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Enhanced Heat Transfer by Unipolar Injection of Electric
Charges in Differentially Heated Dielectric Liquid Layer
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Abstract: In this work we consider the problem related to the electro-thermo-
convection of a dielectric fluid in a rectangular enclosure placed between two elec-
trodes. This layer is subjected simultaneously to the injection of electric charges
and to a thermal gradient. The influence of the electric Rayleigh number (200 -
1000) on the structure of the flow, the density of electric charge and heat transfer is
investigated. An oscillatory flow is observed and discussed in detail.
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Nomenclature

a Thermal diffusivity
t Time
C = q0×L2

ε0×∆V Dimensionless number which measure the injection strength
T = ε0×∆V

ρ×ν×K0
Electric Rayleigh number

Ex,Ey Electric fields
Ux et Uy horizontal and vertical velocity
g acceleration of gravity
V electric potential
H Enclosure height
β coefficient of thermal expansion
K0 ionic mobility of the liquid
ε0 permittivity of the fluid
L Enclosure Width
θ Temperature
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M = 1
K0

(
ε0
ρ

)0,5
Dimensionless number which characterizes EHD properties

of the liquid

θ f et θc Cold and hot wall temperature
Pr Prandtl number
µ , ν Dynamic and kinematic viscosity
q Electric charge density
ρ Density
R = T

M2 Electric Reynolds number
Ψ Stream function
Ra = g×β×∆θ×L3

ν .a Thermal Rayleigh number
ω vorticity

1 Introduction

The so-called “electro-thermo-convection” is an interdisciplinary subject associ-
ated with the interaction among fluids, heat transfer and electric fields [Castellanos
(1998)].

In the last few years, such a phenomenon was well studied especially in dielectric
liquids.

Indeed, it is well known today that the development of motion in a dielectric liquid
layer between two electrodes (subjected to a high potential difference) is due to
the action of the electric field on the electric charges injected into the liquid. One
of the reasons which motivated the study of the Electro-Hydro-Dynamic (EHD)
problem is that the development of instabilities in the liquid could be a promising
way to increase the heat transfer using electric forces. As a natural consequence,
the use of this technique may be used to reduce the size and cost of industrial
heat exchangers. EHD phenomena also occur in several important industrial pro-
cesses [Wong, Wang, Deval and Ho (2004)]. Indeed, new technologies in the field
of micro-electro-mechanical and nanotechnology are strongly related to electro-
thermo-convection [De Voe, Darabi and Ohadi (2001); Gonzalez, Green, Castel-
lanos, Ramos and Morgan (2003)].

Most authors who worked so far on the EHD and on the electro-thermo-convection
have mainly approached the resolution of this problem either experimentally or
theoretically by stability analysis.

Atten, McCluskey and Perez (1987 and 1988) presented experimental studies with
a Rayleigh-Bénard configuration. They showed that the agitation induced by the
Coulomb force resulting from unipolar injection has a major influence on heat
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transfer. Indeed, this transfer was increased by a factor ranging from 7 to 15 under
their experimental conditions. They also tried to correlate the Nusselt number to the
electric quantities (current of injection, electric potential) and to the geometry of
field (distance separating the plans). They found a very satisfactory proportionality
relationship. Similar results exist for unipolar charges injection in dielectric liquid
lying between a wire and a coaxial cylinder [Atten and Elaouadie (1995)]. Also,
stability of configuration with air/liquid two layer system under unipolar injection
was studied by Koulova-Nenova, Atten and Elaouadie (1997).

For the case of non uniform electric field, Smorodin and Velarde (2001) and Taka-
shima and Hamabata (1984) used electroconvective excitation to study the onset of
instability in a differentially heated dielectric liquid subjected to an alternating elec-
tric field. They focused on the non-uniform polarization of the liquid, which was
found to exert a negligible influence on the stability if the thermogravitationally-
driven convection is strong.

Recently Vázquez, Georghiou and Castellanos (2006 and 2008) solved numeri-
cally the problem of isothermal electroconvection. Two different methods (finite
elements combined with the particle-in-cell method "FE-PIC" and finite elements
and the flux-corrected transport method "FE-FCT") were tested, in particular. In
the case of strong and weak injection, the structure of the flow and the distribu-
tion of the density of electric charge were examined resorting to a stability analysis
technique.

Purely numerical works solving the coupled equations defining the problem are
very rare in the literature. The first attempt carried out by Castellanos, Atten and
Perez (1987) did not lead to satisfactory results, but recently Traoré, Koulova-
Nenova, Romat and Perezc (2009) and Traoré, Perezc, Koulova-Nenova and Ro-
mat (2009 and 2010) could numerically determine the space-time evolution of the
electro-thermo-convective flow.

In the present work, we solve numerically the entire set of equations associated
with the electro-thermo-convective phenomena that take place in a planar layer of
dielectric liquid differentially heated and subjected to unipolar injection. We focus
essentially on the effect of the electric field on the flow structure and related heat
transfer. Original results about oscillatory flow existing at relatively high values of
the electric Rayleigh number are obtained.

2 Mathematical formulation and numerical model

We consider a layer of dielectric liquid confined in a square cavity of length L
(Figure 1). The two vertical walls are maintained respectively at fixed temperatures
θc et θ f . On the two other adiabatic walls electrodes are placed. The emitter



384 Copyright © 2012 Tech Science Press FDMP, vol.8, no.4, pp.381-395, 2012

 

                                
 

Hot wall 
θc 

Cold wall 
θf 

Emitter adiabatic  
electrode V0  

collector adiabatic  
electrode V1 

x   
y  

g
E


Figure 1: Geometry of enclosure

electrode corresponding to the plane y=0 is held at potential V0 and is the source of
ions which are injected into the liquid and collected by the electrode at y =L which
is held at potential V1.

The layer is thus subjected simultaneously to a thermal gradient ∆θ = θc−θ f and
a potential difference ∆V = V0−V1.

Knowing that the electro-thermo-convection brings into play a variety of phenom-
ena: hydrodynamic, thermal and electrical, the equations describing this problem
take into consideration the following physical aspects:

The hydrodynamic aspects, including the equation of continuity and the equation
of momentum (Navier-Stokes) containing force terms due to the internal viscosity,
the gravity field and especially to electric force.

The thermal aspect is modelled by the equation of conservation of energy that takes
into account the existence of the temperature gradient and the ensuing development
of the natural convection phenomenon (this equation being coupled to the velocity
field).

The electrical phenomenon that causes injection and migration of electric charges
is described by the Gauss’s theorem, by the equation of conservation of electric
charges and by the relationship between the electric field and the electric potential
V.

These equations under the Boussinesq assumption are written:

∇.~U ′ = 0 (1)

ρ0

(
∂ ~U ′

∂ t ′
+(~U ′.∇)~U ′

)
=−~∇P′+∇.

(
T visc +T el

)
+ρ~gβ (θ ′−θ0) (2)
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ρ0Cp

(
∂θ ′

∂ t ′
+ ~U ′.∇θ

′
)

= ∇.(λ∇θ
′) (3)

∂q′

∂ t ′
+∇.~j = 0 (4)

∇.(ε~E ′) = q′ (5)

~E ′ =−~∇V ′ (6)

With T visc and T el are the tensors of the forces of viscosities and the electric forces

∇ ·T visc
i j = µ

(
∂ 2U ′i
∂x′2j

+
∂ 2U ′j
∂x′2i

)
(7)

∇ ·T el = q~E− 1
2

E2~∇ε0 +~∇

(
1
2

ρE2
(

∂ε0

∂q

)
θ

)
(8)

In equation (4) ~j represents the density of electrical current which is equal accord-
ing to [Atten and Moreau (1972)] and [Atten and Lacroix (1979)] to:

~j = q′
(

~U ′+K~E ′
)

(9)

In equation (8) the first term known as Coulomb force, is the force per unit vol-
ume exerted by electric field on a medium containing free charges. Under D.C.
conditions, the second term corresponds to the dielectric force and it is very weak
compared to the Coulomb force.

The third term which represents the effect of electrostriction has the gradient form
and can be absorbed in the pressure term of momentum equation but in the case
of incompressible fluid (liquid) this term can be also neglected [Traoré, Koulova-
Nenova, Romat, Perezc (2009); Ould El Moctar, Peerhossaini, Le Peurian and Bar-
don (1993); (1996); Atten and Moreau (1972); Paschkewitz and Pratt (2000)]. Thus
the electric force can be expressed as:

∇ ·T el = q~E (10)

As numerical method we had recourse to the “ Vorticity - Stream function” for-
malism (ψ−ω), which allows the elimination of the pressure which is delicate to
treat.

They are respectively defined by the two following relations:

~ω = ∇×~u (11)
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~u = ∇×~ψ (12)

Introducing the following dimensionless variables:

x =
x′

L
y =

y′

L
Ux = U ′x

L
a

Uy = U ′y
L
a

ψ =
ψ ′

a
ω = ω

′L
2

a

t = t ′
a
L2 θ =

(θ ′−θ f )
(θc−θ f )

q =
q′

q0
E = E ′

L
(V0−V1)

V =
(V ′−V1)
(V0−V1)

For a two-dimensional geometry the system which governs this type of electro-
thermo-convectif flow (1) - (6) writes in adimensional form:

ω =−
(

∂ 2Ψ

∂x2 +
∂ 2Ψ

∂y2

)
(13)

∂ω

∂ t
+Ux

∂ω

∂x
+Uy

∂ω

∂y
=

∂ 2ω

∂x2 +
∂ 2ω

∂y2 +Ra.Pr
∂θ

∂x
+

CT 2

M2 .
2

Pr
(

∂ (qEy)
∂x

− ∂ (qEx)
∂y

)
(14)

∂θ

∂ t
+Ux

∂θ

∂x
+Uy

∂θ

∂y
=
(

∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
(15)

∂q
∂ t

+
∂

∂x
(q(Ux +R.Pr .Ex))+

∂

∂y
(q(Uy +R.Pr .Ey)) = 0 (16)

∂ 2V
∂x2 +

∂ 2V
∂y2 =−C ·q (17)

Ex =−∂V
∂x

(18)

Ey =−∂V
∂y

(19)

The associated initial and boundary conditions for the problem considered are as
follows.

For t<0: ω = Ψ = ∂Ψ

∂y = ∂Ψ

∂x = θ = V = q = 0 everywhere

For t>0

Hot wall (x=0): Ψ = ∂Ψ

∂y = 0; θ = 1; ∂q
∂y = ∂V

∂y = 0 et ω =− ∂ 2Ψ

∂x2
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Cold wall (x=L): Ψ = ∂Ψ

∂y = 0; θ = 0; ∂q
∂y = ∂V

∂y = 0 et ω =− ∂ 2Ψ

∂x2

Bottom wall (y=0): Ψ = ∂Ψ

∂x = 0; ∂θ

∂y = 0; q = 1 et V = 1

Top wall (y=L): Ψ = ∂Ψ

∂x = 0; ∂θ

∂y = 0; ∂q
∂y = 0 et V = 0

Equations (13)–(19) are discretized using the control-volume method [Patankar
(1980)]. The power-law scheme for treating convective terms and the fully im-
plicit procedure to discretize the temporary derivatives are retained. The grid is
uniform in both directions (51x51).

The resulting nonlinear algebraic equations are solved using the successive relax-
ation iterating scheme.

It is also noted that the adimensional parameters used for these simulations are: Ra
= 10 000, Pr = 10, M = 10 (corresponding to the liquid gas oil), C = 10 and T varies
between 200 and 1000.

3 Validation tests

The results concerning the study of stability (critical electric Rayleigh) in the case
of pure electrical problem (isothermal) are compared, in Table 1, to those yielded
by Atten and Moreau (1972) for different injection level C.

Table 1: Variation according the injection level of the value of critical electric
Rayleigh number

C
Critical T

Error (%)[15] (présent work)
0.5 1365.4 1359 0.47
0.7 821.5 823 0.18
1.4 351.3 352 0.2
2 258.5 257 0.58

2.8 211.2 210 0.56
3.5 192.6 191 0.83
5 175.7 174 0.97
7 167 165 1.19
10 164 160 2.44

Our results are in good agreement with those of Atten and Moreau ( the error does
not exceed 2.5%).

In order to test the electro-convective case coupled with heat transfer, we consid-
ered the conditions studied by Traoré, Perezc, Koulova-Nenova and Romat (2010),
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i.e., an horizontal cavity, filled with a dielectric fluid, with a shape factor of 10
(the configuration adopted hence corresponds to Rayleigh-Bénard convection with
unipolar injection from the bottom). In this situation the calculation is done with
a mesh of 301 x 51. Figure 2 shows the variation of Nusselt number according to
thermal Rayleigh number for several values of the electric Rayleigh number. We
find that the results of our electro-thermo-convection model are in excellent agree-
ment with Traoré et al. work since the error never exceeds 2%.
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Figure 2: Variation of Nusselt number according to thermal Rayleigh number for
several values of the electric Rayleigh number for Pr=10, C=10 and M=10. 
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Figure 3: Isocontours of the electric charge density for Pr=10, Ra=104, C=10 and
M=10
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4 Results and discussion

4.1 Effect of the electric field on the density of charge

The distribution of the charge density shows that the greatest concentration of elec-
tric charge remains close to the bottom injecting wall, indeed this charge density
drops by 50% after traversing only 3% length of the cavity. For a weak electric
Rayleigh (figure 3 a) the electric charges migration reachs the top wall only from
the side of the left hot wall.

By increasing the electric Rayleigh (figure 3 b, c and d) we observe that the charge
migration takes place in the immediate vicinity of the two vertical walls. It is also
noted that close to the top wall the charge density is more significant if the electric
field is increased (table 2).

Table 2: Maximum charge density on the top wall

Electric Rayleigh 200 500 800 1000
Max q 0.11 0.14 0.15 0.16

4.2 Effect of the electric field on the structure of the flow

In the absence of electric field (T = 0, figure 4 a), the flow is driven by the thermal
buoyancy force, so we obtain a large circulation buckle comprising a clockwise
rotating single cell which occupies the entire cavity. We also note that the structure
of the vortex has an elliptical shape in the longitudinal direction and its rotational
speed is low. Starting the injection from the bottom electrode (Figure 4 b) it is clear
that the electric and thermal fields are acting in the same direction. These latter
fields engender a sudden acceleration of the rotation speed of the cell (which has
almost doubled). The flow structure has not changed except the shape of the vortex
becomes circular.

In the figure 4 c and d, the electric field is high enough that we notice the existence
of a secondary counter rotating cell which appears and grows in the domain.

The first cell near the hot wall (left) is more impressive because it is due to the
combination of both thermal and electrical forces (of Coulomb), while the second
near the cold wall (right) is due to competition between the descending thermal
force, and ascending Coulomb force, this competition promotes finally the electric
force what allows the creation of this counter rotating cell.

By Further increasing the electric Rayleigh (T = 1000, figure 4 e), an unsteady flow
is observed, indeed, a periodic oscillatory regime appears as can be seen in Figure
5.
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Figure 4: Representation of stream lines for Pr =10, Ra =104, C= 10 and M= 10.
(a): T= 0 ; (b): T= 200; (c): T= 500; (d): T= 800; (e): T= 1000.
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Figure 5: Temporal variations of velocity in the center of the cavity for Pr =10, Ra
=104, C=10 and M=10
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 Figure 6: Spectrum of velocity amplitude in the center of the cavity for Pr =10, Ra

=104, C=10 , M=10 and T=1000.

 

       
                0                           P/4                             P/2                          3P/4                
Figure 7: Streamline sequences during one main period (P) for Pr =10, Ra =104,
C= 10, M=10 and T=1000.

The plot of the amplitude spectrum (Figure 6) confirms the existence of a funda-
mental frequency equal to f1=212.

To study more profoundly the behavior of the flow during one period, Figure 7
illustrates a time sequence of streamlines over a period of oscillation (noted P) for
T=1000. On this figure we have during the period, two main cells against counter
rotating on both sides of the center; we notice at the beginning of the period that
the right cell is slightly more dominant. By advancing in the time it is the left cell
which is growing and increases her rotation speed. So in half-period we have a
dominant left cell and whose rotation speed is doubled compared to the other cell.

From P/2 it is the inverse phenomenon which begins i.e. the left cell loses the
power in favor of the right cell what allows to return at the end of period to a
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structure identical to that of the beginning.

This oscillatory regime is not due to the direct competition between the two out
of phase thermal and coulombien forces. In fact similar oscillations are observed
in pure electroconvection executions which may be explained by the phase shift
between the charge density and the velocity disturbances [Pontiga, Castellanos
(1994)]. This is partially approved in the works of Vázquez, Georghiou and Castel-
lanos (2006, 2008). In reality the complex oscillatory two roll structure arises more
from the coupling between the electric charge distribution and the velocity field
than from non-linear components in the flow. The authors suggested also a sim-
plified mechanism to understand the oscillations. In this scenario a virtual sur-
face between charged region and void region expands with intensified velocity and
inversely. This creates more liberated charges which drift more easily along the
electric field. This mechanism remains valid for the present oscillatory electro-
thermo-convection flow.

 

 
        (a)        (b) 

 
Figure 8: Time evolution of mean Nusselt number for Ra=104, Pr=10, C=10 and
M=10

4.3 Effect of electric field on heat transfer

Figure 8 shows the time variation of mean Nusselt number for different values of
the electric Rayleigh number. The charge injection increases significantly the value
of the average Nusselt number compared to the case without injection. It is thus
evident that heat transfer is increased by electrical activity in the flow. This increase
in heat transfer compared to the case of classical natural convection is significant
and it is summarized in Table 3.
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Figure 9: Variation of the local Nusselt number on the hot wall. (Ra=104, Pr=10,
C=10 and M=10)

Table 3: Increase of the heat transfer according to the electric Rayleigh

Electric Rayleigh 200 500 800 1000
% of the increase 18% 32% 78% 112%

This increase in Nusselt number is directly related to dynamic mixing due to the
swirling activity in the fluid. Whatever the value of the applied electric field, this
mixing is increased significantly as seen clearly in Figure 4. All this is confirmed
by Figure 9 which presents the local Nusselt number on hot wall. The examination
of this figure shows the increase of local Nusselt number everywhere on the wall
when the number of electric Rayleigh is more important.

5 Conclusion

In this work we have studied numerically the effect of unipolar injection of elec-
tric charges on the heat transfer in a layer of a dielectric liquid confined in a
differentially heated square cavity. It has been shown that unipolar injection of
electric charge by the bottom electrode changes in a radical way the topology of
the thermo-convective flow. By increasing the mixing (induced by an electro-
convective swirling activity), this injection amplifies the heat transfer significantly.

For significant values of the electric Rayleigh number, an oscillatory regime occurs
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and in these cases the heat transfer can be increased by 200%. This regime is
principally set in motion by the coulomb force which plays the role of an amplifying
and a restoring force at the same time as a consequence of the phase shift between
the charge density and the velocity disturbances.
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