram. This decrease of silicon
concentration in the melt as solidification proceeds is accounted for by including a
sink term in the mass transport equation.

2.2.1 Assumptions

In the modeling we have made the following assumptions.

• Effect of natural convection in the Si-Ge melt (solution) is neglected since
we consider zero gravity.

• Enthalpy of mixing associated with the dissolution of silicon into the Si-Ge
melt is neglected as silicon and germanium form a nearly ideal solution.

• Local thermodynamic equilibrium is assumed at the dissolution and growth
interfaces.

• Dissolution interface is considered to be stationary since its velocity (silicon
dissolution rate) is very small in comparison to the growth velocity.

• The Si-Ge solution (melt) is assumed to be dilute in silicon concentration.

• Classical Fourier’s law of heat flux and Fick’s law of mass flux are used.
Soret and Dufour effects were not taken into account.

• The coefficients of thermal and mass diffusivities are assumed to remain con-
stant.

• The mass diffusivity of silicon in solid germanium is small compared to that
in the germanium melt and is not taken into account.

• The system is considered to be axisymmetric and remains axisymmetric dur-
ing growth.

• The solid and liquid densities are assumed to be equal.

2.3 Numerical solution domain

The numerical solution domain consists of the solid Ge seed at the bottom, Si-Ge
solution (initially pure Ge melt) in the middle, the Si solid source at the top, and
the wall of the quartz ampoule. The domain and the applied temperature profile
are shown in Figure 1. For the simulation The OpenFOAM solver was used with



Numerical Simulation of Liquid Phase Diffusion Growth 337

the “conjugate heat foam” base solver supplied with “OpenFoam-1.6ext”. How-
ever, in the top-level code a number of changes were made including a) extending
the solver to three subdomains (melt, quartz, and source), b) implementing the
enthalpy-porosity technique, and c) implementing solidification.

The OpenFOAM solver utilized always uses the three-dimensional Cartesian coor-
dinate system. To simulate a two-dimensional axisymmetric system the geometry
was specified as wedge with a small angle (<50) (OpenCFD (2013) and Weller et
al. (1998)). To keep the interface thickness small, a fine mesh was employed in
the melt region (10 mesh elements per mm) whereas a relatively coarser mesh was
used for the source and quartz regions (5 mesh elements per mm) for computational
efficiency.

2.4 Field equations

Two different sets of field equations (energy and mass transport) were solved corre-
sponding to the melting and solidification models. The energy equation was solved
for the entire domain and the mass transport equation was only solved for the melt
region.

2.4.1 Melting

In the melt, only the energy balance and mass transport equations are solved as the
contribution of fluid flow was neglected. The energy balance yields the following
equation:

∂T
∂ t

= α∇
2T −ST (1)

where ∇2 is the two-dimensional gradient operator, and α is the thermal diffusivity
with different values in the liquid and solid phases.

α =

{
αs if ε < 1
αl if ε = 1

(2)

The last term in Eq. (1) is the sink term representing the contribution of latent heat
and is defined by:

ST ≡
L
cp

∂ε

∂ t
(3)

Mass transport equation reduces to:

∂C
∂ t

= D∇
2C (4)
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where D is the diffusion coefficient with different values in the solid and liquid
phases:

D =

{
Ds if ε < 1
Dl if ε = 1

(5)

The enthalpies are defined by

Hn
p =CpT (n−1)

p + ε
(n+1)L and ε

n =


0 if Hn

p < Hs
Hn

p−Hs

Hl−Hs
if Hs ≤ Hn

p ≤ Hl

1 if Hn
p > Hl

(6)

2.4.2 Solidification

In solidification the energy balance and mass transport equations in the melt are
reduced to:

∂T
∂ t

= α∇
2T +S′T and

∂C
∂ t

= D∇
2C+SC (7)

where the corresponding source terms are defined as

S′T ≡
L
cp

∂γ

∂ t
and SC ≡C(1−K)

∂γ

∂ t
(8)

with

α =

{
αli f γ < 1
αsi f γ = 1

and D =

{
Dli f γ < 1
Dsi f γ = 1

(9)

and

∆γN
lever =

CN−1−CN−1
l

CN−1
s −CN−1

l
, ∆γN = min(∆γN

lever,1−∑
NT−1
N=1 ∆γN

lever),

γN = ∑
N
N=1 ∆γN , and γNT = ∑

NT
N=1 ∆γN = 1

(10)

2.4.3 Quartz wall and solid source

In both melting and solidification, we only have the heat conduction equation with
appropriate thermal diffusivity coefficients:

∂T
∂ t

= α∇
2T (11)
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3 Solution algorithm

3.1 Melting solver

The melting solver utilizes the H-based enthalpy-porosity method (Shyy et al.
(1996)) and the solidification solver uses the algorithm proposed by Zhu and Ste-
fanescu (2007). The steps are as follows:

1. Initialize the concentration field, and set the liquid fraction to zero in the melt
sub-domain (seed and solvent region) and the temperature field to 298K in
the entire domain. Also, initialize thermal diffusivity to an appropriate value
in each sub-domain.

2. Based on the previous time step values of temperature and liquid fraction,
update the enthalpy of each cell using Eq.(6)1.

3. Compute the liquid fraction for each cell using Eq.(6)2.

4. Update diffusion coefficient and thermal diffusivity for each cell (Eqs. (2)
and (5)) and compute the sink term for energy equation (Eq. (3)) which is
dependent upon the rate of change of liquid fraction.

5. Solve energy and mass transport equations (Eqs. (1) and (4)).

6. If the melting process is complete, switch to solidification solver or else go
to step b.

3.2 Solidification solver

1. Initialize concentration and temperature fields to the values obtained from
melting solver and also identify the remaining solid seed region in the melt
sub-domain. Set the solid fraction to unity in the solid seed region and to
zero in the remaining melt subdomain.

2. Check the state of each cell in the melt region. If it lies in the solid seed region
or if it is a fully solidified cell (γ = 1) then it does not enter the solidification
loop. For other cells in melt region (i.e. γ < 1) proceed to step c.

3. Using the latest value of temperature, compute liquid and solid state solubil-
ity of silicon and the partition coefficient for each cell (Eqs.(13)-(15)).

4. For each of these cells, compare the latest concentration value and liquid
solubility. If concentration exceeds the liquid solubility in one or more cells
adjoining the seed crystal/solidified crystal, then solidification starts in these
cells and proceed to step e for these solidifying cells.



340 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.331-351, 2013

5. Compute mass fraction solidified in this time step from the lever rule using
Eq.(10)1.

6. To prevent a cell from fully solidifying in one step, the actual mass fraction
is computed from Eq.(10)2.

7. Compute the cumulative sum of mass fraction solidified for each solidifying
cell using Eq.(10)3.

8. As soon as a cell becomes solidified completely (i.e. γ = 1) concentration in
fully solidified cell is set to local solid-state solubility as per Eq.(14).

9. Update the thermal diffusivity and mass in the melt region using Eq. (9)

10. Compute the source terms from Eq.(8).

11. Solve energy and mass transport Eqs.(7).

12. Terminate computation when the desired simulation time is reached.

3.3 Boundary and Initial condition

3.3.1 Concentration field

The bottom and inner quartz walls are impermeable to transport of mass, which
leads to a zero normal gradient boundary condition: ∂C/∂n= 0. On the dissolution
interface equilibrium is assumed and the concentration is prescribed as a function of
temperature from the phase diagram. Liquidus and solidus curves were linearized
for the temperature range of interest (1211.87-1289.37 K). It is important to note
that these relations give the solubility in atomic percentage. In other relations,
concentration is expressed in mass fraction.

Ceq
l (T ) = 0.072075(T −1211.87) (12)

Ceq
s (T ) = 0.336775(T −1211.87) (13)

K = (Ceq
s (T ))/(Ceq

l (T )) (14)

3.3.2 Thermal field

• Bottom: a constant temperature of 1176.87K was prescribed at the bottom.

• Outer quartz wall: a linear temperature gradient of 2.5K/mm was specified
along the solution zone and a constant temperature of 1289.37K along the
source.
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• Top: radiative heat loss from the top was taken into account by using the
following relation:

−λ∇T = βσ(T 4−T 4
amb) (15)

where Tamb = 1284.37K.

The OpenFOAM solver does not perform any computation at the axis of symmetry.
Therefore, no boundary condition was specified along the symmetry axis. The con-
centration field was initialized to zero and the temperature field was initialized to
298K. The values of the physical properties used in the present work were obtained
from Yildiz et al. (2005), Yildiz and Dost (2005), Slack and Glassbrenner (1960),
Virzi (1991), Nakanishi et al (1999), and Yesilyurt et al. (1999).

4 Numerical Solution

To solve the field equations, a top-level code was written for OpenFOAM. Open-
FOAM is based on the finite volume discretization technique. It uses a co-located,
cell centered dependent variable storage arrangement. The mass diffusivity of sili-
con in solid germanium is several orders of magnitude smaller than that in molten
germanium and the thermal diffusivity is different for the solid and liquid phases.
Due to these factors, care must be taken while discretizing terms that involve these
properties. For the melt region of the domain, mass and thermal diffusivities were
defined as field variables and harmonic interpolation (Patankar (1980)) was used
for discretizing the diffusion terms in the mass transport and energy equations. A
constant time step of 2.0s was employed. The solution was considered converged
when residuals had fallen below the specified solver tolerance of 10−9. The re-
lease of latent heat and segregation of silicon from the melt into the solid crystal
are incorporated in the numerical model by adding corresponding source terms in
the field equations. The concentration in the growing crystal is governed by the
solid-state solubility obtained from Eq.(14) utilizing the local temperature.

5 Results and Discussion

Figure 2 depicts the computed temperature and concentration fields in the melt
and the shape of the initial growth interface after 1 hour of simulation time. The
computed isotherms of the present simulation (shown on left in Fig.2) are relatively
in a good agreement with those of Yildiz et al. (2005) and Yildiz and Dost (2005).
This is due to the fact that the thermal field is not notably affected by the fluid
flow in the melt. However, the computed iso-concentration lines (shown on right
in Fig.2) show slight differences compared with the experiments of Yildiz et al.
(2005) since we have not included the effect of fluid flow in the melt.
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This difference is more prominent in the evolution of the growth interface that
is shown in Fig.3. Although the total growth thickness for a 29h growth period
is very close to those of the experiments of Yildiz et al (2005), the simulation
predicts faster growth during the initial stages of growth as can be seen from Fig.3
and Table 2. The present simulation (on left in Fig.3) under zero gravity predicts
faster initial growth (enhanced mass transport) compared with that of the Earth-
bound experiments (in middle in Fig.3) in which while the mass transport in the
upper section of the melt was mainly diffusion dominated, in the bottom region of
the melt near the growth interface there were strong convective cells [Yildiz et al.
(2005)]. For instance, as presented in Table 2, in the simulation of the Earth-bound
experiments (middle) the growth thickness is about 6 mm at 10th growth hour while
in the present simulation (left) the interface reaches the position of 8 mm during the
same period. The experimental value is about 7 mm for this period.

 

 

Figure 2: Computed isotherms (left), and iso-concentration lines (right) under zero
gravity after 1h simulation time.

The observation of faster initial growth (enhanced mass transport) is contrary to
commonly observed mass transport under the effect of natural convection, but
agrees qualitatively with our experimental observations under a strong static mag-
netic field [Armour and Dost (2005a,b,c)]. As shown by Armour and Dost (2005a),
in the Si-Ge system the application of a strong magnetic field does not suppress con-
vection, but instead enhances mass transport in the solution. This observation was
attributed to the nature of the Si-Ge system: namely in the absence of an applied
magnetic field, lighter silicon diffuses from top into heavier germanium and trans-
ported by mainly diffusion in the upper region of the melt, however while heavier
germanium at the bottom stabilizes system, strong convective cells develop near the
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Figure 3: Computed evolution of the growth interface by the present simulation
under zero gravity (on left, with time interval of 10h in between each line). The
simulation including convection (after Yildiz et al. (2005) based on Earth-bound
experiments (in middle, with time interval between each line is 3h (total of 39h
growth), and only half zone is shown). As seen, simulation under zero gravity pre-
dicts slightly faster growth. Both simulations agree qualitatively with experiments
of Yildiz et al. (2005) as seen from the striation lines of the sample on right (a total
of 29h growth).

Table 1: Physical Properties [after Yildiz et a. (2005), Yildiz and Dost (2005), Slack
and Glassbrenner (1960), Virzi (1991), Nakanishi et al. (1999), and Yesilyurt et al.
(1999)].

Property Source (Si) Seed (Ge) Solution/Melt Crystal
(SixGe1−x)

Quartz

λ (W/mK) 23.7 20.0 42.8 20.0 2.0
ρ (Kg/m3) 2301.6 5323.0 5670.0 5323.0 2200.0
cp 967.0 396.1 406.0 396.1 1200.0
D(m2/s) - - 10−8 - -
β 0.71 - - - 0.85
L (kJ/kg) - 466.5 466.5 - -
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Table 2: Comparison of growth thicknesses and interface evolution from Figure 3
(based on visual reading of the values after 29h growth).

Present
Simulation

Experiments
of Yildiz et
al. (2005)

Simulation of
Yildiz et al.
(2005)

Total Growth Thick-
ness (29h growth): cen-
tre

∼ 19 mm ∼ 19 mm ∼ 17 mm

Total Growth Thick-
ness (29h growth): near
wall

∼ 19 mm ∼ 16 mm ∼ 17 mm

Interface shape with re-
spect to experiment

Flater at
the centre,
sharper near
the wall

Sharper near the
wall

Evolution of interface
with respect to experi-
ment

Faster near
the wall

Better agreement
with experiment

Growth thickness at
centre after 10h growth

About 8 mm About 7 mm About 6 mm

Figure 4: Computed average growth velocity.
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Figure 5: Computed radial (left) composition distribution and axial (right) compo-
sition profiles. Results agree qualitatively with the experimental results of Yildiz et
al. (2005).

growth interface. The application of a strong magnetic field changes this balance
by weakening the convective cells at the bottom and giving rise to the development
of stronger convective cells in the upper region of the melt. Consequently, such a
change in the flow structure of the melt leads to an enhanced mass transport in the
melt.

Since there is no flow in the melt of the present simulation model, in the absence of
strong convective cells in the melt, we predict faster initial growth and slightly dif-
ferent concentration distribution in the grown crystals. However, the evolution of
the growth interface presents similar trend to that observed in experiments and also
those from previous simulations, except that the flattening of the growth interface is
delayed compared with that of experiments (as seen in Figure 3 on left in compar-
ison with those in the middle and on right), and also growth initially faster along
the crucible wall. The initial concave growth interface slowly flattens as growth
progresses, and finally becomes convex near the end of the growth process similar
to experiments.

The computed averaged growth velocity profile under zero gravity is given in Fig.
4. As predicted from experiments, the growth slows down as time progresses due to
reduction in silicon dissolution into the growth melt since the melt is getting richer
in silicon concentration and the concentration difference between the source and
the melt is getting smaller.

Although we predict here a faster initial growth under zero gravity, the trend of the
interface evolution and the total growth thickness after 29h growth agree with ex-
periments. A well-designed LPD growth experiment (for SiGe) under microgravity
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may shed light on these numerical predictions.

The computed axial and radial silicon composition profiles in the grown crystal are
shown in Figure 5. As seen, these computed composition profiles are in qualitative
agreement with the experimental results of Yildiz et al. (2005). Again, this implies
that from a space experiment we may also expect a similar silicon distribution in
the grown crystals; linear in the growth direction and almost uniform in the radial
direction.

6 Summary

The fixed grid approach has been employed to model Liquid Phase Diffusion growth
of SiGe under zero gravity. An integrated solver has been developed in Open-
FOAM to simulate the process. The initial melting process is modeled using the
well-known enthalpy method. This provides the necessary initial conditions for
the subsequent solidification process, which is modeled using a virtual front track-
ing method. It was shown that the present simulation model that uses a fixed grid
approach although agrees qualitatively with the experimentally observed interface
evolution predicts a faster initial growth due to the absence of the contribution of
gravity (fluid flow in the melt). The interface shapes are also slightly different and
the flattening of the interface occurs later in time in comparison with that of the
Earth-bound experiments. However, the temperature profiles in the LPD melt are
in good agreement with those of the Earth-bound simulations as the thermal field
is being less affected by fluid flow. The total growth thickness after 29h growth
agrees with experiment.
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Nomenclature

Cp specific heat
C mass fraction
D diffusion coefficient
H enthalpy
K partition coefficient
L latent heat
Sc source term in the mass transport equation
St source term in the energy equation for melting
S′t source term in the energy equation for solidification
t time
T temperature

Subscripts

amb ambient
l liquid phase
p control volume
s solid phase
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Superscripts

eq equilibrium
n time step
N number of time steps after solidification starts in a given cell
NT total number of time steps in which a cell completely solidifies after it is cap-

tured as a solidifying cell

Greek symbols

α thermal diffusivity
β emissivity
ε liquid fraction
∆γ mass fraction solidified in one time step
∆γlever mass fraction solidified in one time step as per lever rule
γ cumulative sum of mass fraction solidified in a given cell
λ thermal conductivity
σ Stefan-Boltzmann constant




