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Grid-Free Vortex Method for Particle-Laden Gas Flow

T. Uchiyama1

Abstract: This study proposes a three-dimensional grid-free method to simu-
late particle-laden gas flows. It is based on a vortex method. The flow region is
not resolved into computational grids, but the gas vorticity field is discretized by
vortex elements. The behavior of the vortex element and the particle motion are
simultaneously calculated by using the Lagrangian approach. Eight cubic cells are
locally allocated around each particle to compute the effect of the particle motion
on the gas flow. In each cell, the change in the vorticity due to the particle is calcu-
lated, and it is considered by generating a vortex element or changing the strength
of the existing vortex elements. This study also applies the grid-free method to sim-
ulate a free fall of small spherical solid particles. The particles, initially arranged
within a spherical region in an unbounded quiescent air, are made to fall, and their
fall induces the air flow around them. The particles are accelerated by the induced
downward air flow just after the commencement of their fall. After the acceleration,
they are whirled up by a vortex ring produced around the downward air flow. These
results are in good agreement with the existing ones, demonstrating the validity of
the proposed grid-free method.
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Notations
CD : drag coefficient for particle

d : particle diameter

D : diameter of particle-cluster at initial condition

FD : force exerted by particle acting on gas-phase per unit volume

f D : drag force acting on particle

g : gravitational acceleration

L : side length of cubic cell around particle
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p : pressure

t : time

t∗ : nondimensional time =utt/D

u : velocity

ut : terminal velocity of particle

up : averaged velocity of falling particles

vp : particle velocity relative to gas =up−ug

V : volume of grid and cell

x,y,z : orthogonal coordinates

∆t : time increment

γ : strength of vortex element

θ : angle between f D and x-axis

ν : kinematic viscosity

ρ : density

σ : core radius of vortex element

ϕ : angle between f D and z-axis

ω : vorticity =∇×ug

Subscript

g : gas

p : particle

1 Introduction

For numerical simulations in a wide variety of continuum mechanics, the develop-
ment of a method that needs no computational grids is earnestly demanded. Such
grid-free method is especially effective in a simulation handling a computational
domain with complicated geometries. Because the simulation takes much more
work to resolve the domain into the grids. A vortex method attracts much attention
as one of the grid-free methods simulating an incompressible flow (Winckelmans,
2004; Cottet and Koumoutsakos, 2000). It discretizes the vorticity field into vor-
tex elements and calculates the time evolution of the flow by tracing the motion of
the vortex element by using the Lagrangian approach. A number of studies on the
vortex method for single-phase flow simulation have been conducted. It is demon-
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strated that the vortex method is usefully applicable to solve a wide class of flow
problems from low to high Reynolds numbers.

Gas flows loaded with small solid particles are observed in many industrial ap-
plications, such as chemical plants and energy conversion systems. Various sim-
ulation methods have thus far been proposed (Crowe et al., 1992). Lagrangian
approach is applied to simulate the particle motion. Eulerian methods employing
computational grids are frequently used to simulate the gas flow in the similar way
as the single-phase flow simulation. Therefore the simulation methods are of a
Lagrangian-Eulerian type. To extend the applicability of vortex method, the author
(Uchiyama and Naruse, 2001; Uchiyama and Naruse, 2004; Uchiyama and Fukase,
2005) proposed vortex methods for gas-particle two-phase flow. The vortex meth-
ods discretize the vorticity field into vortex elements, and calculate the behavior
of the vortex element as well as the particle motion by the Lagrangian approach.
The effect of the particle on the gas flow is considered through the variation for the
strength of vortex element, which is caused by the change in the circulation due to
the particle motion. Since the computational grids resolving the entire flow field
are employed to calculate the change in the circulation, one of the advantages of a
vortex method, namely the grid-free technique, was not fully exhibited.

This study proposes a grid-free method, which is based on a vortex method, for
gas-particle two-phase flow. The method does not resolve the entire flow field into
computational grids. As the simulation for a flow field having complicated geome-
tries needs much work to resolve the field into the grids, one can accelerate the
simulation efficiency by the method. Eight cubic cells are allocated around each
particle to compute the effect of the particle on the gas flow. In each cell, the
change in the vorticity due to the particle motion is calculated, and it is considered
by generating a vortex element or changing the strength of the existing vortex el-
ements. The proposed grid-free method is also applied to simulate a free fall of
small spherical solid particles in air to demonstrate the validity. The particles, ini-
tially arranged within a spherical region in an unbounded air, are made to fall, and
their fall induces the air flow around them, resulting in a gas-particle two-phase
flow. The particles are accelerated by the induced downward air flow just after the
commencement of their fall. After the acceleration, they are whirled up by a vortex
ring produced around the downward air flow. These interactions between the parti-
cle motion and the air flow are favorably compared with the existing measured and
simulated results, demonstrating the validity of the proposed grid-free method.
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2 Basic Equations

2.1 Assumptions

The following assumptions are employed in the simulation.

(1) The gas-phase is incompressible.

(2) The particle has a spherical shape with uniform diameter.

(3) The collision between the particles is negligible.

(4) The particle Reynolds number is less than 300, and accordingly no vortices are
shed from the particle.

2.2 Governing equations for gas and particle

The conservation equations for the mass and momentum of the gas-phase are ex-
pressed as follows under the assumption (1):

∇ ·ug = 0 (1)
∂ug

∂ t
+(ug ·∇)ug =− 1

ρg
∇p+ν∇

2ug−
1
ρg

FD (2)

where FD is the force exerted by the particle acting on the gas-phase per unit vol-
ume.

It is postulated the particle density is much larger than the gas. The dominant forces
on the particle are the drag and gravitational forces, while the virtual mass force,
the Basset force, and the pressure gradient force are negligible. Consequently, the
equation of motion for a particle (mass m, density ρp) is written as:

m
dup

dt
= f D +(1−ρg/ρp)mg (3)

where the drag force f D is given by the following:

f D = (πd2
ρg/8)CD|ug−up|(ug−up) (4)

Here, d is the particle diameter, and the drag coefficient CD is estimated as (Schiller
and Naumann, 1933):

CD = (24/Rep)(1+0.15Re0.687
p ) (5)

where Rep=d|ug−up|/ν .

For the simultaneous calculations of Eqs. (1)∼(3), a vortex method is used to solve
Eqs. (1) and (2), and the Lagrangian approach is applied to Eq. (3).
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2.3 Discretization of gas vorticity field by vortex element

Taking the curl of Eq. (2) and substituting Eq. (1) into the resultant equation, the
vorticity equation for the gas is derived:

∂ω

∂ t
+(ug ·∇)ω = (ω ·∇)ug +ν∇

2
ω− 1

ρg
∇×FD (6)

where ω is the vorticity.

The gas velocity ug at x is given by the Biot-Savart equation:

ug(x) =− 1
4π

∫ (x− x′)×ω(x′)
|x− x′|3

dV (x′)+ug0 (7)

where ug0 stands for the velocity of the potential flow or the uniform flow.

The gas vorticity field is discretized by vortex elements. Various models for the
vortex element have been proposed. This study employs a blob model for single-
phase flow simulation (Winckelmans and Leonard, 1993). The vortex element has
a cylindrical shape, while the vorticity distribution is spherical with a finite core
radius. When the vortex element α at xα is presumed to have the core radius σα ,
the vorticity at x induced by the element is expressed as:

ω
α(x) =

γα

σ3
α

f
(
|x− xα |

σα

)
(8)

where γα is the strength of the vortex element. The core function f is expressed by
the following equation.

f (ε) =
15

8π(ε2 +1)7/2 (9)

2.4 Convection and change in strength of a vortex element

When the vorticity field is discretized into a set of Nv vortex elements, the gas
velocity ug(x) is given by the following equation derived from Eqs. (7) and (8):

ug(x) =− 1
4π

Nv

∑
α=1

(x− xα)× γα

|x− xα |3
g
(
|x− xα |

σα

)
+ug0 (10)

where the function g is determined as:

g(ε) = 4π

∫
ε

0
f (ζ )ζ 2dζ (11)
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The vortex element α convects with the gas velocity ug given from Eq. (10). The
Lagrangian approach is used for the calculation.

dxα

dt
= ug (xα) (12)

Rewriting the vorticity equation, Eq. (6), in the Lagrangian co-ordinates, the equa-
tion is expressed as:

dω

dt
= (ω ·∇)ug +ν∇

2
ω− 1

ρg
∇×FD (13)

It is discovered from Eq. (13) that the vorticity of the vortex element varies with
the lapse of time due to the change in the length of vortex element, the viscous
diffusion, and the force exerted by the particles. The viscous diffusion is computed
by applying a method to redistribute the vortex strength (Degond and Mas-Gallic,
1989). The particle effect is separately considered by the method explained in the
next section. In this case, the substitution of Eqs. (8) and (10) into Eq. (13) yields
the time rate of change in γα :

dγα

dt
=

Nv

∑
β=1

1
σ3

{
−g(ζ )

ζ 3 γ
α × γ

β +
1

σ2

[
− 1

ζ

d
dζ

(
g(ζ )
ζ 3

)]

×
[
γ

α · (xα − xβ )
][

(xα − xβ )× γ
β

]}

+
2ν

σ2

Nv

∑
β=1

(δαγ
β −δβ γ

α)ησ (xα − xβ ) (14)

where δ is the volume of vortex element, and ζ = |xα − xβ |/σ . The last term on
the right side of Eq. (14) corresponds to the viscous diffusion term, and ησ (x) is
defined as:

ησ (x) = η(|x|/σ)/σ
3 (15)

where

η(ε) =−1
ε

d
dε

f (ε) (16)
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2.5 Change in strength of vortex element due to particle

When substituting Eq. (6) into an equation, derived from the Reynolds transport
theorem and Eq. (1), the time rate of change in the strength of vorticity γ in any
volume is obtained:

Dγ

Dt
=− 1

ρg

∫
(∇×FD)dV

=− 1
ρg

∫
(n×FD)dS (17)

where n is the unit vector normal to the volume surface. The stretch-contraction
term and the viscous diffusion term are omitted because they are already considered
in Eq. (14).

2.6 Grid-based computation for strength of vorticity

In the three-dimensional vortex method proposed in a prior study (Uchiyama and
Fukase, 2005), the entire flow field is resolved into hexahedral grids. A grid is
shown in Fig. 1 (a). The time rate of change in the strength of vorticity γ , ∆γ/∆t,
in each grid is calculated from Eq. (17). If the FD value is known on every surface
of a grid, ∆γ/∆t is estimated from Eq. (17). For example, the x-component ∆γx/∆t
is written as:

∆γx

∆t
=− 1

ρg

[
(FB

Dz−FA
Dz)∆Sy +(FC

Dy−FD
Dy)∆Sz

]
(18)

where FA
Dz is the FDz value on the surface A, and ∆Sy is the area of a surface normal

to the y-axis, ∆x∆z.
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Figure 1: Computational grid employed in prior vortex method

When the number of vortex elements in a grid is nv, the change in the strength for
each vortex element during ∆t is supposed to be ∆γ/nv. When there are no vortex
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elements in the grid, a vortex element with a strength ∆γ is generated at the grid
center.

The FD value on a surface of a grid, such as FA
Dz, is estimated by taking the average

for the FD values at four apexes of the surface. It is supposed that the number of
particles in a grid is np and that the drag force f j

D acts on the jth particle. The FD

value on an apex β , Fβ

D, is given by the following equation:

Fβ

D =
1
V

np

∑
j=1

V j
β

V
f j

D (β = 1,2, · · · ,8) (19)

where V is the grid volume ∆x∆y∆z, and V j
β

is the volume concerning to the grid
point β , as shown in Fig. 1 (b).

3 Grid-Free Simulation Method

3.1 Grid-free computation for strength of vorticity

Eight cubic cells, Cell 1 ∼ Cell 8, are locally allocated around each particle, as
depicted in Fig. 2. Their side length is L. The sides are parallel to the orthogonal
coordinate axes. If the particle velocity relative to the gas is denoted by vp (=up−
ug), the drag force f D acts in the direction of −vp. The angle between f D and
the x-axis is postulated to be θ , while the angle between f D and the z-axis is ϕ .
Applying Eq. (19) to each cell, FD acts only on the apex O on which the particle
locates, and no forces act on the other apexes. Consequently, the components of
FD on the cell apexes are given by the following:

(FDx,FDy,FDz) =

{
(ξx,ξy,ξz) on apex O

0 on other apexes
(20)

where

(ξx,ξy,ξz) =
| f D|
L3 (cosθ sinϕ,sinθ sinϕ,cosϕ) (21)

With reference to the above-mentioned grid-based method, the FD values on each
surface of the eight cells are calculated by taking the average for the FD values on
the four apexes of the concerned surface. When the FD value is computed on every
surface by using Eq. (20), the change in the strength of vorticity in each cell, ∆γ , is
obtained from Eq. (17). The results are listed in Table 1.
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Figure 2: Eight cells around a particle

Table 1 Change of ∆γ in each cell due to particle

Cell (∆γx,∆γy,∆γz)
1 G(ξz−ξy,ξx−ξz,ξy−ξx)
2 G(ξz−ξy,ξx +ξz,−ξy−ξx)
3 G(−ξz−ξy,ξx +ξz,−ξy +ξx)
4 G(−ξz−ξy,ξx−ξz,ξy +ξx)
5 G(ξz +ξy,−ξx−ξz,ξy−ξx)
6 G(ξz +ξy,−ξx +ξz,−ξy−ξx)
7 G(−ξz +ξy,−ξx +ξz,−ξy +ξx)
8 G(−ξz +ξy,−ξx−ξz,ξy +ξx)

G =−L2
∆t/4ρg

On the basis of the grid-based method proposed in a prior study (Uchiyama and
Fukase, 2005), the change in the strength for each vortex element is supposed to be
∆γ/nv when the number of vortex elements in the cell is nv. A vortex element with
a strength ∆γ is generated at the center of the cell when there are vortex elements
in the cell.

It is postulated that one vortex element originates in each cell around a particle
owing to the particle motion of θ=10◦ and ϕ=30◦. The gas velocity distribution on
three sections perpendicular to the particle motion is shown in Fig. 3 (a), where G
and σ are set at L3/| f D| and L/2 respectively. The velocity becomes higher with
approaching the particle. It is axisymmetric with respect to the direction of the
particle motion. A contracted flow occurs behind the particle, while an expanding
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flow appears in front of the particle. Tanaka et al. (2007) also simulated these flows
around a particle falling in air. Figure 3 (b) depicts the vorticity distribution on a
section passing through the particle center. The vorticity takes its maximum value
at the particle location, and the distribution is axisymmetric. These demonstrate
that the proposed method simulates favorably the gas flow around a particle. It
should be noted that the method is successfully applied for the particle motion with
arbitrary values of θ and ϕ .
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Figure 3: Gas flow field around a particle when θ=10◦ and ϕ=30◦

The grid-based methods proposed by the author in prior studies (Uchiyama and
Naruse, 2001; Uchiyama and Naruse, 2004; Uchiyama and Fukase, 2005) resolve
the entire flow field into computational grids to calculate the change in the vorticity
due to the particle in each grid. Therefore, they are partially based on the Eulerian
method. The proposed grid-free method pays attention to each particle to calcu-
late the vorticity field around the concerned particle, being the fully Lagrangian
method. It promises to be usefully applied to simulate the flow in a region having
complicated geometries. This is because the grid generation can be omitted in the
simulation.
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3.2 Numerical procedure

When the flow field at t=t is known, the flow at t=t +∆t is computed by the follow-
ing procedure.
1. Calculate the position of vortex element from Eq. (12).
2. Calculate the change in strength of the vortex element due to the stretch-contraction
and viscous diffusion from Eq. (14).
3. Calculate the particle motion from Eq. (3).
4. Arrange eight cubic cells around each particle as shown in Fig. 2.
5. Calculate the change in the strength of vorticity ∆γ by using Eq. (20) and Table
1.
6. Add ∆γ to the strength of the vortex elements in the concerned cell. When there
are no vortex elements in the cell, generate a vortex element having the strength ∆γ

at the center of the cell.
7. Calculate the gas velocity from Eq. (10).

4 Application to Free Falling of Solid Particles in Air

4.1 Simulation conditions

To demonstrate the validity and applicability of the proposed grid-free method, the
behavior of solid particles falling in an unbounded air is simulated by the method.
At the initial time t∗=0, spherical solid particles are arranged within a spherical
region of diameter D in a quiescent air, as shown in Fig. 4. They are made to fall,
and their fall induces the air flow around them, resulting in a gas-particle two-phase
flow.

xy

z

G
ra
vi
ty

D

Figure 4: Initial arrangement of particles

The particle diameter d and density ρp are 1 mm and 7.7 kg/m3 respectively, while
the number of particles is 1000. The position at the commencement of the fall
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(t∗=0) is given by using random numbers. The diameter of spherical region D is
set at 20d. Accordingly, the particle volume fraction at t∗=0 is 0.125. The terminal
velocity ut calculated from Eq. (3) is 0.121 m/s. When the time scale of the induced
air flow τg is assumed to be D/ut , the Stokes number St, defined as the ratio of the
particle response time τp (=ρpd2/18ρgν) to τg, is 1.44.

Since the air is quiescent at t∗=0, there are no vortex elements. The velocity ug0
in Eqs. (7) and (10) is zero, because the particles fall in an unbounded air. The
time increment ∆t is set at ut∆t/D=6×10−4, and the 2nd-order Adams-Bashforth
method is applied to the Lagrangian calculation for the vortex element and the
particle. The side length for the cubic cells arranged around each particle L is
0.5D.

As a core radius σ in a vortex method corresponds to the half size of a computa-
tional grid in a Eulerian method, this simulation set σ at L/2. A simulation using
smaller cells (L=0.375D) was also performed, but the result was not affected by
the cells. Therefore, the cell size is found to be appropriate. It was possible to
simulate by using much smaller cells of L=0.25D. However, the time advancement
was extremely decelerated owing to the marked increment in the number of vortex
elements.

The collisions between the particles are neglected. As the particle trajectory is
computed by the Lagrangian method, it is not impossible to simulate the collisions.

4.2 Results and discussions

The time evolution for the particle distribution is shown in Fig. 5. The particle
positions at eight time points from t∗=0 to t∗=12.1 are projected onto a vertical
plane (x-z plane). The particles arranged in the half upper part (z≥0) and half lower
one (z<0) of the spherical region at t∗=0 are colored by red and blue respectively.
The particles fall with destroying their initial arrangement, namely they tend to
disperse in the horizontal direction. Most of the particles initially arranged in the
half upper part sediment relatively toward the bottom for the particle-cluster, while
the particles initially arranged in the half lower part rise relatively toward the top.
These demonstrate that the particle behavior depends on the particle position at
t∗=0 when t∗≤4.84. The particle dispersion in the horizontal (x) direction becomes
markedly when t∗≥4.84. These particle motions are caused by the air flow induced
by them, as explained later. It took 258 minutes for this simulation by using a
personal computer (processor: 266 GHz × 2, Memory: 4 GB).

Figure 6 shows the time evolution for the particle distribution projected onto a
horizontal plane (x-y plane). Though the particles fall with dispersing in the lateral
direction, they distribute within a circular region. Most of the particles initially
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arranged in the half lower part, colored by blue, concentrate on the periphery of
the circular region when t∗≥3.03. This is because the particles are whirled up by a
vortex ring induced by them, as explained later. The concentration at the periphery
is relaxed when t∗≥7.26, because the particles disperse in the horizontal direction
with the passage of time.

t*=0

1.21

3.03

4.84

7.26

9.68

12.1

1.82

0-5 5
0

5

10

15

20

x/D
z/
D

Figure 5: Time variation for distribution of particles on vertical section

The time evolution for the air velocity on a vertical plane (x-z plane) passing
through the center of the particle-cluster (x=y=0) is shown in Fig. 7. To grasp
easily the relation to the particles near the plane, the particles within a vertical slit
region of -0.03≤y/D≤0.03 are also plotted. A vertically downward air flow occurs
at the center of the particle-cluster when t∗=1.82. The gravitational acceleration,
which causes the particles to fall, induces the air flow through the drag force acting
on the particles. Thus, the particles locating near the center of the particle-cluster
sediment relatively in the downward direction. When t∗≥1.82, this downward air
flow accelerates with the passage of time, and accordingly a pair of large-scale
eddies occurs just above the falling particles. It corresponds to a vortex ring, be-
ing the wake of the particles, as explained later. The particles initially arranged in
the half lower part of the spherical region are whirled up by the vortex ring, and
therefore they concentrate on the periphery of the particles, as also seen in Fig. 6.
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The particle distribution of such concave and thin layer types is caused by these
sedimentation and whirl up. Since the particle falling velocity is higher than the
convection velocity of the vortex ring, the space between the particles and the vor-
tex ring increases with the passage of time. Consequently, the particles disperse
more in the horizontal direction due to the air flow having a velocity in the ±x
directions just below the vortex ring when t∗≥4.84.

3.03

4.84 7.26

9.68 12.1

t*=1.82

0-5 5x/D 0-5 5x/D

0

-5

5
y/
D

0

-5

5

y/
D

0

-5

5

y/
D

Figure 6: Time variation for distribution of particles on horizontal section

Experimental studies on a plane mixing layer (Wen et al., 1992) and a two-dimensional
wake (Yang et al., 2000) reported that the particles of the Stokes number St'1 are
focused on thin layers, outlining the boundaries of the large-scale eddies. It was
made clear by the author’s grid-based vortex simulation (Uchiyama and Yagami,
2008; Uchiyama and Yagami, 2009) that such preferential distribution also appears
when solid particles collide with a vortex ring. Considering that the St value of
this simulation is 1.44, the simulated particle behavior corresponds to the above-
mentioned preferential distribution. According to a two-dimensional simulation for
the falling of particles of St=1 by Chen and Marshall (1999), an air flow is induced
behind the particles, and a concave distribution of the particles occurs due to the
wake flow. These support the validity of the present simulation.

The vorticity ω near the particles and the component in the vertical (z) direction
ωz distribute as shown in Fig. 8, where the iso-surfaces of |ω|D/ut=1.65 and
ωzD/ut=±0.165 are presented. The particle distribution is also plotted. One can
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Figure 7: Air velocity and distribution of particles

observe the appearance of a vortex ring just above the particles when t∗≥3.03. Vor-
tex tubes with positive and negative values of ωz entangle around the vortex ring.
The region, in which such complicated three-dimensional vortical flow exists, ex-
pands with the passage of time when t∗≤9.68.

The time evolution for the particle falling velocity up is shown in Fig. 9, where up

is calculated by taking the average for the falling velocity of every particle. The
velocity up increases rapidly just after the commencement of the particle fall. It
reaches the maximum value at t∗=1.57. This is attributable to the fact that the
particles are accelerated by the downward air flow induced by them. The velocity
up lessens monotonously at t∗≥1.57, and it tends towards the terminal velocity ut .
Because the distance between the vortex ring and the particles increases with the
time evolution as seen in Figs. 7 and 8, and accordingly the effect of the vortex ring
on the particles reduces.

In this simulation, the flow field is not bounded by solid walls. If the wall bounded
flow is simulated, the non-slip condition on the wall is realized by representing the
walls by some panels to apply existing grid-based vortex methods.
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Figure 8: Air vorticity fields and distribution of particles
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Figure 9: Time variation for falling velocity of particles

5 Conclusions

A three-dimensional grid-free simulation method for gas-particle two-phase flow
is proposed. It is based on a vortex method. Eight cubic cells are locally allocated
around each particle to consider the effect of the particle on the gas flow. In each
cell, the change in the vorticity due to the particle motion is calculated, and it is
considered by generating a vortex element or changing the strength of the existing
vortex elements.
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The grid-free method is also applied to simulate a free fall of small spherical solid
particles. The particles, initially arranged within a spherical region in a quiescent
air, are made to fall, and their fall induces the air flow around them, resulting in a
gas-particle two-phase flow. The particles are accelerated by the induced downward
air flow just after the commencement of their fall. After the acceleration, they
are whirled up by a vortex ring produced around the downward air flow. These
interactions between the particle motion and the air flow are favorably compared
with the existing measured and simulated results. The validity of the proposed
grid-free simulation method is successfully confirmed.
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