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Soret driven thermosolutal convection in an inclined
porous layer: search of optimum conditions of separation

and validity of the boundary layer theory

A. Rtibi1, M. Hasnaoui1 and A. Amahmid1

Abstract: In this paper we present an analytical and numerical study of Soret
convection in an inclined rectangular porous layer saturated with a binary fluid and
subject to uniform heat fluxes. In the problem formulation, the Darcy model is
considered and the results are presented for wide ranges of RT (50 ≤ RT ≤ 1000),
θ(0◦ ≤ θ ≤ 180◦) and ϕ(−1≤ ϕ ≤ 1) for Le = 10, where RT , θ , ϕ , and Le are the
thermal Darcy-Rayleigh number, the cavity inclination, the separation parameter,
and the Lewis number, respectively. An analytical solution, derived on the basis of
the parallel flow approximation, is validated numerically by solving the full gov-
erning equations with a finite difference method. It is found that the heat transfer
is more sensitive to the variation of the cavity inclination than to the separation pa-
rameter while the mass transfer sensitivity is essentially related to positive values
of ϕ in a short range of θ . The thresholds of RT and ϕ from which the boundary
layer approximations can be considered valid (with a maximum deviation of 5%
for the numerical results) are determined; they are found to be dependent on θ . For
positive values of the separation parameter, the boundary layer regime is reached at
relatively lower values of RT .

Keywords: Heat transfer, Mass transfer, Natural convection, Inclined porous layer,
Soret effect, Boundary layer.

1 Introduction

Combined effects of natural convection and thermodiffusion may be encountered in
many engineering applications including underground diffusion of nuclear waste,
oil reservoir analysis, petroleum extraction, mineral and material migration and
separation of mixtures. This phenomenon occurs when a temperature gradient in-
duces a transfer of solute regardless of whether a solute concentration gradient
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already exists or not.

The literature review shows that most of the existing experimental works on the
thermodiffusion phenomenon were devoted to the measurement of the Soret coef-
ficient [Platten (2006); Blanco, Polyakov, Bou-Ali, and Wiegand (2008); Vaeren-
bergh and Legros (1998); Lenglet, Bourdon, Bacri, and Demouchy (2002); Rosanne,
Paszkuta, Tevissen, and Adler (2003)]. Based on these experiments, several models
were developed to predict the Soret coefficient [Eslamian and Saghir (2009)].

The existing theoretical studies were generally concerned with horizontal or ver-
tical rectangular enclosures. In the former case (horizontal enclosures), several
efforts have been devoted to the stability problem. For example, convective in-
stabilities of a fluid mixture in a porous medium heated from below or from above
were investigated theoretically by Brand and Steinberg (1983a) using constant tem-
peratures at the boundaries. The convection state was found to be either stationary
or oscillatory depending on the sign and the magnitude of the thermodiffusion ratio.
The mechanisms of the stationary and oscillatory instability were investigated and
the energy balance was used to derive the threshold conditions. The same authors
[Brand and Steinberg (1983b)] investigated finite amplitude convection near the
thresholds for both stationary and over stable convection. The temporal evolution
of the heat and mass transfer rates was predicted.

Karcher and Müller (1994) studied Bénard convection of a binary liquid in a porous
medium in the presence of Soret effect. A two-parameter perturbation analysis was
used to examine the Soret effect on the stability of the basic state and finite am-
plitude convection. Their results show that a non linear density temperature rela-
tion has a destabilizing effect characterized by the decrease of the critical Rayleigh
numbers for the onset of oscillatory and steady-state convection.

Ryskin, Müller, and Pleiner (2003) studied the Soret effect on thermo-convection in
a horizontal infinite layer of binary liquid mixtures with weak concentration diffu-
sivity and large separation numbers. By considering the classical Rayleigh Bénard
problem, they showed that both linear and nonlinear convective behaviors were
significantly altered by the concentration field as compared to single-component
systems. An expression for the difference of solute concentration induced by the
Soret effect, between the top and the bottom of a vertical porous cavity heated
isothermally from the sides was derived analytically by Lorenz and Emery (1959).
This problem was reconsidered four decades later by Dutrieux, Chavepeyer, Plat-
ten, and Itasse (1999), for the case of a porous medium modelled on the basis of
the Brinkman equation. In this way it is possible to take into account the influence
of the cavity boundaries ‘no-slip conditions’ on the separation effects.

In a 3D configuration, Platten, Marcoux, and Mojtabi (2007) examined the linear
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stability of a liquid layer heated from below and laterally confined between four
vertical rigid and adiabatic boundaries. The Soret effect on the onset of Marangoni
convection in a non-reactive binary fluid layer in the presence of through flow was
investigated by Saravanan and Sivakumar (2009) for different boundary conditions.
Bourich, Hasnaoui, Amahmid, and Mamou (2005) carried out a numerical and ana-
lytical investigation of the Soret-driven convection using Brinkman-extended Darcy
model for a sparsely packed porous medium. The flows in a shallow enclosure
heated from below were studied for the case of fixed heat flux at the boundaries.
The critical Rayleigh number was found to be strongly dependent on the separation
parameter. Different types of perturbations (monotonic, oscillating and subcritical)
were observed at different separation parameter value.

More recently, Lyubimov, Gavrilov, and Lyubimova (2011) studied two-dimensional
Soret-driven convection in a porous cavity with perfectly conducting boundaries
heated from below. The scenario of the convection onset is discussed in this study.
The boundaries of the diffusive state instability to the small-amplitude and finite-
amplitude monotonous and oscillatory perturbations have been determined. It has
been found that any weak thermodiffusion effect destroys the degeneracy existing
in the case of single-component fluid. For small values of the separation parameter,
the spatial pattern with even temperature distribution arises in the system. For fi-
nite values of the separation parameter the linear stability of the diffusive state was
studied numerically by finite-difference method. The instability thresholds were
calculated for monotonic and oscillatory perturbations.

Concerning vertical enclosures, Benano-Melly, Caltagirone, Faissat, Montel, and
Costeseque (2001) studied numerically and experimentally the problem of thermo-
diffusion in an initially homogeneous mixture submitted to a horizontal thermal
gradient induced by constant but different temperatures imposed on the vertical
boundaries. It was found that the theory can represent well the solute behavior
only when the solutal buoyancy force is negligible. The observed discrepancy be-
tween numerical and experimental results while reproducing thermogravitational
experiments by numerical means was attributed by the authors to the dispersion
as a possible cause of this difference. Er-Raki, Hasnaoui, Amahmid, and Mamou
(2006) studied the Soret effect on the boundary layer flows induced by double-
diffusive convection in a vertical porous layer subject to horizontal heat and mass
fluxes. The thermo-diffusion effect on the boundary layer thickness was discussed
for a wide range of the governing parameters. It was demonstrated analytically
that the thickness of the boundary layer could either increase or decrease when the
Soret parameter was varied depending on the sign of the buoyancy ratio. Recently,
Davarzani and Marcoux (2011) have studied numerically the influence of thermal
properties on the separation rate in a model of packed thermogravitational column
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saturated by a binary mixture. They have reported that the presence of the porous
matrix leads to optimal conditions of separation associated to higher Rayleigh num-
bers than without the porous media. Taking into account heat transfer in the solid
matrix leads to separation greater than the maximum values available in the free
case.

Most recently, Srinivasan and Saghir (2011) and Parsa and Saghir (2012) investi-
gated the influence exerted on such phenomena by vibrations (g-jitters, see, e.g.,
also Monti, Savino, and Lappa (2001) and Savino and Lappa (2003)).

The main goal of the present work is to study thermosolutal natural convection in
inclined porous layers saturated with a binary mixture and subject to constant fluxes
of heat. The combined influence of the separation parameter and cavity inclination
is examined and the limits of applicability of the boundary layer approximation are
determined. The search of optimum conditions of species separation is also among
the objectives of the study.
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Figure 1: Schematic diagram of the studied problem.

2 Mathematical formulation

We consider a two dimensional inclined rectangular porous medium saturated with
a binary mixture. The inclined cavity, sketched in Fig. 1, has height L

′
and width

H
′

with long sides subjected to uniform heat fluxes, q
′
, and short sides insulated

and impermeable to mass transfer. The mixture saturating the porous medium is as-
sumed to be homogeneous, isotropic and is modeled as a Boussinesq-incompressible
fluid. The remaining physical properties are considered constant. The dimension-
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less governing equations describing the conservation of momentum, energy and
species in the saturated Darcy porous medium and in the presence of Soret effect
are written as follows:

∇
2
Ψ =−RT
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∂

∂x
− sinθ

∂

∂y

)
(T +ϕS) (1)
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∂ t

+u
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In the above equations, Ψ, T and S are the dimensionless stream function, temper-
ature and solute concentration, respectively. The boundary conditions associated to
the governing equations are:

y =±1/2 : Ψ = 0, ∂T
∂y =−1, ∂S

∂y =−1
x =±Ar/2 : Ψ = 0, ∂T

∂x = 0 ∂S
∂x = 0

}
(5)

In addition to the inclination θ of the cavity, the problem is governed by four
other dimensionless parameters which are the separation parameter, ϕ , the thermal
Darcy-Rayleigh number, RT , the Lewis number, Le, and the cavity aspect ratio, Ar,
defined respectively as:

ϕ =−
βSS

′
0(1−S

′
0)DT

βT De f f
, RT =

gβT K∆T
′
H
′

αυ
, Le =

α

De f f
, Ar =

L
′

H ′ (6)

The parameter De f f = Dε
′

is the effective mass diffusivity, and D and DT are re-
spectively the mass diffusivity and the thermodiffusion coefficient.

In practical applications (such as in oil reservoir where the Soret effect could be
important) the porosity is usually around 0.2. However, the present study concerns
the analysis of steady flows which are independent of ε . The parameter ϕ can
assume positive or negative values depending on whether the solutal and thermal
buoyancy forces are cooperating (ϕ > 0) or opposing (ϕ < 0) each other.
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3 Numerics

In the present study, numerical simulation has been undertaken essentially with the
purpose to validate an analytical solution expressly derived to support the analysis
(as illustrated in Sect. 4). The governing equations have been discretized accord-
ing to the central difference scheme. The iterative procedure has been performed
using the alternate direction implicit method (ADI). The stream function field has
been determined from Eq. (4) using the point successive over relaxation method
(PSOR). The calculation domain was divided into three regions; the grid has been
refined in the vicinity of the walls while a coarse uniform grid was employed for the
central region of the cavity. In the present study, the grid of 121× 101 was found
enough to ensure grid-independence of the results. Comparative results concerning
the grid’s effect and the deviation between analytical and numerical results are pre-
sented in Tables 1 and 2 respectively for (RT , ϕ , θ ) = (200,0.5,45◦) and (103, -0.5,
105◦). In these tables, we can observe that, with the selected grid, there is a satis-
factory agreement between analytical and numerical results. Numerous numerical
tests have been performed by solving the full governing equations to determine the
minimum aspect ratio above which the effect of the short confining sides is negli-
gible. In view of the results obtained (not presented here), it can be stated that the
aspect ratio effect becomes negligible from Ar = 12 for the worst cases. Hence, the
numerical results reported here were obtained with Ar = 12.

Table 1: Grid effect on the results for RT = 200, Le = 10, ϕ = 0.5, θ = 45◦ and
Ar = 12.

Numerical results for various grids and their
Analytical deviations from the analytical results (%)

101×61 101×81 121×101 201×101
Ψc 4.3189 4.3298 4.3266 4.3238 4.3227

(0.2524%) (0.1783%) (0.1134%) (0.0879%)
Nu 5.7614 5.7464 5.7459 5.7525 5.7553

(0.2603%) (0.2690%) (0.1544%) (0.1058%)
Sh 10.0279 9.9981 9.9929 10.0198 10.0266

(0.2972%) (0.3490%) (0.0807%) (0.0129%)
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Table 2: Grid effect on the results for RT = 103, Le = 10, ϕ =−0.5, θ = 105◦ and
Ar = 12.

Numerical results for various grids and their
Analytical deviations from the analytical results (%)

101×61 101×81 121×101 201×101
Ψc 3.104 3.1216 3.1209 3.1085 3.0994

(0.5670%) (0.5444%) (0.1449%) (0.1481%)
Nu 5.2549 5.2495 5.2492 5.2546 5.2573

(0.1027%) (0.1084%) (0.0057%) (0.0456%)
Sh 15.033 15.0431 15.0332 15.1662 15.2538

(0.0671%) (0.0013%) (0.8860%) (1.4647%)

4 Analytical solution

The analytical solution has been developed by using the parallel flow approxima-
tion, valid for slender cavities (Ar� 1) and allowing the following simplifications:

Ψ(x,y) = Ψ(y),T (x,y) =CT x+θT (y) and S(x,y) =CSx+θS(y) (7)

The parameters CT and CS are respectively the unknown constant temperature and
concentration gradients in the x direction. They are determined by imposing zero
heat and mass fluxes across any transversal section of the cavity. The approxima-
tions of Eqs. (7) were combined with the steady state Eqs. (1)-(4) to obtain simpli-
fied governing equations for which the analytical solution is obtained as follows:

Ψ(y) =−BΩcosh(Ωy)+G (8)

u(y) =−BΩ
2 sinh(Ωy) (9)

T (x,y) =CT x−CT Bsinh(Ωy)+(CT G−1)y (10)

S(x,y) =CSx− (CT +CSLe)Bsinh(Ωy)+((CT +CSLe)G−1)y (11)

This solution is valid for Ω real; with ΩB = G/cosh
(

Ω

2

)
, Ω2 = RT sin(θ)[CT +

ϕ(CT +CSLe)] and GΩ2 = RT [(CT +ϕCS)cos(θ)+(1+ϕ)sin(θ)]. According to
Eq. (9), it appears that the velocity could not vanish for |y| varying in the range
]0,1/2[. This means that only mono-cellular flow is possible. The analytical ex-
pressions of the parameters CT and CS are obtained as follows:

CT = α1B2CT +B(1−GCT )α2
CS =CT +Le[α1B2(LeCS +CT )+Bα2(1−G(CT +LeCS))]

}
(12)
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where α1 =
Ω

2 [sinh(Ω)−Ω] and α2 = Ωcosh
(

Ω

2

)
−2sinh

(
Ω

2

)
.

Therefore, Eqs. (10)-(11) are used to obtain the expressions of Nu and Sh, charac-
terizing respectively heat and solute transfer rates across the layer:

Nu = 1
T (x,−1/2)−T (x,1/2) =

1
1−BCT α2

Sh = 1
S(x,−1/2)−S(x,1/2) =

1
[1−B(CT+CSLe)α]

}
(13)

The system of Eqs. (12) was solved by using the Newton-Raphson iterative pro-
cedure. In this way, the temperature and concentration gradients CT and CS can
be obtained for any combination of RT , θ , Le and ϕ . Then, the velocity, tempera-
ture and concentration profiles are calculated using Eqs. (9)-(11) while Nusselt and
Sherwood numbers were deduced from Eq. (13).

It is to note that, in the case of imaginary Ω, the resulting solution can be de-
duced by substituting Ω = iω in the above equations where ω = (|RT sin(θ)(CT +
(CT +CSLe))|)1/2 is real and i is the imaginary number (i2 =−1). Using sinh iω =
isinω and cosh iω = cosω , the solution for imaginary Ω is similar to that given by
Eqs. (8)-(11) in the case of real Ω. In other words, the solution for imaginary Ω is
obtained by merely replacing the hyperbolic functions by circular ones.

4.1 Solution for the particular case Ω = 0 and inclined cavity

The parameter Ω becomes zero for a given inclination θ of the cavity, other than
those corresponding to its horizontal positions (θ = 0◦ and 180◦), for CT =−ϕ(CT +
CSLe). This particular situation, leads to the following solution:

Ψ(y) =−E
2
(y2− 1

4
) (14)

u(y) =−Ey (15)

θT (y) =−
CT E

6
y3 +(CT

E
8
−1)y (16)

θS(y) = (CT +LeCS)
E
6

y3 +((CT +LeCS)−1)y (17)

where

E = RT bcos(θ)(CT +ϕCS)+(1+ϕ)sin(θ)c (18)

In the above equations, the values of CT and CS can be obtained by substituting
Eqs. (14)-(18) into their integral forms (not given here), which yields

CT =
10E

120+E2 and CS =CT
120−LeE2

120+Le2E2 +
10LeE

120+Le2E2 (19)
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Substituting Eqs. (19) into Eqs. (13), the analytical expressions of Nu and Sh for
this particular case are obtained as

Nu = 6 E2+120
E2+720

Sh = 12
(CT+LeCS)E−12

}
(20)

The same expression was obtained in the past by Mamou, Vasseur, Bilgen, and
Gobin (1995) for Nu in the case of pure double-diffusive problem but the difference
observed in the expressions of Sh is attributed to the Soret effect which was not
considered in the ref. by Mamou, Vasseur, Bilgen, and Gobin (1995).

The final expression of E can be obtained by using relations (19) and the condition
CT = −ϕ(CT +CSLe) which leads to 10E

120+E2

(
120−LeE2

120+Le2E2 +
1+ϕ

ϕLe

)
+ 10LeE

120+Le2E2 = 0.
This equation for E can also be obtained under another form by using Eq. (18) to
obtain E = RT

[
(1+ϕ)sinθ + 10E

120+E2

(
1− 1+ϕ

Le

)
cosθ

]
.

4.2 Solution for the particular case Ω = 0 and horizontal cavity

The function Ω becomes also zero when the cavity is horizontal. This position
corresponds either to θ = 0◦ (cavity heated from below) or θ = 180◦ (cavity heated
from the top). For such a situation, d2Ψ

dy2 = −E with E = ±RT (CT +ϕCS); (−)
being for θ = 0◦ and (+) for θ = 180◦. Same expressions (as those reported above
with Ω = 0 and θ 6= 0◦ and 180◦) are obtained for Ψ, θT , θS, CT , CS, u, Nu and Sh
but the expression of E is now different and obtained as

E =±RT

[
10E

120+E2

(
1+ϕ

120−LeE2

120+Le2E2

)
+ϕ

10LeE
120+Le2E2

]
(21)

4.3 Boundary layer regime

The boundary layer regime is expected to appear for large values of Ω (high values
of RT ). Contour lines of stream function, isotherms, iso-cocentrations and density
presented in Fig. 2 together with velocity, temperature and concentration profiles
presented in Figs. 3-4 show clearly that the velocity exhibits a classical boundary
layer behavior with zero gradient far from the active walls. However, it can be
noticed that the boundary layer profile of concentration and temperature is charac-
terized by a linear variation and thereby a constant gradient outside the boundary
layer. To quantify the importance of the latter gradient we illustrate in Fig. 5 the
profile of ∂S

∂x and ∂T
∂x ( i.e. transverse gradient of concentration and temperature) for

RT = 1000, Le = 10, ϕ = 1 and θ = 45◦,75◦,90◦,105◦. This figure shows that the
profiles of ∂S

∂x and ∂T
∂x exhibit clearly a behavior of boundary layer type. Further-

more, the nearly constant gradients of S and T observed outside the boundary layer
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      (a)                 (b)               (c)                (d) 

Figure 2: From left to right, contour lines of stream function (a), isotherms (b),
iso-concentrations (c) and density (d) for RT = 1000, Le = 10, θ = 45◦ and ϕ = 1.
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Figure 3: u-velocity (a), temperature (b) and concentration (c) profiles along y at
mid-height of the cavity for RT = 200, Le = 10 and ϕ = 0.5 and different values of
cavity inclination.
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Figure 4: u-velocity (a), temperature (b) and concentration (c) profiles along y at
mid-height of the cavity for RT = 200, Le = 10 and θ = 45◦ and different values of
ϕ .
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Figure 5: Temperature and concentration gradients at mid-height of the cavity for
RT = 1000, Le = 10, ϕ = 1 and θ = 45◦, 75◦, 90◦ and 105◦
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are small compared with those in the vicinity of the active walls. This is the reason
for which the boundary layer approximations developed below give satisfactory re-
sults (see the next sections). In the case of very large values of Ω, the parallel flow
solutions can be simplified to obtain:

Ψ(y) = G(1− expΩ(|y|−1/2)) (22)

u(y) =−|y|
y

GΩexpΩ(|y|−1/2) (23)

T (x,y) =CT x+(CT G−1)y+
|y|
y

CT G
Ω

expΩ(|y|−1/2) (24)

S(x,y) =CSx+((CT +LeCS)G−1)y+
|y|
y
(CT +LeCS)G

Ω
eΩ(|y|− 1

2) (25)

Nu =
1+α4G2

1+α5G2/Ω
(26)

Sh =
(1+α4G2)(1+α4G2Le2)

1+ 1
Ω

α5G2Le2 +α4G2 +α4α5G4Le2/Ω− (1+Le)α2
3 G2

(27)

Where

CT =
α3G

1+α4G2 and CS =
(1+Le)α3G

1+(1+Le2)α4G2 +α2
4 G4Le2 (28)

with α3 = 1−2/Ω, α4 = 1−3/Ω and α5 = 1−4/Ω.

5 Results and discussion

In this section, the attention is mainly focused on the effects of the inclination of
the cavity, the separation parameter and the Rayleigh number on Ψc, Nu and Sh.
The study is conducted for Le = 10 and Ar = 12. The examination of the validity
of the boundary layer approximations counts among the objectives of the present
study (see sub-sections 5.2 and 5.3).

5.1 Effect of the inclination angle

In the present study the tilt angle was varied within the range [0◦,180◦]. Figs. 6(a)-
(c) illustrate the variations of the flow intensity, Ψc(in the centre of the cavity), and
heat and mass transfer, characterized by Nu and Sh, respectively, versus the inclina-
tion angle, θ , for various values of the separation parameter ϕ and RT = 200. Dif-
ferent trends are observed in the evolutions of Ψc, Nu and Sh when the inclination



Soret driven thermosolutal convection 195

0 60 120 180
0

2

4

6

- 0.5

- 0.1

(a)

0.5

  Parallel flow
  Numerical

C

0 60 120 180
0

2

4

6

7

- 0.1

 = - 0.5

(b)   Parallel flow
  Numerical0.5

1

Nu

0 60 120 180
0

50

100

150

200

- 0.5
- 0.1

  Parallel flow
  Numerical

(c)

 =
 1

0.5

Sh

0 60 120 180
0.0

0.2

0.4

0.6

0.7

- 0
.1

0.
5

(d)  Parallel flow
  Numerical

C

Figure 6: Effect of the inclination θ on Ψc(a), Nu(b), Sh(c) and ∆C(d) for Le = 10
and RT = 200.
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Figure 7: u-velocity along y at mid-height of the cavity for Le = 10 and RT = 200.
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        (a)               (b)                  (c)  
Figure 8: Iso-concentrations for θ = 45◦, Le = 10, RT = 200 and (a): ϕ = 1, (b):
ϕ = 0.5 and (c): ϕ =−0.1

θ is varied. In the case of Ψc, Fig. 6a shows that the evolution is characterized by
a continuous decrease when θ is increased from 0◦ (horizontal cavity heated from
below) to 180◦ (horizontal cavity heated from above) . All the trends observed are
not affected by the Soret parameter but, depending on the inclination of the cavity,
the impact of the latter could be important on the flow intensity. Globally, the in-
clination angle is seen to have an important quantitative effect on the flow intensity
and heat and mass transfer characteristics. In a previous study, the case of θ = 0◦

was considered by Bourich, Hasnaoui, Amahmid, and Mamou (2005). The authors
have demonstrated the existence of three regions with specific behaviors and the
critical Rayleigh numbers corresponding to the onset of subcritical and supercrit-
ical flows were determined explicitly versus the governing parameters. The other
limit value of θ(θ = 180◦) corresponds to a cavity heated from above. This case



Soret driven thermosolutal convection 197

  (a)                (b)                  (c) 
Figure 9: Iso-concentrations for Le = 10, RT = 200 and (a): (ϕ,θ) = (1,156◦), (b):
(ϕ,θ) = (0.5,163◦) and (c): (ϕ =−0.1,θ = 177◦).

corresponds to a stable situation only in the absence of Soret effect or in the case
of positive separation parameter. For this situation the convective flow is cancelled
(Ψc = 0) and heat and mass transfers are those of the diffusive regime. However,
even for θ = 180◦, we can observe a small circulation (Ψc 6= 0) in the case of neg-
ative ϕ . By increasing θ from 0◦ to 180◦, Nu (Fig. 6b) and Sh (Fig. 6c) behave
differently with this increase. In fact, Nu increases with θ up to a maximum near
θ = 40◦ and then decreases towards the conductive regime with further increase in
θ . It is observed that positive values of the separation parameter are favourable to
heat transfer within the system for moderate inclinations of the cavity. These ob-
servations, compared to the variations of Ψc, indicate that the heat transfer is rather
controlled by the intensity of the local flows but not by their global intensities. In
fact, we can observe complex and different behaviors when we compare the veloc-
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ity profiles in Fig. 7 obtained for θ = 45◦ and 135◦. For θ = 45◦, the intensity of the
local flow is seen to decrease by decreasing ϕ in the vicinity of the thermally active
wall. The change in the tendency is observed for y ≈ 0.09 where the local effect
of the flow intensity becomes probably negligible on heat transfer. This behavior is
a possible explanation of the decrease of Nu observed for moderate inclinations of
the cavity (for θ < 90◦) when ϕ is varied. On the other hand, we can observe in the
same figure that the decrease of u engendered by the decrease of ϕ in the case of
θ = 135◦ is restricted to the immediate vicinity of the wall while the change in the
trend is observed earlier. Probably this earlier change in the trend overcomes the lo-
cal effects of the flow in the control of heat transfer in the immediate vicinity of the
boundary and could be behind the increase of the Nusselt number when the separa-
tion parameter ϕ is decreased in the case of θ = 135◦ (for θ > 90◦ in general). In
the case of Sh, it is seen from Fig. 6c that the inclination effect remains limited for
ϕ ≤ 0 while for positive values of this parameter this effect becomes important in
some range of θ with maxima (very sensitive to the increase of ϕ) observed around
θ = 135◦. Fig. 6d illustrates the species separation evolution, ∆C, with the inclina-
tion angle of the cavity for RT = 200, Le = 10 and ϕ = 1, ϕ = 0.5 and ϕ =−0.1.
The difference ∆C is defined as the difference of solute concentration between the
two lateral walls of the cavity normalized with the aspect ratio. It can be seen that
separation goes through a maximum value when the inclination angle is increased
from 0◦ to 180◦. Furthermore, the location of the maximum is a function of ϕ . For
all the values of ϕ considered in this study, the maximum of separation is located
beyond 150◦ and it is seen to change slightly with ϕ . but sharper picks are obtained
at smaller ϕ . Consequently, noticeable values of separation are obtained in a small
range of θ in the case of ϕ =−0.1. On the basis of the results presented in Fig. 6d,
the observations concerning the species separation are verified for RT = 200 and
Le = 10 by illustrating numerically a case where the separation of species is absent
(case illustrated in Fig. 8 for θ = 45◦ and various ϕ) and another case where the
separation of species is maximum (case illustrated in Fig. 9 for three combinations
of θ−ϕ leading to ∆Cmax). In fact, in Fig. 8d, both analytical and numerical results
show that the separation of species is absent for θ = 45◦ whatever is the value of the
parameter ϕ . This observation is in agreement with the iso-concentrations of Fig. 9
that show an almost uniform concentration distribution within the cavity for the
three values of ϕ . On the other hand, the combinations θ −ϕ selected in Fig. 9 are
those leading to maximum ∆Cmax in Fig. 6d. Each of the three combinations leads
to maximum of species separation for a specific θ in the range 150◦-180◦. More
precisely, for ϕ = 1/0.5/− 0.1, the corresponding inclination leading to ∆Cmax is
θ = 156◦/163◦/177◦.
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Figure 10: Effect of the Rayleigh number RT on Ψc(a), Nu(b) and Sh(c) for Le =
104, θ = 45◦ and different values of ϕ .

5.2 Effect of Rayleigh number

In the boundary layer regime, the analytical solutions of Ψc, Nu and Sh are con-
cerned by the boundary layer simplifications. To examine the conditions of validity
of the boundary layer simplifications established above, we illustrate the evolutions
of Ψc, Nu and Sh versus the Rayleigh number, within the range of [50,1000], in
Figs. 10 to 12 for Le = 104, different values of ϕ and θ = 45◦,75◦ and 105◦, re-
spectively. The analytical results based on the parallel flow approximation (solid
lines) are seen to be in excellent agreement with those obtained numerically (full
dots) by solving the full governing equations. In the same figures, the approxi-
mate boundary layer results are presented by dashed lines. In all these figures, we
can see that, in general, negative values of ϕ are the least favorable to the devel-
opment of the boundary layer. The importance of the qualitative and quantitative
disagreements observed can be enhanced or attenuated, depending on the angle
of inclination θ and the Rayleigh number RT . More precisely, for θ = 45◦ and
ϕ = −0.5, the simplified equations of the boundary layer lead to qualitative and
quantitative agreements with the numerical solution in the case of Ψc from the
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Figure 11: Effect of the Rayleigh number RT on Ψc(a), Nu(b) and Sh(c) for Le= 10,
θ = 75◦ and different values of ϕ .

threshold RTC = 550 (Fig. 10a). By increasing the inclination θ to 75◦ and main-
taining ϕ = −0.5 (Fig. 11a), the difference characterizing the deviation of 5% be-
tween the boundary layer results and those obtained numerically is observed from
RTC = 260. Beyond the vertical position, case illustrated in Fig. 12a with θ = 105◦,
the concavity of the Ψc curves undergoes changes but quantitatively speaking, for
ϕ = −0.5, the boundary layer approximation becomes valid even at RT as low as
250. In the case of Nu, the thresholds of RT marking the validity of the boundary
layer approximations for ϕ = −0.5 decrease by increasing θ ; they are 860, 300
et 190 respectively for θ = 45◦,75◦ and 105◦. Finally, for this negative value of
ϕ , the Sh boundary layer agree within 5% with the parallel flow solution and the
numerical results from RT = 994.75,411.34,323.23, respectively for θ = 45◦,75◦

and 105◦. In general, the combination (θ ,ϕ) = (45◦,−0.5) remains the worst for
the development of the boundary layer for Ψc, Nu and also Sh. For both Ψc and Nu,
the boundary layer approximation reproduces the numerical results from thresholds
of RT lower in fact than 50 for aiding buoyancy forces (ϕ > 0) regardless of θ . In
the case of Sh, these thresholds of RT are higher. More precisely for ϕ = 0.5/(1),
these thresholds values of RT are 138.11/(93.60), 79.95/(49.46), and 66.10/(35.06)
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Figure 12: Effect of the Rayleigh number RT on Ψc(a), Nu(b) and Sh(c) for Le= 10
and θ = 105◦ and different values of ϕ .

respectively for θ = 45◦,75◦ and 105◦. Finally, it is to note in all these figures
that, for a given RT , Ψc increases by decreasing ϕ while a reverse trend is observed
in the case of Nu (for θ = 45◦ and 75◦) and Sh (for the three inclinations consid-
ered). This behavior can be explained by the fact that Nu is rather controlled by the
intensity of the local flows as explained in the previous sub-paragraph.

5.3 Effect of Separation parameter

Within the range of [−1,1], the effect of the separation parameter on the validity
of the boundary layer theory is illustrated in Fig. 13a-c where the respective varia-
tions of Ψc, Nu and Sh are presented versus ϕ for RT = 200, Le = 10 and various
inclinations (θ = 45◦,75◦,90◦,105◦ and 135◦). In general, it can be seen that the
inclination θ = 45◦ is the least favorable for the validity of the boundary layer
regime despite the fact that it leads to better fluid circulation and higher Nusselt
number but it is the most favourable for the validity of these approximations in the
case of Sh despite the fact that it leads to lower Sherwood numbers. In fact, for a
given value of ϕ , it is seen in Fig. 13a-c that both Ψc and Nu decrease by increasing
the inclination of the cavity from θ = 45◦ while Sh increases by increasing it from
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Figure 13: Effect of the separation parameter ϕ on Ψc(a), Nu(b) and Sh(c) for
Le = 10 and RT = 200.

its lowest value. In addition, by increasing the separation parameter from nega-
tive value, it appears that the validity of the boundary layer theory is practically
restricted to positive values of ϕ in the case of θ = 45◦ while for the remaining in-
clinations the boundary layer theory is applicable for thresholds of ϕ starting from
negative values of this parameter. More precisely, by increasing ϕ in its range for
the inclination θ = 45◦, the relative difference between the analytical and numer-
ical results on one hand and those obtained by the boundary layer theory on the
other hand becomes less than 5% only from the thresholds ϕ ≈ 0 and −0.04 for
Ψc and Nu, respectively. The thresholds of ϕ for Ψc/(Nu) corresponding to the re-
maining inclinations are -0.35/(-0.41), -0.42/(-0.47), -0.43/ (-0.48) and -0.2/(-0.32)
respectively for θ = 75◦, 90◦, 105◦ and 135◦. Hence, the threshold of the dynamic
boundary layer regime is seen to decrease by increasing the inclination angle of the
cavity in the range 45◦ ≤ θ ≤ 105◦ though the global circulation has an inverse ten-
dency, i.e. Ψc decreases by increasing θ . This tendency is however inverted when
θ passes from 105◦ to 135◦ as the threshold undergoes an increase. Such a be-
havior seems somewhat surprising, but in reality, heat and mass transfer are rather
controlled by the local variations than by the global intensity of the fluid as it can
be seen by plotting u(y) at mid-height of the cavity in Fig. 14. In fact, we can see
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Figure 14: u-velocity along y at mid-height of the cavity for Le = 10 and RT = 200.

in this figure that the velocity increases by decreasing θ in the vicinity of the long
boundaries and the tendency in the evolution of Nu is rather corroborated by this
behavior. It is to note that, in the case of Sh (Fig. 13c), a different deduction can
be made as to the validity of the approximations that led to boundary layer approx-
imations. In fact, these approximations are justified from ϕ = 0.27,−0.22,−0.28,
and −0.11 respectively for θ = 45◦,75◦,105◦ and 135◦.

6 Conclusion

Thermodiffusion and natural convection (and related heat and mass transfer proce-
ses) in a two dimensional inclined rectangular porous layer impermeable to mass
transfer with long sides submitted to uniform fluxes of heat have been studied an-
alytically and numerically. The results obtained show that the heat transfer is es-
sentially governed by the local flow intensity. In addition, it has been observed that
the Nusselt number is more sensitive to the variations of the cavity inclination than
to the separation parameter. It goes through a maximum value when the separation
parameter is increased in the range [−1,1]. The location of the maximum depends
on the inclination angle. The presence of thermodiffusion in the medium may be
favourable or unfavourable to heat transfer depending on the inclination angle and
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the separation parameter value. Separation of species reaches its maximum for a
specific value of the inclination angle (which depends on ϕ) in the range 150◦-
180◦. Thresholds in terms of RT/(ϕ) from which the boundary layer theory results
coincide with those obtained numerically and analytically are strongly dependent
on θ and ϕ/RT .

Finally, it is also worth mentioning that the Nusselt number goes through a max-
imum value depending on ϕ for critical inclinations around 40◦ (more precisely
between 40◦ and 45◦ depending on ϕ) when θ is increased from 0◦ to 180◦.
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Appendix A: Nomenclature

g gravitational acceleration.

D mass diffusivity (m2/s)

Le Lewis number, α/D

Nu Nusselt number

RT Thermal Darcy-Rayleigh number

S dimensionless solute concentration, (S
′−S

′
0)/∆S

′

S0 reference solute concentration (at x = y = 0)

∆S
′

characteristic solute concentration, −DT S
′
0(1−S

′
0)∆T

′
/De f f

Sh Sherwood number

t dimensionless time, t
′
α/σH

′2

T dimensionless temperature, (T
′−T

′
0)/∆T

′

T0 reference temperature (at x = y = 0)

∆T
′

characteristic temperature, H
′
q
′
/λ

Greeks

α thermal diffusivity of the porous medium (m2/s)

Ψ dimensionless stream function, Ψ
′
/α

βs solutal expansion coefficient (m3/kg)
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βT thermal expansion coefficient (K−1)

ε
′

porosity of the porous medium

υ Kinematic viscosity of the fluid (m2/s)

ρ density of the fluid mixture (kg/m3)

θ cavity inclination (◦)

λ thermal conductivity (W/m2K)

ϕ separation parameter; ϕ = βs∆S
′
/(βT ∆T

′
)




