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Numerical Simulation of an Axisymmetric Compound
Droplet by Three-Fluid Front-Tracking Method
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Abstract: We develop a three-fluid front-tracking method in order to simulate
the motion of an axisymmetry compound droplet, which consists of three immis-
cible fluids separated by two different interfaces. The two interfaces of the com-
pound droplet are represented by two different sets of the front-tracking elements
immersed on the Eulerian grid mesh, where the velocities and the pressure are
calculated. The density and viscosity profiles with jumps at the interfaces are suc-
cessfully determined from the location and the connection information of the front-
tracking elements. The motion of a compound droplet is simulated on axisymmetric
cylindrical coordinates. The results show that the three-fluid front tracking method
works appropriately for the motion of a compound droplet. Stability of a spherical
compound droplet is examined numerically and the stable position is found from
the simulations.

Keywords: three immiscible fluids, interface, front-tracking method, compound
droplets.

1 Introduction

Although the flow involving three distinct fluids is rather complex, it is often en-
countered in industrial processes. Double emulsion is one example (Gart, 1997).
This is highly structured fluids of emulsion drops that contain smaller droplets in-
side. The emulsion drop of this type is usually referred as a compound droplet,
which consists of two immiscible phases in yet another immiscible continuous
phase. The fluid dynamics of the compound droplets has been studied (Johnson
and Sadhal, 1985), and it has still attracted considerable attention, partly because
of its potential to manufacture highly structural materials such as micro capsules
for drug delivery vehicle (Prankerd and Stella, 1990).
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In this study, we develop a three-fluid front-tracking method based on the original
front-tracking method (Unverdi and Tryggvason, 1992) in order to simulate the mo-
tion of an axisymmetric compound droplet that consists of three immiscible fluids
separated by two different interfaces. The two interfaces of the compound droplet
are represented by two different sets of the front-tracking elements immersed on
the Eulerian grid mesh, where the velocities and the pressure are calculated.

This paper is organized as follows: After describing how the front-tracking method
is modified, the density and viscosity profiles are shown to verify if the modified
front-tracking method successfully determines the densities and viscosities with
jumps at the interfaces. The motion of a compound droplet is discussed by com-
paring with the theoretical and numerical results for a spherical compound droplet
in a uniform flow (Sadhal and Oguz, 1985).

2 Governing equations and numerical method

Figure 1 shows a schematic of the problem. An initially spherical compound
droplet of radius R2 is placed in a quiescent external fluid of viscosity µ1 and den-
sity ρ1. The compound droplet consists of a shell (µ2 and ρ2) and a core (µ3 and
ρ3) whose radius is R3. Under constant gravity, the entire droplet and the core move
depending on the density difference between the external fluid and the droplet, or
on that between the shell and core fluids. The droplet eventually reaches the termi-
nal velocity balancing the buoyancy force with the viscous drag force. The entire
droplet and the core can be deformed depending on the relative contribution of the
interfacial tension to the other forces.

If the external fluid and the compound droplet are assumed to be incompress-
ible and Newtonian, the governing equations for one-fluid formulation (Unverdi
&Tryggvason, 1992) are the continuity equation, the Navier-Stokes equation, and
the equations of state for density and viscosity:

∇ ·u = 0, (1)

∂

∂ t
ρu+∇ ·ρuu =−∇P+∇ ·µ(∇u+∇uT )+ρg+

∫
f

σκn f δ (x−x f )dA f , (2)

D
Dt

ρ =
D
Dt

µ = 0. (3)

Here, u is the velocity vector, P the pressure, ρ the density, µ the viscosity, σ the
interfacial tension coefficient, andt the time. The interfacial tension is found using
twice the mean curvature, κ , the unit normal, n f , and a delta function, δ (x−x f ),
which is zero everywhere except at the interface, x f .
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Equations (1) and (2) are discretized on the axisymmetric cylindrical coordinate by
finite difference approximations with second order. The boundary conditions of the
left-side of the domain (z-axis) are symmetry, and the other boundaries are no-slip-
wall. The initial velocities are zero (u0 ≡ 0) as the fluid is at rest. The motion of the
interface is traced by a front-tracking method (Unverdi and Tryggvason, 1992). The
details of the front-tracking method were described by Tryggvason et al. (2001),
and the axisymmetric version of the front-tracking method was examined in jet
breakup problems by Homma et al. (2006).

For the front-tracking method by Tryggvason et al. (2001), the density and viscos-
ity fields are determined by an indicator function, defined, for example, by I = 1 for
fluid 1 and I = 0 for fluid 2. Since the indicator function depends on the location of
interfaces, it is necessary to determine the function every time step from the loca-
tions of the front elements. The gradient of I has a value only at the interface and
can be expressed as

∇I =
∫
f

∆In f δ (x−x f )dA f . (4)

Taking divergence of Eq. (4) results in the Poisson equation

∇
2I = ∇ ·

∫
f

∆In f δ (x−x f )dA f . (5)

The right hand side can be calculated from the information of the front elements
and ∆I is unity for the above example. The left-hand side is approximated by stan-
dard centered differences, and solving the Poisson equation with the appropriate
boundary conditions yields the field of the indicator function everywhere.

For three-fluid front tracking method, we use an indicator function defined by

I(x, t) =


1 a fluid with maximum density (MXD)
0 a fluid with intermediate density (IMD)
−1 a fluid with minimum density (MND)

(6)

In this case, ∆I is 1 for the interface between MXD and IMD and is −1 for that be-
tween IMD and MND. Once the indicator function is determined, we can calculate
the density from

ρ(x, t) =max(ρ1,ρ2,ρ3) ·max(I(x, t),0)
+ [(ρ1 +ρ2 +ρ3)−max(ρ1,ρ2,ρ3)−min(ρ1,ρ2,ρ3)]
· (1− sgn(I(x, t)) · I(x, t))
−min(ρ1,ρ2,ρ3) ·min(I(x, t),0) .

(7)
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Figure 1: Computational domain for simulation of a compound droplet.

The viscosity can be determined by a similar manner to the density.

3 Results and discussion

3.1 Density and viscosity field

In order to check whether the density and viscosity are obtained correctly, those
distributions are plotted for a spherical compound droplet (R2 = 0.3 and R3 = 0.2)
as shown in Fig. 2. The ratios of density and viscosity in this case are as follows:
ρ2/ρ1 = 2, ρ3/ρ1 = 0.5, µ2/µ1 = 2 and µ3/µ1 = 3. The cross-sectional distributions
along the center (a broken line in the top figures) of the compound droplet show that
the density and viscosity with jumps at the interfaces are successfully determined
(bottom figures). Thus, the algorithm based on Eqs. (5)-(7) works appropriately in
the three-fluid front tracking method.

3.2 Motion of a spherical compound droplet

Sadhal and Oguz (1985) studied theoretically the translatory motion of a compound
droplet for low-Reynolds-number flow. The solution is limited to small capillary
number ranges, where the interfacial tension overcomes the viscous forces, thereby
keeping the compound droplet spherical during the translation. One important re-
sult of their study is stability of the position of the core droplet inside the shell
droplet. The stable position depends on the density ratios between core and shell
droplets. Figure 3 shows the relative translation velocity of the core droplet to the
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Figure 2: Density (left) and viscosity (right) distributions determined from the po-
sition of the front-tracking elements.

shell droplet (V ) as a function of eccentricity, which is the position relative to the
compound droplet itself (shell droplet). The eccentricity is defined by ε = d/(R2–
R3), see Fig. 4. The intersections between the curves and the line V /U = 0, where
U is the translation velocity of the compound droplet itself or the velocity of the
external flow, show the equilibrium points. There are three kinds of equilibrium
points: stable, unstable, and metastable (ε = 0). In this study, whether the stable
equilibrium is attainable, is tested by our numerical simulations. Since the aim
of this section is to compare our numerical results with the theoretical ones, the
condition similar to their study has been used in our simulations; the order of the
capillary number (Ca = µU/σ ), for example, is 10−2.

Figure 5 shows three eccentric configurations for R2/R3 = 0.5 and µ2/µ1 = µ3/µ1
= 1. The density ratio between external fluid and shell droplet (ρ2/ρ1) is fixed
at 1.2, resulting in the downward buoyancy force acting on the compound droplet
itself. The configuration depends on the density ratio between external fluid and
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Figure 3: Schematic of the core droplet velocity as a function of its relative position
(Sadhal and Oguz, 1985): • stable equilibrium, ×unstable equilibrium.

 
Figure 4: Schematic of the definition of eccentricity.
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Figure 5: Eccentric configurations for µ2/µ1=µ3/µ1=1 and ρ2/ρ1 = 1.2.
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Figure 6: Eccentricity and velocities for stable equilibrium configuration (ρ3/ρ1 =
0.89).
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Figure 7: Comparison of the flow stream lines between exact solution (left: ε = 0.9,
Sadhal and Oguz, 1985) and front-tracking simulation (right: ε = 0.89)

core droplet (ρ3/ρ1). In the case of ρ3/ρ1 = 1.01, the core droplet falls with shell
droplet because the average density of the compound droplet is larger than the
external fluid. In this case, ε = 1 and it is unstable equilibrium (the most left point
in Fig. 3). For ρ3/ρ1 = 0.89, the core droplet does not touch the top of the shell
droplet and the entire droplet falls holding this configuration. This case shows the
stable equilibrium, where buoyancy force balances with viscous forces. The flow
pattern and the dynamics of eccentricity in this case will be shown later. In the case
of ρ3/ρ1 = 0.8, a similar eccentric configuration to ρ3/ρ1 = 0.89 is observed, but
the core droplet touches the top interface of the shell droplet. This is also stable
equilibrium configuration (the most right point in Fig. 3).

Note that nothing wrong happens when two different interfaces touch as in the case
of ρ3/ρ1 = 1.01 and 0.80. Even when two different interfaces touch and the both
front elements are positioned in one grid mesh, where pressure and velocities are
calculated, the indicator function is appropriately determined by solving Eq. (5)
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and the value will be an average depending on the location of the front elements.
The densities and viscosities around the grid mesh are also determined appropri-
ately by the appropriate values of the indicator function. Furthermore, the pressures
around the grid mesh are appropriately determined incorporating the interfacial ten-
sions by the two different interfaces. The situation where two different interfaces
touch often occurs even in two-fluid cases and the front-tracking method properly
handles this situation.

Figure 6 shows the dynamics of eccentricity and the velocities of core and shell
droplets for ρ3/ρ1 = 0.89. The velocity of the shell droplet increases slightly faster
than that of the core droplet, and those velocities eventually equalize. Thus, V /U
becomes 0 and the compound droplet attains an equilibrium configuration. The
eccentricity increases and reaches around 0.8.

Figure 7 shows the comparison of the flow stream lines inside and around the com-
pound droplet between exact solution (Sadhal and Oguz, 1985) and front-tracking
simulation. The eccentricities of the exact solution and the front-tracking simula-
tion are 0.9 and 0.89, respectively. There are double vortices inside the compound
droplet. The stream lines are slightly different in the exterior of the droplet. This
seems to be caused by the difference of the computational method. Sadhal and
Oguz obtained the steady state solutions under constant velocity of the external
fluid (U). We, on the other hand, solved unsteady Navier-Stokes equations and
the translation velocity of the droplet (U) was the solution. Although the stream
lines in the external fluid are slightly different, the flow patterns of both the ex-
act solution and the front-tracking simulation are almost the same. The three-fluid
front-tracking method developed in this study, therefore, can reasonably simulate
the translation of a spherical compound droplet.

4 Conclusions

Three-fluid front-tracking method is developed in order to simulate the motion of
an axisymmetric compound droplet that consists of three immiscible fluids sep-
arated by two different interfaces. The two interfaces of the compound droplet
are represented by two different sets of the front-tracking elements immersed on
the Eulerian grid mesh, where the velocities and the pressure are calculated. The
density and viscosity profiles with jumps at the interfaces are successfully deter-
mined from the location and the connection information of the front-tracking ele-
ments. The translatory motion of a compound droplet is simulated on axisymmetric
cylindrical coordinates. The results show that the three-fluid front tracking method
works appropriately for the translation of a compound droplet. Stability of a spher-
ical compound droplet is examined numerically and the stable position is found
from the simulations. This is in good agreement with theoretical study by Sadhal
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and Oguz (1985).
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