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Oscillatory Swirling Flows in a Cylindrical Enclosure with
Co-/Counter-Rotating end Disks Submitted to a Vertical

Temperature Gradient

Brahim Mahfoud1 and Rachid Bessaih1,2

Abstract: Oscillatory swirling flows in a cylindrical enclosure, having aspect ra-
tio (height/radius) γ=2, filled with a liquid metal, and submitted to a destabilizing
vertical temperature gradient (system heated from below) is investigated by means
of direct numerical solution of the governing (continuity, radial and axial momen-
tum, swirl and energy) equations. The bottom and top disks are assumed to rotate at
equal (co-rotating) and opposite (counter-rotating) angular velocities. The critical
Reynolds number, Recr and the critical frequency of oscillations, Fcr are calculated
as a function of the Richardson number, Ri, ranging between 0 and 4. Stability
diagrams are presented, reflecting the results of the numerical investigation, which
put in evidence the dependence of Recr and Fcr on Ri. In particular, it is found that
the increase of Ri causes the decrease of Recr. The study is accompanied by a grid
refinement and validation analysis based on comparison with other relevant results
in the literature.
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Nomenclature

F dimensionless frequency
g acceleration due to gravity m/s2

Gr Grashof number
H height of the cylinder m
Nech number of samples
P dimensionless pressure
Pr Prandtl number
R radius of the cylinder m
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r dimensionless radial coordinate
z dimensionless axial coordinate
Re Reynolds number
Ri Richardson number
T temperature K
u dimensionless radial velocity component
v dimensionless axial velocity component
w dimensionless azimuthal velocity component

Greek symbols

α thermal diffusivity of the fluid m2/s
β thermal expansion coefficient K−1

γ aspect ratio
Θ dimensionless temperature
ν kinematic viscosity of the fluid m2/s
ρ density of the fluid kg/m3

Ω angular velocity rad/s
τ dimensionless time
ψ dimensionless stream function

Indices

a,b,c,d,e,f,g,h corresponding to various times
cr critical value
c cold
h hot
r,z,θ radial, axial and azimuthal directions, respectively

1 Introduction

Flows between two rotating disks were the subject of many studies. These flows
model natural situations in astrophysics (Hart and Kittelman, 1996) and meteorol-
ogy (Knobloch, 1998), but also the devices such as: rotating machinery (Hirano et
al., 2005), rotational viscometers (Weltmann and Kuhns, 1952), computer storage
devices and material processing units (Jaluria, 2001), centrifugal machinery (Yu
et al., 2000), and pumping of liquid metals at high melting point (Barnes, 1955).
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Several theoretical, experimental and numerical studies were undertaken on the sta-
bility of rotating flows. Following von Kármán’s similarity solution of the Navier-
Stokes equations for steady flow near a rotating disk, Batchelor (1951) analyzed the
general nature of the flow and predicted that in almost all cases, the main body of
fluid is rotating. For the case of counter-rotating disks, he pointed out that the main
body of the fluid would be in two parts with different rotation rates. Shortly after-
wards, Stewartson (1953) showed that the fluid in the core would not rotates when
the top and bottom disks counter rotate exactly. For the flows in the cylindrical
enclosure with the rotating top disk and co-/counter-rotating sidewall and bottom
disk, velocity distribution similar to both Batchelor and Stewartson types was ob-
served depending on the value of parameters (Dijkstra and Heijst,1983).Transition
from steady to unsteady oscillatory flows was investigated by Lopez (1998). Gelf-
gat et al. (1996a) analyzed the linear stability of the steady state solutions with
respect to axisymmetric disturbances for homogeneous fluid confined in cylinders
with co-/counter- rotating top and bottom disks. The stability of steady flows in the
cylinder with rotating end disks was studied by Gelfgat et al. (1996b) for aspect
ratios 1<γ<3.5. It was shown that for γ<3, the oscillatory instability sets in as a
result of an axisymmetric Hopf bifurcation.

In many practical applications, heat transfer is associated with the rotating fluid
flows. Considerable amount of previous investigations have directed toward the
convection and instabilities in connection with the crystal growth processing units,
where thermally unstable boundary conditions are imposed (Jaluria,2001). It ap-
pears that a relatively small amount of studies have been done on the laminar ro-
tating flow confined in containers under stable temperature difference. Kim and
Hyun (1997) studied the swirling flow between finite disks under stabilizing tem-
perature difference, for sealed cylindrical container when one of the end disks is
rotating. Valentine and Jahnke (1994) examined the flow field inside a cylindrical
enclosure induced by the rotation of the top and bottom end walls with a fixed side-
wall; a stable oscillatory solution was found for a Reynolds number Re=3103 and
an aspect ratio γ=1.5. A numerical study of the periodic flow for γ=2.5 was con-
ducted by Lopez and Perry (1992), who showed the existence of oscillatory modes.
Stevens et al. (1999) performed a combined experimental and numerical investiga-
tion to highlight multiple oscillatory states, which exist in the flow of a fluid con-
fined in a cylindrical cavity of aspect ratio γ=2.5, with a rotating end wall. They
identified three oscillating states: two of them being periodic and the third being
quasi-periodic with a modulation frequency much smaller than the base frequency.
Xinjun (2003) reported numerical simulations of the Navier–Stokes equations for
the axisymmetric recirculating zones during spin-up and spin-down for confined
rotating fluid flows.
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Iwatsu (2004) numerically examined the heat transfer characteristics of rotating
viscous, incompressible and axisymmetric fluid flow generated by the constant
rotation of the top disk in a cylindrical enclosure of aspect ratio γ=1. He pre-
sented steady state solutions obtained for the ranges of controlling parameters: the
Reynolds number 102 ≤Re≤3×103, the Richardson number, 0≤Ri ≤1.0, and the
Prandtl number Pr=1. Omi and Iwatsu (2005) investigated numerically swirling
flows of a Boussinesq fluid confined in a cylindrical container with co-/counter-
rotating end disks. Cui (2008) discussed the flow driven by the counter rotating
end wall or sidewall in a fluid-filled cylinder. Several variants of the subject were
investigated according to the way in which rotation was applied to the system. Such
instabilities and bifurcation are still attracting much attention nowadays, e.g. Nore
et al. (2003 and 2004). Gelfgat et al. (2001) performed a linear stability analysis of
the steady axisymmetric base flow in the range γ ∈ [1,3.5] and found that for 1.63≤
γ ≤2.76, the first bifurcation is to an axisymmetric and oscillatory state. Outside
this range, the instability is not axisymmetric and azimuthal wave numbers m= 2,3
or 4 dominate. Recent numerical articles include axisymmetric simulations (Bordja
et al., 2010).

The present work investigates numerically the determination of hydrodynamic and
thermal instabilities, which are created in a cylindrical container with co-/counter-
rotating end disks. Our numerical simulations are presented for various values of
the Richardson number (Ri =0, 0.5, 1, 2, and 4). Stability diagrams (Recr-Ri) and
(Fcr-Ri) are plotted and discussed in this paper.

2 Geometry and mathematical model

We consider a cylindrical enclosure (Fig. 1) of radius R and height H, having an
aspect ratio γ=H/R=2. The cylinder contains a liquid metal characterized by a small
Prandtl number (Pr=0.015). The bottom disk is rotating with a constant angular
velocity Ω, and is maintained at a hot temperature Th, while the top disk is in co-
/counter-rotating and maintained at the temperature Tc(Tc< Th). The sidewall of
the cylinder is adiabatic. We refer to the boundary conditions as "co-rotating" when
the top and the bottom disks rotate with the same angular velocity, and "counter-
rotating" when end disks rotate in opposed direction with the same angular velocity
Ω.

Adopting the same assumptions, as in the work of Bessaih et al.(2003), employ-
ing the Boussinesq approximation, and introducing the scales 1/Ω for time, R for
lengths, ΩR for velocities, ρ(ΩR)2 for pressure, and Th−Tc for temperature; the
dimensionless form of the governing equations can be written as follow:
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Continuity equation:
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Energy equation:
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where u, v and w are the dimensionless radial, axial and azimuthal velocity, respec-
tively, P is the dimensionless pressure and Θ=(T-Tc)/ (Th-Tc) is the dimensionless
temperature. In Eqs (2)–(5), Re=ΩR2/ν is the Reynolds number, Ri=Gr/Re2 is the
Richardson number, which expresses the ratio of the buoyancy forces to the iner-
tia forces induced by the disk rotation, and Pr=ν /α is the Prandtl number. The
Grashof number is defined as Gr=gβ (Th-Tc) R3/ν2, where g and β are the gravity
acceleration and the thermal expansion coefficient, respectively.

Eqs. (1)–(5) are subjected to the following initial and boundary conditions:

The initial conditions, at τ=0, are :

u = 0, v = 0, w = 0, Θ = 0, (0 < r < 1, 0 < z < 2) (6a)

The boundary conditions of the dimensionless quantities (u, v, w, and Θ), for τ>0
are:

at r=0 and 0≤z≤2 :

u = 0,
∂v
∂ r

= 0, w = 0,
∂Θ

∂ r
= 0 (6b)
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Figure 1: Geometry of the physical problem. 
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Figure 1: Geometry of the physical problem.

at r=1 and 0≤z≤2 :

u = 0, v = 0, w = 0,
∂Θ

∂ r
= 0 (6c)

at z=0 and 0≤r≤1 :

u = 0, v = 0, w = r, Θ = 1 (6d)

Co-rotating case:
at z=2 and 0≤r≤1 :

u = 0, v = 0, w = r, Θ = 0 (6e)

Counter-rotating case:
at z=2 and 0≤r≤1 :

u = 0, v = 0, w =−r, Θ = 0 (6f)

3 Numerical method

The governing equations were solved using a finite volume method, as described
by Patankar (1980). Scalar quantities (P, w and Θ) are stored at the center of these
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volumes, whereas the vectorial quantities (u and v) are stored on the faces of each
volume. For the discretisation of spatial terms, a second-order central difference
scheme is used for the diffusion and convection parts of Eqs. (2)– (5), and the
SIMPLER algorithm (Patankar, 1980) is used to solve the coupling between ve-
locity and pressure. Prior to the execution of parametric computation, grid inde-
pendency of the numerical solution is assessed for representative parameter values
by changing the number of grid points. The number of grid points used in these
resolution tests is shown in Table 2. The results are listed in terms of the maximum
and minimum values of the stream function ψ (defined as : u = 1

r
∂ψ

∂z ).

According to Table 2, difference in the minimum value between coarse and medium
grids is less than 0.7%, and that between the medium and fine grids is less than
0.6%. The influence of structured mesh size was checked at a representative set of
the radial velocity u plotted at r = 0.89 and the axial velocity v plotted at z=1.02, for
Re=600 and Ri=1 (Fig.2). The result of this grid independency check was that the
thin curve deviation between the medium grid system with 80×160 nodes and the
fine grid system with 90 ×180 nodes. The grid spacing in r and z directions are not
regular. They were chosen according to geometric progressions of ratio 1.05, which
permitted grid refinement near the walls. The grid used has 80×160 nodes and was
chosen after performing grid independency tests. This grid is considered to show
the best compromise between computational time and precision. Calculations were
carried out on a PC with Core2 Duo 1.6 GHz CPU. Thus, the average computing
time for a typical case was approximately three days.

4 Results and discussion

4.1 Validation of the code

The accuracy of our numerical code is checked by comparing the present results
with the numerical investigations found in the literature.Our results are first com-
pared with the numerical work of Gelfgat et al. (1996), which have used the
Galerkin spectral method with 30 × 30 basis functions. Lopez (1995) and Iwatsu
(2005) have used stretched grid with second order finite difference method. Brøns
et al.( 2001) have used uniform grid with combined second/fourth order finite dif-
ference method (Table 3). The maximum deviation in the value of the critical
Reynolds number Recr for the steady-to unsteady transition between the present
and previous numerical simulations is 6%. The second comparison with the nu-
merical work of Gelfgat et al.(1996) is shown in Table 4. The authors present a
numerical investigation of steady states, onset of oscillatory instability, and slightly
supercritical oscillatory states of an axisymmetric swirling flow of a Newtonian
incompressible fluid in a cylinder, with independently rotating top and bottom.
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The third comparison is made with numerical the simulations obtained by Iwatsu
(2005), see Fig.3. It is clear that the computed values are in excellent agreement
with predictions.

In unsteady state, we compare our results (Fig.4) with the numerical study of Gelf-
gat et al.(1996). They present the instantaneous streamlines of the meridional flow
plotted for equal time intervals 0.1T, covering the complete period T =13.01, γ=1.5
(co-rotating case) and Re=3845 (for detail, see Gelfgat et al., 1996).

4.2 Oscillatory flow

In this section, we present the results about the transition from steady to oscillatory
flow for both cases of co-and counter-rotating end disks (together with a critical
discussion of the influence exerted on the system by other parameters). Both the
critical Reynolds numbers, Recr and the critical frequency of oscillation, Fcr are
determined.

It is a well-known fact that the typical sequence of evolution of a dynamic system
towards caos for increasing values of the control parameter consists of the following
stages: transition to an oscillatory or periodic state; a quasi-periodic regime, and
finally chaos (or turbulence). Here the critical Reynolds number corresponds to the
threshold of the oscillating regime.

We detected the physical instability, performing a series of numerical calculations
by increasing the Reynolds number in predetermined intervals, for each Richard-
son number (Ri =0, 0.5, 1, 2, 4). As an example, the solution just before the onset
of oscillations for Ri=1 is shown in Fig 5 (Re=900 and Re=926). The oscillatory
instability for a given dimensionless time-step ∆τ (Fig.5) and Recr=928 was found
to be of a numerical nature (not physical); for this reason we recomputed the solu-
tion for the same flow parameters, but with a time-step ∆τ/2. In general, to detect
instabilities of a physical nature, we introduced a criterion based on “observation”
points (S1 to S9, their positions being defined in Table 1), to monitor simultane-
ously the temporal evolutions of dimensionless velocity components in the radial,
azimuthal and axial directions, the dimensionless temperature Θ, and the values of
stream function ψ in the meridional plane (r-z) until the system reaches an asymp-
totic state with oscillation amplitude no longer dependent on time.

The critical values of the Reynolds number Recr for each value of the Richardson
number (Ri =0, 0.5, 1, 2 and 4) are summarized in Table 5, and two related depen-
dence diagrams (Recr-Ri) and (Fcr-Ri) are plotted in Figs 12a-b. At same time, we
consider a comparison between co-rotation and counter-rotating end disks.

The primary flow is represented by the azimuthal velocity w, while the secondary
flow is characterized here with u, v and ψ .
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Figure 2: Dimensionless axial velocity distribution:  (a) along a vertical line at r = 0.89, 

(b) along a radial line at z=1.02. 
 
 
 

Figure 2: Dimensionless axial velocity distribution: (a) along a vertical line at r =
0.89, (b) along a radial line at z=1.02.
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Figure 3: Comparison between our present results and  the numerical simulations of Iwatsu (2005) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparison with the numerical results of  Gelfgat et al. (1996) of instantaneous streamlines 

of the meridional flow plotted for equal time intervals 0.1T, covering the complete period T=13.01. 

γ=1.5 and Re=3845 (co-rotating end disks case).  

Figure 3: Comparison between our present results and the numerical simulations
of Iwatsu (2005)

The periodic aspect of the axial velocity recorded at monitoring point S5 (Fig.5)
indicates that oscillatory instabilities start, and that the flow undergoes a bifurca-
tion. The origin of this instability can be ascribed to one of the two shear layers
of this problem, namely the Ékman layer near the rotating disks or the so-called
Stewartson layer along the vertical wall. By comparing the amplitude of oscilla-
tions, we can notice that the fluctuating component varies from a monitoring point
to another, while the frequencies of oscillations (Fig.6a) are the same everywhere
in the fluid, confirming the periodic character of the flow, as mentioned by Lopez
and Perry (1992). The portraits phase (Fig.6b) is used to determine in a way intu-
itive and reliable the system behaviour in the phase space (this representation gives
a limiting point for the steady state or a limit cycle in the oscillatory regime).

The temporal evolutions of dimensionless velocity components in the radial, az-
imuthal, and axial directions and temperature for Recr=448 and Ri=4 are shown
in Fig.7a (co-rotating case) at monitoring point S2 (0.493, 0.413). In order to ob-
tain the energy spectrum of oscillations, we have used the Fast Fourier Transform
(FFT) of a number Nech of samples of the time variations of various dimensionless
parameters. The dimensionless predominant frequencies are considered as those
playing the main role in the flow oscillation; there can exist several others frequen-
cies which are multiples of the dominant one (Stevens et al., 2003). The previ-
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Figure 3: Comparison between our present results and  the numerical simulations of Iwatsu (2005) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparison with the numerical results of  Gelfgat et al. (1996) of instantaneous streamlines 

of the meridional flow plotted for equal time intervals 0.1T, covering the complete period T=13.01. 

γ=1.5 and Re=3845 (co-rotating end disks case).  

Figure 4: Comparison with the numerical results of Gelfgat et al. (1996) of instan-
taneous streamlines of the meridional flow plotted for equal time intervals 0.1T,
covering the complete period T=13.01. γ=1.5 and Re=3845 (co-rotating end disks
case).

ous scenario (co-rotation) was found to be somewhat modified when dealing with
counter-rotation end disks for which a new type of structure is formed.

Concerning the flow, the major concern is related to the precise determination of
the critical Reynolds number which seems to be delicate, time consuming and may
need a powerful computing able to calculate the temporal evolutions of this type
of flow. The oscillatory aspect of the temporal evolutions of the flow parameters
u, v, w, and Θ recorded at various points is shown in Fig.7b for Recr=449 and
Ri=4 (counter-rotating case) at point S2. The remarks concerning the oscillatory
behavior of the various parameters for the case of co-rotation are applicable to this
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Figure 5: Time histories of dimensionless axial velocity v at monitoring point S5, for Re=900,  
Re=926 (steady state) and Recr=928 (the onset of the oscillatory instability). 

Figure 5: Time histories of dimensionless axial velocity v at monitoring point S5,
for Re=900, Re=926 (steady state) and Recr=928 (the onset of the oscillatory insta-
bility).

case as well. We can see that the amplitude of dimensionless temperature oscil-
lations is smaller than that of the dimensionless azimuthal velocity v. The results
corresponding to Ri = 0, 0.5, 1, 2, and 4 are represented in the stability diagrams
(Fig.12), which highlight the variation of the critical value of the Reynolds num-
ber Recr and the critical frequency Fcr , according to the value of the Richardson
number, Ri.

It is know that if the Richardson number is much less than unity, buoyancy is unim-
portant. If it is much greater than unity, buoyancy is dominant (in the sense that
there is insufficient kinetic energy to homogenize the fluids). If the Richardson
number is of order unity, then the flow is likely to be buoyancy-driven: the en-
ergy of the flow derives from the potential energy. We note that the increase of the
Richardson number destabilizes the flow. We also note that the flow for counter-
rotating disks for the values of the Richardson number Ri<1 is more unstable than
the flow in the co-rotating case. For Ri=1, the critical Reynolds numbers for both
cases of rotation are relatively close. The frequency in the case of Ri =0 (counter-
rotating case) is very weak compared to the frequency of co-rotation end disks
(Fig.12b and Table 5).
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Figure 6: Co-rotating case: (a) Power spectrum density (PSD) of the dimensionless  axial velocity  v  

at   point S5, for Recr=928 and Ri=1 (b) phase portraits in the plan (u, v) at point S2, for Recr=448 and 

Ri=4.  

 

 

 

Figure 6: Co-rotating case: (a) Power spectrum density (PSD) of the dimensionless
axial velocity v at point S5, for Recr=928 and Ri=1 (b) phase portraits in the plan
(u, v) at point S2, for Recr=448 and Ri=4.
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(b) Recr=449 and Ri =4 (counter-rotating end disks). 

 
 

Figure 7: Temporal evolutions of u, v, w, and Θ at point S2 
 

 

 

Figure 7: Temporal evolutions of u, v, w, and Θ at point S2
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4.2.1 Flow structure in co-rotating case

Figure 8 shows the time history of the axial velocity u over one period of oscillation
for Recr=928 and Ri =1 (co-rotating case). The period is equal to 32.91 and the
corresponding frequency is 0.03038.The streamline patterns in the meridional plane
(r-z), the contour plots of isotherms and azimuthal component of the velocity w for
various time are shown in Figure 9.

The co-rotating end disks induce a clockwise recirculation region that appears in
the upper part of the cylinder and counterclockwise recirculation region in the lower
region of the cylinder. It appears that at time τa=23.61, the flow presents two cells.
These cells dilate and narrow during time (τa, τb τc, τd, τe, τ f , and τg). Streamlines
structures at time τa= 23.61 are identical to those at time τg= 55.11, which means
that the flow is perfectly periodic. It is also noted at time τb and τe , that streamlines
have opposite structures.

The intermediate layer between the two cells undergoes strong variations in time.
The symmetry with respect to mid-height plane at (z = 1) present in the stable case
is no longer a feature of the oscillatory state. At times τa, τ f and τg, we observethe
appearance of a meridional vortex in the lower corner of the cylinder; but for times
τc and τd the appearance of a meridional vortex in the upper corner of the cylinder.
As clearly, shown in contour plots of isotherms (Fig. 9), convective heat transfer
dominates the temperature distribution. Plots of the azimuthal velocity w (Fig. 9)
indicate that bulk fluid rotates with an intermediate angular velocity with respect to
the end disks with boundary layers formed near the rotating disks.

4.2.2 Flow structure in counter-rotating case

Figure 10 shows the time history of the dimensionless streamlines ψ at various
times (τa,τb τc,τd, τe,τ f ,and τg) for the case of counter-rotating end disks, and
Recr=944 and Ri=1 at S5(0.493, 0.975), with the period being equal to 26.06 .The
corresponding frequency is 0.0337. Streamlines structures shown in Fig.11 present
two cells. Cells dilate and narrow during time. At time τa, in particular, the cell
near the bottom disk forms one counterclockwise recirculation region. This region
grows; while the upper clockwise recirculation region becomes smaller. We ob-
serve at τd and τ f the appearance of a meridional vortex in the upper corner of the
cylinder. Streamlines structures at time τa are identical to this at time τg which
means that the flow is periodic. It is also noted at time τb=130.04 and τ f =145.13,
streamlines have opposite structures.

The fluid located in proximity of each disk rotates in the related disk angular di-
rection and shearing flow is created between the top and bottom boundaries, this
shearing layer being unstable. The origin of this instability was studied by Nore
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Figure 8: Time history of the dimensionless radial velocity u at point S8, for Recr=928 and Ri =1     
(co-rotating end disks case). The points a, b, c, d, e, f, and g correspond to times τa, τb, τc, τd, τe, τf, and 
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Figure 9: Time history of the dimensionless streamlines ψ, temperature Θ and azimuthal velocity w at 
various times for Recr=928 and  Ri=1 (co-rotating end disks case) 

  τa=23.61      τb=26.65                    τc=31.03            τd=37.60          τe=43.54                τf=49.91             τg=55.11 

Figure 8: Time history of the dimensionless radial velocity u at point S8, for
Recr=928 and Ri =1 (co-rotating end disks case). The points a, b, c, d, e, f, and
g correspond to times τa, τb, τc, τd , τe, τ f , and τg, respectively.
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Figure 9: Time history of the dimensionless streamlines ψ, temperature Θ and azimuthal velocity w at 
various times for Recr=928 and  Ri=1 (co-rotating end disks case) 

  τa=23.61      τb=26.65                    τc=31.03            τd=37.60          τe=43.54                τf=49.91             τg=55.11 

Figure 9: Time history of the dimensionless streamlines ψ , temperature Θ and
azimuthal velocity w at various times for Recr=928 and Ri=1 (co-rotating end disks
case)
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et al.(2003) . They studied the exactly counter-rotating case, at a fixed aspect ratio
γ =2, and showed that, when the disk rotation rate is increased, the axisymmetric
basic state becomes unstable through a Kelvin-Helmholtz instability of the equato-
rial azimuthal free shear layer created by the counter-rotation of the top and bottom
disks. As made evident by isotherms shown in Fig.11, convective heat transfer
dominates the temperature distribution especially in the regions near both rotating
disks. Plots of w in Fig.11 indicate that boundary layers are formed on both rotating
disks, because of the inhibition of vertical motion by the buoyancy force.
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Figure 10: Time history of the dimensionless  steam function at point S5, for Recr=944 and Ri =1 
(counter-rotating end disks case). The points a, b, c, d, e, f, and g correspond to  times τa, τb, τc, τd, τe, 

τf, and τg, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Time history of the dimensionless streamlines ψ, temperature Θ and azimuthal velocity w at 
various times for Recr=944 and Ri=1 (counter-rotating end disks case). 
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Figure 10: Time history of the dimensionless steam function at point S5, for
Recr=944 and Ri =1 (counter-rotating end disks case). The points a, b, c, d, e,
f, and g correspond to times τa, τb, τc, τd , τe, τ f , and τg, respectively.

5 Conclusions

Mixed convection in a cylindrical enclosure filled with a liquid metal with co-
/counter-rotating end disks and stationary sidewall has been investigated numeri-
cally. The finite volume method has been used to solve the transport equations.
Numerical simulations have been presented for various values of the Richardson
number (Ri = 0, 0.5, 1, 2, and 4), in order to evaluate the related effect on the crit-
ical Reynolds number, Recr and on the critical frequency of oscillation, Fcr. The
results show that the flow created by counter-rotating end disks is very different
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Figure 10: Time history of the dimensionless  steam function at point S5, for Recr=944 and Ri =1 
(counter-rotating end disks case). The points a, b, c, d, e, f, and g correspond to  times τa, τb, τc, τd, τe, 

τf, and τg, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Time history of the dimensionless streamlines ψ, temperature Θ and azimuthal velocity w at 
various times for Recr=944 and Ri=1 (counter-rotating end disks case). 

 

τa=124.96        τb=130.04           τc=132.64             τd=138.31            τe=143.13               τf=145.99           τg=151.02

Figure 11: Time history of the dimensionless streamlines ψ , temperature Θ and
azimuthal velocity w at various times for Recr=944 and Ri=1 (counter-rotating end
disks case).

from that in the co-rotating case. For values of the Richardson number (Ri<1), the
flow in the counter-rotating case is more unstable than the flow for co-rotating end
disks, and causes a remarkable change in the flow and heat transfer structures. For
Ri=1, the critical Reynolds numbers for both cases of rotation are almost equal.
The increase of Richardson number decreases the critical Reynolds number.
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