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On the KP Equation with Hysteresis
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Abstract: The Kadomtsev-Petviashvili (KP) equation describes the evolution of
nonlinear, long waves of small amplitude with slow dependence on the transverse
coordinate. The KP equation coupled with the generalized play operator is studied
in this paper in order to explain the dilatonic behavior of the soliton interaction and
the generation of huge waves in shallow waters. Hirota bilinear method and results
from a nonlinear semigroup theory are applied to simulate the resonant soliton
interactions.
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1 Introduction

It is well known that the hysteresis, bifurcations and chaos arise naturally in many
areas of science and engineering. Numerous techniques have been presented in
the literature to analyze and control nonlinear chaotic dynamical systems by using
state feedback controllers, sometimes based on classical control theoretic design
methodologies [Chen and Yu (2003); Chen, Hill andYu (2003)].

A system exhibits chaotic hysteresis if it simultaneously exhibits chaos and hystere-
sis. Since hysteresis causes loss of energy in a system, it seems to have a damping
effect against chaotic oscillations in the system. Furthermore, hysteresis plays more
complicated role in the system behavior by increasing its nonlinearity. Since the
hysteresis involves the persistence of a state after the causal is removed, it involves
multiple equilibria for given sets of control conditions. Such systems generally ex-
hibit sudden jumps from one equilibrium state to another. If chaos appears either
prior to or just after such jumps, or is persistent throughout each of the various
equilibrium states, then the system is said to exhibit chaotic hysteresis.
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The main idea of exploiting the chaos in control applications was originally intro-
duced by Ott, Grebogi and Yorke (1990). Stoten and di Bernardo (1997ab, 2006)
have developed a general theory in order to take into account some properties of
chaos, namely boundedness and topological transitivity. An interesting procedure
which employs the close-return method to identify and stabilize the unstable period
orbits is due to Pereira-Pinto, Ferreira and Savi (2004) based on the Ott-Grebogi-
Yorke method.

Chaotic hysteresis is a phenomenon in which the chaotic response of a physical
system to an external influence depends not only on the present magnitude of the
influence but also on the previous history of the system. Hysteresis operators are
characterized by two main properties - memory effect and rate independence. Kras-
noselskiı and Pokrovskiı (1989) have studied the concept of hysteresis operator,
acting in spaces of time dependent functions. Further researches were developed in
a series of pornographies dedicated to the hysteresis in connection with PDEs and
applicative problems [Brokate and Sprekels (1996); Krećí (1997); Visintin (1995)].
A useful survey can be found in Visintin (2002, 2006). Nonlinear semigroup theory
in a Hilbert space was developed by Kōmura (1967) and extended to Banach spaces
by Crandal and Liggett (1971) and Barbu (1976). Nonlinear semigroup theory rep-
resents a widely used tool for solving nonlinear PDEs. Surveys of basic relevant
results from a nonlinear semigroup theory are formulated in a Banach space by
Kopfová (2007) and Visintin (1993).

Several models of mechanical hysteresis may be represented via analogical mod-
els, namely the rheological models in mechanics, circuital models in electromag-
netism, by arranging elementary components in series and/or in parallel [Bertotti
and Mayergoyz (2006); Mayergoyz (2003); Bertotti (1998)]. These models consist
of a family of elements, which can be interpreted as representing the mesoscopic
structure of a composite material. Therefore, the procedure known as homogeniza-
tion may be applied to provide an averaged representation of the system [Visintin
(2008)].

In this paper, the generalized play operator is analyzed in connection with KP
equation. The main purpose of this paper is the analysis the chaotic hysteresis
in the KP equation. The mechanism of generation of huge waves in shallow water
such as Tsunami, may be explaines by means of the resonance interaction of soli-
tons. Recently, the coupling between the hysteresis operators and some evolution
equations have been properly applied to solving practical engineering problems
[Mosnegutu and Chiroiu (2010); Preda, Ionescu, Chiroiu and Sireteanu (2010);
Gliozzi, Munteanu, Sireteanu and Chiroiu (2010)] The KP equation describes the
evolution of 2D shallow water waves of small amplitude with slow dependence on
the transverse coordinate [Segur and Finkel (1985), Hammack et al. (1989, 1995)].
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The development of the KP equation [Kadomtsev and Petviashvili (1970)] hap-
pened almost simultaneously with the inverse scattering transform [Ablowitz and
Segur (1981); Novikov, Manakov, Pitaevski and Zakharov (1984)]. This method
for the solution of the initial-value problem for nonlinear PDE was originally devel-
oped for equations in one spatial dimension, such as the KdV equation [Munteanu
and Donescu (2004)].

The constructing of explicit N-fold Darboux transformations and their Vandermonde-
like determinants’ representations of the two known soliton equations based on
their Lax pairs for KP equation has been addressed by Huanga and Zhang (2008),
whilst Dai and Geng (2000); Tiong, Ong and Mukheta (2006) have applied suc-
cessfully the Hirota bilinear method to simulate the resonant soliton interactions.

The 1-soliton solution of the KP equation with power law nonlinearity using the
solitary wave ansatz is obtained by Biswas and Ranasinghe (2009). They have
computed an exact soliton solution and a couple of conserved quantities. In ad-
dition, the topological 1-soliton solution and the identification of the parameter
domain for these solitons to exist are reported by Biswas and Ranasinghe (2010).

In objective of this paper is to analyse the KP equation with hysteresis in order to
explain the dilatonic behavior of the soliton interactions and the generation of huge
waves in shallow waters. Results from a nonlinear semigroup theory are applied to
obtain the existence and uniqueness for KP equation with hysteresis.

2 Hysteresis operators

In this section, some well known results on the standard results of the nonlinear
semigroup theory and the hysteresis operators are revised.

Definition 1 [Kopfová (2007)]: Let B be a Banach space, A a nonlinear and multi-
valued hysteresis operator A : D(A)⊂ B→ B is accretive if

∀ui ∈ D(A), ∀vi ∈ A(ui), i = 1,2,

||u1−u2||B ≤ ||u1−u2 +λ (v1− v2)||B, ∀λ > 0. (2.1)

Definition 2: Let B be a Banach space, the hysteresis operator A is called m-
accretive if Rg(I +λA) = B, ∀λ > 0.

Suppose that the derivative in the evolution equation can be approximated by a
backward-difference quotient of step size h > 0 and f by a step functions f h

k . We
have

f h
k ∈

uh
k−uh

k−1

h
+A(uh

k), k = 1,2, ..., uh
0 = u0, (2.2)
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uh
k(t) = uh

k for kh≤ t < (k +1)h. (2.3)

The scheme (2,2) is uniquely solved recursively and the Crandall-Liggett theorem
holds:

Theorem 1[Crandall and Liggett (1971)]: If A is m-accretive, f ∈ L1(0,T,B) and
u0 ∈ D̄(A)and f h → f in L1(0,T,B), then uh → u uniformly as h → 0 and u ∈
C(0,T,B).
Theorem 2: If A is m-accretive, f ∈ L1(0,T,B) and u0 ∈ D̄(A), then the Cauchy
problem

f ∈ u,t +A(u(t)), u(0) = u0. (2.4)

has one and only one integral solution u. For f = 0, we have u = S(t)u0, where
S(t) is the nonlinear semigroup of contractions generated by A. If f has bounded
variation in [0,T ] and u0 ∈D(A), then the integral solution is Lipschitz continuous.

Definition 3: The function u is an integral solution of Eq.(2.4) in the sense of Be-
nilan if (i) u : [0.T ]→ B is continuous; (ii) u(t) ∈ D̄(A) for any t ∈ [0,T ]; and
(iii)u(0) = u0 and

||u(t2− v)||2B ≤ ||u(t1− v)||2B+

+2
t2∫

t1

lim
λ→0

||u(τ− v)+λ ( f (τ)− z))||2B−||u(τ− v)||2B
2λ

dτ. (2.5)

Let us consider that the state of the system is characterized by two scalar variables,
the input function u(t) and the output function w(t), confined to a set L ⊂ R2.
∀t ∈ [0,T ]. The function w(t) depends on the previous evolution of u(t) (memory
effect) and on the initial statew0, such as

w(t) = A(u,w0)(t), ∀t ∈ [0,T ], (u(0),w0) ∈ L, A(u,w0)(0) = w0, (2.6)

where A(u,w0) is a hysteresis operator defined in a Banach space of time-dependent
functions for any fixed w0. This operator is causal and memory rate-dependent.
That means ∀(u1,w0),(u2,w0) with u1 = u2 in [0,T ], then A(u1,w0)(t)= A(u2,w0)(t),
and respectively, the operator is not invariant to any increasing diffeomorphism
ϕ : [0,T ]→ [0,T ], i.e. A(u◦ϕ,w0) 6= A(u,w0)◦ϕ , ∀t ∈ [0,T ].
The generalized play operator w := A(u,w0) : R+ → R is defined in the sense of
Visintin (Fig.2.1) as follows. Let u(t) be any continuous, piecewise linear function
onR+, linear on [ti−1, ti], i = 1,2, ....

We define w(t) = A(u,w0)(t) by

w(t) = min{γl(u(0)),max{γr(u(0)),w0}} for t = 0 and w0 ∈ R, (2.7)
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w(t) = min{γl(u(ti)),max{γr(u(ti)),w(ti−1)}} for t ∈ (ti−1, ti), i = 1,2, ...,

where γl,γr : R→ R are maximal monotone, possible multivalued functions with

infγr(u)≤ supγl(u), ∀u ∈ R. (2.8)

Note that w(0) = w0 only if γr(u(0))≤ w0 ≤ γl(u(0)). The classical play operator
can be obtained from the general play operator by choosing

γl(u) = u+ r, γr(u) = u− r , (2.9)

with r ≥ 0 a parameter, u(t) a continuous input function on [0,T ] and wr0 ∈ [−r,r]
an initial state. Fig.2.2 presents the play operator with threshold r.

If γl,γr are continuous, Visintin (1995) has proved that for any continuous piecewise
linear functions u1,u2 on R+, any continuous function f : R→ R and any constant
M > 0, for which | f |M(h) is its local modulus of continuity, we have

max[t1,t2] |A(u1,w10)−A(u2,w20)|
≤max

{
A(u1,w10)(t1)−A(u2,w20)(t2),mM

(
max[t1,t2] |u1−u2|

)}
,

(2.10)

∀[t1, t2]⊂ [0,T ], T ∈ R+,

where

M := max{|ui(t)| : t ∈ [0,T ], i = 1,2} .

Therefore A(u,w0) has a unique continuous extension

A(u,w0) : C(R+)×R→C(R+). (2.11)

The inequality (2.10) holds also for this extended operator, which is then uniformly
continuous on bounded sets. If γr and γl are Lipschitz-continuous, then the operator
A(u,w0) is also Lipschitz continuous and transforms (u,v)∈W 1,p(0,T )×R into the
unique function w ∈W 1,p(0,T ) for anyp > 0.

The generalized play operator can be also equivalently defined as a solution in the
Sobolev space W 1,1(0,T ), w ∈W 1,1(0,T ) of a variational inclusion of the type

w,t ∈ φ(u,w) in (0,T ), w(0) = w0, (2.12)

where

φ(u,w) =



{∞} if w < infγr(u),
[0,+∞] if w ∈ γr(u)\γl(u),
{0} if supγr(u) < w < infγl(u),
[−∞,0] if w ∈ γl(u)\γr(u),
{−∞} if w > supγr(u),
[−∞,+∞] if w ∈ γl(u)∩ γr(u).

(2.13)
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The hysteresis relationship with the PDEs can be written as [Kopfová (2007)]

w(x, t) = [A(u(x, ...),w0(x))] (t) in Q = Ω× [0,T ] (2.14)

where Ω is a bounded subset of Rn. The generalized play operator discussed in this
paper is dissipative, in the sense that ||(λ I−A)x|| ≥ λ ||x|| for ∀λ > 0, where I is
the identity mapping. The norm in W 1,1(0,T ) is defined as

|| f ||k,p =

(
k

∑
i=0
|| f (i)||pp

)1/p

=

 k

∑
i=0

f (i)∫
|pdt


1/p

.

We present here one example of PDE with hysteresis [Kopfová(2007)]

(u+w),t −∆u = f in Q, Q = Ω× [0,T ], (2.15)

related to a generalized play operator w(t) = A(u,w0)(t) defined by (2.7), is for-
mally equivalent to [Visintin (1995)]

u,t +ξ −∆u = f , w, ξ ∈ φ(u,w) in Q, (2.16)

where φ is defined by (2.13) and comma represents the differentiation with re-
spect to the specified variable. The Cauchy problem for Eqs.(2.16) is coupled with
homogeneous Dirichlet boundary conditions as

F ∈U,t +A1U in Q, U(0) = U0 in Ω, (2.17)

where

U = (u,w)T , F = ( f ,0)T , A1U = (ξ −∆u,−ξ )T , ξ ∈ φ(U)∩R, (2.18)

D(A1) =
{

U = (u,w)T ; infγr(u)≤ w≤ supγl(u) a.e. on Ω, U ∈ L1(Ω,R2)

u ∈W 1,1
0 (Ω),−∆u ∈ L1(Ω)

}
. (2.19)

3 The KP equation with hysteresis

The equation KP is the 2D version of the Korteweg-de Vries (KdV) equation. The
hysteresis version of KP equation is obtained by coupling the classical KP equation
with the generalized play operator w(t) = A(u,w0)(t) defined by (2.7) as

((u+w),t +6uu,x +u,xxx),x−3u,yy = 0 in Q = [−∞,∞]× [0,T ],
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Figure 2.1: The generalized play operator.

 
Figure 2.2: The play operator with threshold r.
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w(x, t) = A(u(x, t),w0), w,t ∈ φ(u,w), w(x,0) = w0(x) in (0,T ), (3.1)

where u(x,y, t) is a scalar function (the displacement), x and y are respectively the
longitudinal and transverse spatial coordinates, and φ(u,w) is defined by (2.13).
The hysteresis relation (2.7) is also valid

To solve (3.1) let us consider the traveling wave solutions

u(x,y, t) = u(η), w(x,y, t) = w(η), η = kx+my+ωt, (3.2)

where k,m are wave numbers, ω is the frequency determined by dispersion relation
kω = 3m2− k4, and η is the phase variable. For w = 0, the one-soliton solution of
KP equation is a traveling wave

u(x,y, t) =
1
2

a2sech2
(

1
2

a
(

x−by− ωt
a
− x0

))
, (3.3)

where a,b,x0 are arbitrary parameters and ω depends on a and b.

In 1971, Hirota showed that certain evolution equations can be reduced to bi-
linear differential equations. He introduces a dependent-variable transformation
(Munteanu and Donescu (2004))

u(x, t) =−2
∂ 2

∂x2 ln f (x, t), (3.4)

where f has the property

f , fx, fxx→ 0, as |x| → ∞.

For example, in the case of the KdV equation ut −6uux +uxxx = 0,

substituting (3.4) into the KdV equation we obtain

f fxt − fx ft + f fxxxx−4 fx fxxx +3 f 2
xx = 0.

This equation can be reduced to a bilinear form

Dm
t Dn

x : V ×V →V,

Dm
t Dn

x(a,b)(x, t) = ( ∂

∂ t −
∂

∂ t ′ )
m( ∂

∂x −
∂

∂x′ )
na(x, t)b(x′, t ′)

∣∣∣ x = x′

t = t ′
,

where m, n are positive integers, V is a functions space, in particular

V = { f : R×R→ R, f ∈ Cn(R)×Cm(R)} ,
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and a,b two arbitrary functions in V .

We also apply the Hirota bilinear method (1971) to obtaining the n-soliton solutions
of Eq.(3.1). The function f has the form

f = δi j +
ai

li +n j
exp(ηi), (3.5)

ηi = kix+miy+ωit, ki = li +ni, mi = n2
i − l2

i , kiωi = 3m2
i −k4

i , i, j = 1,2.

(3.6)

The function (3.5) can be written as

f = 1+ ε1 exp(η1)+ ε2 exp(η2)+A12ε1ε2 exp(η1 +η2), (3.7)

where

A12 =
(n1−n2)(l1− l2)
(n1 +n2)(l1 + l2)

.

Eq. (3.1) is formally equivalent to

(u,t +6uu,x +u,xxx +ξ ),x−3u,yy = 0, w, ξ ∈ φ(u,w) in Q. (3.8)

Substituting (3.2) into (3.8), we obtain the equations

k4u′′
′′
+(kω−3m2)u′′+6k2(uu′)′+ωξ

′ = 0, ωw′−ξ = 0, ξ ∈ φ(u,w). (3.9)

The solutions of Eqs.(3.9) can be written as

u(x,y, t) = 2
∂ 2

∂x2 ln f , w =
M

∑
i=0

piφ
i, (3.10)

with pi are unknown constants. The function φ satisfies the Riccati equation φ ′ =
αφ 2 +β , with α,β constants. The function f of Eq.(3.9)1 has the form

f = 1+ε1 exp(η1)+ε2 exp(η2)+A12ε1ε2 exp(η1 +η2)+ ......Ai jεiε j exp(ηi +η j),
(3.11)

i, j = 1,2,3, ...
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By equating the coefficients of like powers of φ i, i = 1,2,3, ... to zero, a system
of algebraic equations in q0,q1,q2, ... and k,m,ω is obtained. From this system of
equations we have

p0 =
3m2− k(ω +8k3αβ )

6k2 , p1 = 0, p2 =−2k2
α

2. (3.12)

There is an additional property of KP equation that is important in understanding
the chaotic hysteresis. We refer to the solitonic resonance. The interaction between
solitons exhibit both, the resonance and hysteresis. Interaction with resonance will
occur when the values of Ai j are very close to zero Ai j ≈ 0. Therefore, the val-
ues ofωi, mi, i, j = 1,2,3, ... will determine the resonance structure of the soliton
interaction.

 
Figure 3.1: Scheme of interaction (A12 ≈ 0 and A23 ≈ 0).

If we fix the values of mi, then ωi will determine the value of Ai j. For example, the
structure of interactions A12 ≈ 0, A23 ≈ 0, and also A12 ≈ 0, A13 ≈ 0, A34 ≈ 0, are
shown in Figs. 3.1 and 3.2 respectively, for waves traveling in the same direction
at t = 30. Here, the amplitude of the solitons seems to be constant.

It is well known that the opposite of dissipation is amplification. The amplification
of waves arises from an influx of energy in the medium, where the energy is pump-
ing from a source or defect to wave motion, or due to interphase damage for fibre
composite, or due to separations at the interface between the fiber and matrix [Smo-
jver and Soric (2007); Zhang and Xia (2005)]. The mechanism, called the dilaton
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Figure 3.2: Scheme of interaction (A12 ≈ 0, A13 ≈ 0 and A34 ≈ 0).

mechanism, has been proposed for explaining the possible amplification of non-
linear seismic waves [Engelbrecht and Khamidullin (1988), Engelbrecht (1991)].
Zhurkov (1983) and Petrov (1983) have introduced the dilaton concept to explain
the fracture of solids.

The cases when Ai j ≈ 0, i, j ≥ 3 exhibit a veritable dilatonic interaction. The am-
plitudes dramatically increase, as shown in Fig.3.3 for A33 ≈ 0 and A34 ≈ 0. The
dilaton is a fluctuation of internal energy of a medium with loosened bonds be-
tween its structural elements. The dilaton is able to absorb energy from the sur-
rounding medium, and when the accumulated energy in it has reached its critical
value, the dilaton breaks up releasing the stored energy, causing the amplification
of waves. This mechanism is controlled by the intensity of the propagating wave.
Low-intensity waves give a part of their energy away to the dilatons, and high-
intensity waves cause the dilatons to break up [Munteanu and Donescu (2004)].

The crests continuously move and amplify in time by multisoliton resonant inter-
action mechanism, explaining the generation of huge waves as in shallow water or
in the ocean basin (as in Fig. 3.4 for A33 ≈ 0 and A34 ≈ 0).

The central result in analyzing the chaotic behavior of the KP equation with hys-
teresis is presented in Fig.3.5. This is a specific response to short multisoliton
resonant signals. We see that the input variable drift, the output variable relaxation
and non-closure of hysteretic loops are present. The input variable drift appears
when cycled between two unequal output variable, the output variable relaxation
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Figure 3.3: Scheme of explosive amplification of the amplitude for A33 ≈ 0 and
A34 ≈ 0.

 
Figure 3.4: Amplification of the amplitude for A33 ≈ 0 and A34 ≈ 0.
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appears when cycled between two unequal input variables [Preda, Ionescu, Chiroiu
and Sireteanu (2010)]. The singularity which creates non-analyticity in the consti-
tutive behavior at a particular reversal point related to the history of the system is a
hallmark of many engineering systems.

 

Figure 3.5: Chaotic hysteresis characterized by drift, relaxation and non-closure of
the loops.

4 Concluding remarks

In this paper, the KP equation coupled with the generalized play operator is studied
in order to explain the dilatonic behavior of the soliton interaction and the genera-
tion of huge waves in shallow waters or in the ocean basin. Hirota bilinear method
and results from a nonlinear semigroup theory are applied to simulate the resonant
soliton interaction. Equation exhibits the chaotic aspects such as drift, relaxation
and non-closure of the loops.
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