
Copyright © 2012 Tech Science Press FDMP, vol.8, no.3, pp.257-275, 2012

Numerical Simulation of Ice Melting Near the Density
Inversion Point under Periodic Thermal Boundary

Conditions
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Abstract: A two-dimensional numerical model has been developed to inves-
tigate the phase-change of ice near 4 ˚C in a rectangular cavity. The enthalpy-
porosity model is reformulated in terms of conservation equations of mass, momen-
tum and heat to account for the evolution the solid/liquid interface. Constant and
time-dependent (with sinusoidal law) temperature boundary conditions are consid-
ered. Results confirm the possibility to control the typical dynamics of ice melting
in a square cavity near the density inversion point by means of a wall temperature
which varies in time (with given amplitude and frequency).
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Nomenclature

a Carman-Kozney coefficient
Cp specific heat capacity (J/kg.K)
f liquid fraction
g acceleration due to gravity (m/s2)
h sensible enthalpy, h = Cp(T −Tm) (J/kg)
H height (m)
k thermal conductivity (W/ (m K))
L latent heat of melting (J/kg)

Nu Nusselt number, Nu =− 1
TH−TC

W∫
0

∂T
∂x

∣∣∣
x=0

dy
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p pressure (N/m2)
Pr Prandtl number, Pr = νl

αl

Ra Rayleigh number, Ra = g.γ.|TH−TC|bH3

αl .νl

t time (s)
T temperature (K)
u component of velocity (m/s)
x,y cartesian coordinates (m)
W width (m)

Greek symbols

α thermal diffusivity (m2/s)
λ under-relaxation factor
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
µ dynamic viscosity (kg/(m s))

Subscripts

l liquid phase
s solid phase
max density maximum
m melting
H hot wall
re f reference
i, j direction index

Superscripts

m previous iteration
m+1 current iteration

1 Introduction

The problem of solid-liquid phase change, in particular ice melting/freezing has
been the subject of many experimental and numerical investigations [Virag et al.
(2006); Kim et al. (2008); Kousksou et al. (2010); Fukusako and Yamada (1993)].
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This is due to the importance of this phenomenon in many applications, such as ice
thermal storage techniques for air-conditioning, the ice production, etc. [Gong and
Mujumdar (1996); Kousksou et al. (2008)].

The solid-liquid transition provides also a suitable technique for controlling tem-
perature in systems, which are subjected to periodic heating. This process allows,
for periodic heating, the conversion of temperature oscillations into oscillations of
the melting interface, with a significant damping of the perturbation. Furthermore,
the energy stored during melting can be recovered during freezing, with significant
energetic opportunities. Semma et al [Semma et al. (2007)] considered investiga-
tions of convection with and without phase change submitted to modulated thermal
boundary conditions applied to crystal growth cavities.

In the literature, Bransier [Bransier (1979)] seems to be the first who studied a sys-
tem undergoing alternate processes of melting and freezing. He analyzed the prob-
lem of cyclic latent heat thermal storage both for slabs and hollow cylinders, by
means of one-dimensional conduction model. Bardon et al. [Bardon et al. (1979)]
performed the first experimental study on the periodic heat transfer for a vertical
slab of PCM. A periodic phase change process dominated by heat conduction has
been investigated numerically and experimentally by Casano and Piva [Casano and
Piva (2002)]. In the experiments, a plane slab of phase change material was pe-
riodically heated from above. The comparison between the numerical predictions
and experimental results showed good agreement. Elsayed [Elsayed (2007)] stud-
ied the melting of encapsulated ice for cold thermal energy storage. The influence
of convection heat transfer as well as coolant fluid temperature under constant and
cyclic variation with time has been investigated.

More of the works mentioned above have not considered the natural convection
during the melting process, since the phase change process is dominated by the
heat conduction. It is well known that natural convection plays an important role,
especially in the melting process. Natural convection increases the heat transfer
rate and thus, the melting rate, which in turn affects the shape and the motion of
the solid-liquid interface [Gobin and Le Quéré (2002); El Ganaoui et al. (1999); El
Ganaoui and Bontoux (1998); El Ganaoui et al. (2002); Kim and Kaviany (1992)].

The existence of the moving interface introduces a non linear behavior to the phase
change problems and causes a lot of computational difficulties in the seeking of
solution. We can also note that for the most phase change materials (PCMs), the
density of the melt varies linearly with temperature. Unlike normal liquid PCMs,
pure water exhibits maximum density near 4˚C at atmospheric pressure. In such
case, the problem becomes even more complex because the assumptions that the
density varies linearly with temperature cannot be applied.
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Numerical and experimental works involving maximum density and thermal natu-
ral convection can be found in the works of Braga and Viskanta [Braga and Viskanta
(1992)], Kowalewski and Rebow [Kowalewski and Rebow (1999)] and Oosthuizen
[Oosthuizen (2001)]. They analyzed the effect of the maximum density on water
solidification in a rectangular cavity. Tsai et al. [Tsai et al. (1998)] presented
a numerical work exploring the effect of the maximum density on laminar flows
in tubes with internal solidification, involving mixed convection. Rieger and Beer
[Rieger and Beer (1986)] investigated the effects of density anomaly on the melting
process of ice inside a horizontal cylinder.

In relation to the numerical aspect of melting driven by natural convection prob-
lems, various geometries and solution methods have been considered. Fukasako
and Yamada [Fukasako and Yamada (1993)] have presented an extensive summary
of work concerning the analytical and numerical methods for freezing and melt-
ing problems, freezing of water and ice melting with and without convective flow.
Examples of the experimental studies can be found in the works of Benard et al.
[Benard et al. (1985)], Wolff and Viskanta [Wolff and Viskanta (1987)]. In the liter-
ature, two main approaches are used for numerical simulation of the phase change
processes (i) fixed-domain formulation and (ii) variable-domain formulation. The
former is used in the enthalpy formulation, in which a fixed grid is laid over the en-
tire PCM domain and the latent heat release/absorption at the interface is accounted
for by introducing a source term in the energy equation; while the latter is primar-
ily adopted for the one immobilizing the moving interface via a suitable coordinate
transformation and then solving for temperature distributions in the solid and liquid
regions, separately. A review of numerical formulation of phase change processes
is given by Jana et al. [Jana et al. (2007)].

In the literature, Ho and Chu [Ho and Chu (1993); Ho and Chu (1994)] seems to be
the first who studied numerically a periodic melting in a rectangular enclosure with
an oscillatory heated-wall temperature. They adopted a stream function-vorticity-
temperature formulation to track the position of the liquid-solid interface during ice
melting in a rectangular enclosure. They found a steady periodic melting regime
arises following a period of transient oscillatory melting. Moreover, the heat trans-
fer rates at the vertical heated and cooled walls as well as the melting rate exhibit
a regular temporal oscillation at a frequency equal to the imposed wall temperature
perturbation but with phase difference.

The main objective of the present study is to investigate the heat transfer charac-
teristics of the natural-convection dominated melting process of ice from a vertical
wall modulated with time-dependent sinusoidal surface temperature within a square
enclosure via the enthalpy formulation. This is aimed at exploring the feasibility
of controlling the melting heat transfer in an ice-filled enclosure by means of time
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periodic perturbation of the wall temperature.

 

Figure 1: Computational domain for natural convection of water and ice melting
with periodic boundary condition.

2 Governing equations

A generic representation of the analyzed geometry is presented in Fig.1. Flow in
the melt region induced by natural convection is modeled by the incompressible
Navier-Stokes equations. We assume that the flow is laminar and has no viscous
energy dissipation. The conservation of mass and momentum equations are

∂ ui

∂xi
= 0 (1)

ρl
∂ ui

∂ t
+ρlu j

∂ ui

∂x j
=

∂

∂x j

(
µ

∂ ui

∂x j

)
+gi (ρl−ρre f )−

∂ p
∂xi

+Aui (2)

∂ (ρl h)
∂ t

+u j
∂ (ρl h)

∂ x j
=

∂

∂ x j

(
k

∂T
∂ x j

)
+S (3)

The buoyancy forces gi(ρl−ρre f ) are defined relative to some reference state ρre f .
This means that p is the so-called motion pressure. To account for the latent heat
effect in the phase change, occurring over a finite range of temperatures or at a
fixed temperature, the general enthalpy method [Swaminathan and Voller (1992);
El Ganaoui et al. (2002)] is adopted.
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In the right hand side of the energy equation (3) we account for latent enthalpy
transfer during phase change through the source term S, which is expressed as,

S =−L
∂ (ρ f )

∂ t
−u jL

∂ (ρ f )
∂x j

(4)

The present formulation is one-domain method, wherein the same set of equations
is used for both solid and liquid. The material in the cavity is regarded as a porous
medium with porosity varying with liquid fraction through Carman-Kozeny’s law
[Kim et al. (2008)]. The constant a in the source term of the momentum Equations
has the form,

A =−C (1− f )2

f 3 +q
(5)

where C and q are two constants chosen to ensure driving the velocities to zero in
the solid, while maintaining a convergent algorithm.

According to the above assumptions the liquid density is variable only on the last
term of Eq. (2) and it was approximated by the Gebhart-Mollendrof formula [Geb-
hart and Mollendorf (1977)], which takes into account the water density inversion
phenomenon

ρl = ρmax

[
1− γ |T −Tmax|b

]
(6)

where ρmax = 999.72kg/m3, γ = 9.97×10−6 K−b, Tmax = 4.29 ◦C and b = 1.895.

3 Numerical solution procedure

A structured grid of N x M control volumes for scalar variables (p, h) has been
used, where as a staggered grid in the x and ydirection has been employed to com-
pute the velocity ui. Each equation is integrated on a control volume centered at
a node of the main variable of the equation. Second order accuracy is retained for
quadratures, source terms and diffusion terms. Convective fluxes are approximated
with the Power Law scheme. Time discretization is fully implicit (Euler Back-
ward). Nonlinearity and coupling between the various equations are handled by
the SIMPLEC algorithm [Doormaal and Raithby (1985)]. The momentum, pres-
sure correction and temperature are solved sequentially using the modified strongly
implicit procedure (MSIP) of Schneider and Zedan [Schneider and Zedan (1981)].
To improve the rate of convergence, under relaxation is introduced by means of a
pseudo-transient scheme based on the E-factor formulation [Doormaal and Raithby
(1985)].



Numerical Simulation of Ice Melting 263

The energy equation is non linear due to the presence of latent enthalpy content in
the source terms arising from phase change. The process for handling this problem
is largely described in Ref. [Raithby et al. (1986)].

At each outer iteration, the liquid fraction is updated from the values at the previous
outer iteration (m) through the formula:

f m+1
P = f m

P +λ
∆t ah,m

p

ρ L∆V
hm

P (7)

and

f m+1
P = 1 i f f m

P ≥ 1

f m+1
P = 0 i f f m

P ≤ 0
(8)

where ah
P stand for the central coefficients of the discretized energy equation and

the unsteady term coefficient respectively and λ is the under-relaxation factor. At a
given time step, the position of the phase front is obtained from the solution of the
liquid fraction field by a linear interpolation of the contour line when f = 0.5.

The process is repeated until a relative difference between two consecutive itera-
tions of the sensible enthalpy is less than a given tolerance, i.e.∣∣hm+1−hm

∣∣/hm < 10−5 (9)

Global convergence is achieved when the mass balance is verified in all control
volumes within a prescribed value (typically 10−9) and when the residual values of
the different values of the different equations are sufficiently low (typically 10−10)

4 Model verification

To validate the fluid flow problem without phase change the natural convection of
water in a closed square cavity (see Fig.1) at a temperature large than its maximum
density is analyzed. At time t = 0, the left boundary is suddenly brought to the
temperature TH = 8˚C, whereas the right boundary remains at TH = 0˚C. The re-
sults obtained are given in Fig.2, in terms of streamlines and temperature contours.
The flow patterns describe two symmetrical cells rotating in opposite directions,
as expected for this physical situation, where the fluid temperature range is cen-
tered in the density inversion point. It is natural that the streamlines and isotherms
display certain symmetries about the central vertical line. Each sidewall generates
an identical upward buoyancy force and therefore, a two-cell flow is obtained with
fluid flowing down the middle of cavity [Leonard (1986); Doormaal and Raithby
(1985); Hossain and Rees (2005); Osorio et al. (2004)].
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(a) 

 

(b) 

 Figure 2: Natural convection of water for TH=8˚C, RaH=1.03x107 and Pr=13 (a)
stream function (b) temperature fields.
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The distribution of dimensionless temperature in the middle plane of the cavity
(X∗ = x/W = 0.5) is compared with the experimental data of Inaba and Fukuda
[Inaba and Fukuda (1984)], as well as with the numerical predictions of Lin and
Nansteel [Lin and Nansteel (1987)]. The comparison is presented in (Fig.3). We
can note that the present results are in good agreement with the results reported by
Lin and Nansteel [Lin and Nansteel (1987)]. Nevertheless, there is a significant
discrepancy between the present results and the experimental data. According to
Osorio et al. [Osorio et al. (2004)], the experimental data of Inaba and Fukuda
[Inaba and Fukuda (1984)] suggest a profile more typical of a un-cellular flow,
with maximum temperature gradients near the isothermal walls and a single central
region where the temperature is almost uniform. This is not the expected flow
pattern for the physical problem herein considered.

 

Figure 3: Comparison of predicted temperature distribution of the present model
with literature data TH=8˚C, RaH=1.03x107, Pr=13 and x/W = 0.5).

To verify the model in case of coupled melting process and natural convection
near 4˚C, the melting problem of a vertical ice layer is solved. In this case, the
melting process occurs inside a rectangular cavity, in the presence of the horizontal
temperature gradients (Fig. 4). At time t = 0, half of the material volume is in solid
state (ice), while the other half is in liquid state (water). Now, the western wall
is abruptly heated to the temperature TH = 8˚C and maintained at this temperature
thereafter. Eastern wall is maintained at melting temperature. The northern and
southern walls are adiabatic. Initially, all the volume of the testing substance is set
at its melting temperature. For this problem, the grid defined on the computational
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Figure 4: Computational domain of vertical ice layer melting process.

 

Figure 5: Comparison of predicted melting front location at selected times of the
present model with the results of Ref. [1].

domain is spaced irregularly to obtain a better solution of temperature and velocity
gradients near the liquid -solid interface.

The predicted liquid-solid interface positions are compared with those determined
experimentally and numerically [Virag et al. (2006)] in Fig.5. As may be observed
at the beginning of the melting process, the numerical results are in good agreement
with the experiment data and the numerical results reported by Virag et al [Virag
et al. (2006)]. Nevertheless, at the end of the process, there is certain discrepancy,



Numerical Simulation of Ice Melting 267

especially at the bottom of the cavity. The main reason is the difficulty maintaining
the vertical wall at a desired temperature. Despite these deficiencies, the predicted
interface shapes are qualitatively correct and the obtained results confirm the valid-
ity of the adopted numerical model.

5 Phase change with periodic boundary conditions

In this section, the melting of ice under cyclic variation of wall temperature is in-
vestigated. The physical configuration of the melting problem under consideration
is the same square enclosure shown in Fig.1. Initially, ice in the square enclosure
is at its phase change temperature. The upper and lower walls are assumed to be
adiabatic. At time t = 0, the left boundary is suddenly brought to a sinusoidal vari-
ation of temperature with time. The prescribed sinusoidal temperature has a period
of 80 min and amplitude of 2˚C and the temperature oscillates about a mean value
of 4˚C as shown in Fig.6. It should be mentioned here that at time t = 0, the sine
function starts with the mean value of the temperature oscillation.

 

Figure 6: Time evolution of the periodic wall temperature and flow pattern over the
oscillation period.
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In Fig.6, we have plotted the periodic wall temperature versus time and the flow
pattern at different instant. At early times, the heat transfer in the melt zone is
predominated by conduction. After a while, the thickness of the melt layer becomes
large enough so that natural convection is triggered. As time passes, the melt layer
expands and natural convection becomes the prevailing mechanism of heat transfer
inside the liquid region. The intensity and the direction of the buoyancy driven
flows are dependent on the value of the imposed sinusoidal temperature. For the
cases (b) and (c) when sinusoidal temperature becomes equal to 2˚C or 4˚C, we
show a unicellular flow pattern with a larger melt region in the top part of the cavity.
High melting occurs at the top of the solid-liquid interface where warm and denser
fluid impinges after being heated by the hot wall. For the case (a) when sinusoidal
temperature becomes equal to 6˚C, a dual cell flow pattern occurs. As water with
maximum density is located somewhere in the melt region, two counter-rotating
recirculation bubbles have established themselves. Since the point of maximum
density is closer to the square cavity than to the interface, the counterclockwise cell
should be close to the hot wall.

For a given sinusoidal wall temperature, the temperature of water at a point (x=W/12,
y=H/2) near the wall heated versus the time is presented by Fig.7.

Three Rayleigh numbers have been tested to check the influence of the sinusoidal
wall temperature on the heat transfer inside the square cavity. It has been noticed
that, from numerical experiments, the temperature of a given point oscillates (sinu-
soidal mode) with the wall temperature. We observe that for 1.6 E6<Ra<14.1E6,
the temperature profile ate this point is adjacent to the wall temperature. However,
the amplitude of the PCM temperature increases with the Rayleigh number value.

The effect of the flow pattern on the temporal variation of the molten volume frac-
tion is depicted in Fig.8. The melting rate is maximum for =6˚C and minimum for
TH=2˚C. Also, for three temperature 2˚C, 4˚C and 6˚C , this fraction increases al-
most linearly with time once the convective motion is well established throughout
the melt. The molten volume fraction corresponding to the sinusoidal temperature
is compared in Fig.8 with the molten volume fraction in the case of constant tem-
perature TH = 4˚C which is the mean temperature value of the periodic variation. It
is seen from this plots that the liquid fraction for constant temperature TH=4˚C is in
the neutral position of oscillation of the cyclic molten volume fraction curve. This
is due to the fact that the net heat input to the square cavity is the same in the two
cases.

The timewise variations of the average Nusselt number at the heated wall are de-
picted in Fig.9. The Nusselt number, indicates the capacity of heat transfer in di-
mensionless form. Dimensionless local Nusselt number at hot side can be defined
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Figure 7: Comparison of water temperature near the heated wall for the different
Rayleigh numbers.

as below:

Nu =− 1
TH −TC

W∫
0

∂T
∂x

∣∣∣∣
x=0

dy (10)

The Nusselt number was calculated from the converged temperature field at each
time step. The results display a rapid decrease in the heat transfer rate at the early
stages of melting. This behavior results from transient heat conduction. As soon as
natural convection sets in the liquid region, the heat transfer rate starts increasing.
This is clearly shown for the case with TH=6˚C and, to a lesser extent, for the case
with TH=4˚C. In both the cases, a clockwise recirculating eddy establishes itself
along the phase front, yielding large temperature gradients and therefore enhanced
heat transfer rates. For the case with TH=2˚C, the average Nusselt number stays
nearly constant until the natural convection sets in the liquid region. This is due
to the fact that the warm water tends to enter the space above and below the in-
terface. That is why the ice melting is nearly uniform from all sides. In the case
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Figure 8: Total molten volume fraction under periodic and constant wall tempera-
ture for cases TH=6, 4 and 2˚C.

 
Figure 9: Time evolution of the average Nusselt number at the hot wall, for different
wall temperatures.
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Figure 10: Time evolution of the average Nusselt number at the hot wall, for dif-
ferent Rayleigh numbers.

of periodic wall temperature, the average Nusselt number decreases rapidly during
the first stages of melting. As soon as natural convection sets in the melt, the aver-
age Nusselt becomes to oscillate. This is due to the periodic melting of ice in the
square cavity. We note that the average Nusselt number in the case of constant wall
temperature TH=4˚C, is in the neutral position of oscillation of the periodic average
Nusselt number. We can also note that the maximum and minimum values of the
periodic average Nusselt number corresponds respectively to the average Nusselt
number of the wall temperatures TH=6˚C and TH=8˚C.

In case of periodic wall temperature, we have presented timewise variations of the
average Nusselt number for three Rayleigh numbers (see Fig.10). It is clear that the
oscillation of the Nusselt number is more intensive for 1.6 E6<Ra<14.1E6. We can
also note that the amplitude of the average Nusselt number decreases with decrease
in Rayleigh number. Using the higher Rayleigh number, the liquid region behaves
as a damper.
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6 Conclusions

We have considered the melting of ice in a square enclosure near the density inver-
sion point in the framework of a numerical approach.

Resolution of the natural convection of water near the density inversion point has
been first checked by comparison with literature data. The problem of a vertical ice
layer in the presence of a horizontal temperature gradient has been also tested by
comparison with previous experimental and numerical data.

We have found that the effect of an oscillating boundary temperature on the melting
process of ice is more pronounced when the Rayleigh number is small. The liquid
fraction in the system has been observed to oscillate in time with the imposed si-
nusoidal temperature. For the present problem, more extensive studies, especially
experimental and with a wider range of the considered relevant parameters, are
needed in future.
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