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Effect of Longitudinal Roughness on Magnetic Fluid
Based Squeeze Film between Truncated Conical Plates

P.I. Andharia1 and G.M. Deheri2

Abstract: An attempt has been made to study and analyze the performance of
a magnetic fluid based squeeze film between rough truncated conical plates. The
lubricant used here is a magnetic fluid and the external magnetic field is oblique
to the lower plate. The bearing surfaces are assumed to be longitudinally rough.
The roughness of the bearing surfaces is modeled by a stochastic random variable
with nonzero mean, variance and skewness. Efforts have been made to average
the associated Reynolds equation with respect to the random roughness parame-
ter. The concerned non-dimensional equation is solved with appropriate boundary
conditions in dimensionless form to obtain the pressure distribution. This is then
used to get the expression for load carrying capacity, resulting in the calculation of
response time. The results are presented graphically. It is observed that the bearing
system registers an improved performance as compared to that of a bearing system
dealing with a conventional lubricant. The results indicate that the pressure, load
carrying capacity and response time increase with increasing magnetization param-
eter. This investigation reveals that the standard deviation induces a positive effect
(unlike the case of transverse roughness). Besides, negatively skewed roughness
increases the load carrying capacity and this performance further enhances espe-
cially when negative variance is involved. Although, aspect ratio and semi-vertical
angle tend to decrease the load carrying capacity, there is a scope for obtaining
better performance in the case of negatively skewed roughness.

Keywords: Magnetic fluid, longitudinal roughness, squeeze film, truncated con-
ical plates, load carrying capacity, Reynolds equation.

Nomenclature

a,b dimensions of the bearing
h0 central film thickness
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h1 initial film thickness
h2 film thickness after time ∆t
h̄1 h1/h0
h̄2 h2/h0
k aspect ratio b/a
M̄ magnetic field
M2 magnitude of magnetic field
p pressure in the film region
p̄ expected value of the pressure
P non-dimensional film pressure
t time
w load capacity
W non-dimensional load capacity
x,y,z Cartesian co-ordinates (‘x’ measuring distance along the film in the plane

of the figure)
α mean of the stochastic film thickness
σ standard deviation of the stochastic film thickness
ε measure of symmetry of the stochastic film thickness
σ2 variance
ω semi-vertical angle of the cone
µ fluid viscosity
µ̄ magnetic susceptibility
µ∗ dimensionless magnetization parameter
µ0 permeability of the free space
∆t time required for the film thickness to decrease to a value h2
∆T non-dimensional squeeze time

1 Introduction

The transient load carrying capacity of a fluid film between two surfaces having a
relative normal velocity plays an important role in frictional devices such as clutch
plates in automobile transmissions. The behaviour of a squeeze film between var-
ious geometrical configurations was analyzed by Archibald (1956). Subsequently,
Wu (1970, 1972) discussed the squeeze film performance for mainly, two types of
geometry namely, annular and rectangular when one of the surfaces was porous
faced. Prakash and Vij (1973) investigated the load capacity and time height rela-
tion for squeeze film between porous plates. In this paper they considered various
geometries like circular, annular, elliptical, rectangular, conical and truncated con-
ical. A comparison was made between the squeeze film performance of various



Effect of Longitudinal Roughness on Magnetic Fluid 113

geometries of equivalent surface area and it was proved that the circular geometry
admitted the highest transient load carrying capacity, other parameters remaining
same. Murti (1975) studied the behaviour of the squeeze film entrapped between
curved circular plates describing the film thickness by an exponential expression.
This analysis of Murti was further modified and developed by Gupta and Vora
(1980) to discuss the squeeze film performance between curved annular plates.

All the above studies considered conventional lubricant. The application of a mag-
netic fluid as a lubricant was investigated by Verma (1986). The magnetic fluid
consisted of fine magnetic grains coated with a surfactant and dispersed in a non
conducting magnetically passive solvent. Subsequently the squeeze film between
porous annular disks was analyzed by Bhat and Deheri (1991) taking a magnetic
fluid lubricant with the external magnetic field oblique to the lower disk. This anal-
ysis was improved further by Bhat and Deheri (1992) to deal with the performance
of a magnetic fluid based squeeze film between curved circular plates. Patel and
Deheri (2002a, 2002b) analyzed magnetic fluid based squeeze film between two
curved plates lying along the surfaces determined by secant and hyperbolic func-
tions. Furthermore, Patel and Deheri (2007) dealt with the behaviour of a magnetic
fluid based squeeze film between porous conical plates.

It is a well known fact that the bearing surfaces after having some run-in and wear
develop roughness. Besides, due to elastic thermal and uneven wear effects the con-
figuration encountered in practice are usually far from smooth. The effect of surface
roughness was studied and analyzed by many investigators [Davies (1963), Burton
(1963), Michell (1950), Tonder (1972) and Tzeng and Saibel (1967)]. Christensen
and Tonder (1969a, 1969b, 1970) mathematically modeled the random roughness
and suggested a comprehensive general analysis for investigating the effect of trans-
verse as well as longitudinal surface roughness. This approach of Christensen and
Tonder (1969a, 1969b, 1970) was the foundation for analyzing the effect of surface
roughness in a number of investigations [Ting (1975), Prakash and Tiwari (1982,
1983), Prajapati (1991, 1992), Guha (1993), Gupta and Deheri (1996) and And-
haria, Gupta and Deheri (1997)]. Deheri, Andharia and Patel (2004) studied the
effect of longitudinal roughness on the performance of slider bearings with squeeze
film formed by a magnetic fluid. Recently Andharia and Deheri (2010) discussed
the longitudinal roughness effect on the performance of a squeeze film in conical
plates under the presence of a magnetic fluid lubricant. These above two stud-
ies established that the standard deviation associated with the longitudinal surface
roughness increases the load carrying capacity.

Therefore, it has been proposed to study the effect of longitudinal surface roughness
on the behaviour of magnetic fluid based squeeze film between truncated conical
plates.
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2 Analysis

The configuration of the bearing is shown in Fig. 1. Squeeze film velocity dh0
dt in

the Z-direction. The magnetic field M is oblique to the lower plate.

The assumptions of usual hydrodynamic lubrication theory are taken into consider-
ation in the analysis. The lubricant film is considered to be isoviscous and incom-
pressible and the flow is laminar.

 

Figure 1: Configuration of the problem

The bearing surfaces are assumed to be longitudinally rough. Following Chris-
tensen and Tonder (1969a, 1969b, 1970), the thickness h of the lubricant film is

h = h+hs (1)

where h is the mean film thickness and hs is the deviation from the mean film thick-
ness characterizing the random roughness of the bearing surfaces. hs is considered
to be stochastic in nature and governed by the probability density function f (hs),
−c≤ hs ≤ c, where c is the maximum deviation from the mean film thickness. The
mean α , the standard deviation σ and the parameter ε which is the measure of
symmetry, of the random variable hs, are defined by the relationships:

α = E(hs)
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σ
2 = E

[
(hs−α)2

]
and

ε = E
[
(hs−α)3

]
(2)

where E denotes the expected value defined by

E(R) =
c∫

−c

R f (hs)dhs (3)

wherein [Tzeng and Saibel (1967)]

f (hs) =

35
32

(
1− h2

s
c2

)3
, −c≤ hs ≤ c

0, otherwise
(4)

Axially symmetric flow of magnetic fluid between the truncated conical plates is
taken into consideration under an oblique magnetic field M whose magnitude M is
given by [Patel and Deheri (2007)]

M2 = K(acosecω− x)(x−bcosecω), b < x < a, (5)

where a and b are dimensions of the bearing. Here K is suitably chosen so as to
have a magnetic field of required strength, which suits the bearing dimensions. The
direction of the magnetic field is significant since M has to satisfy the equations

∇ ·M = 0, ∇×M = 0 (6)

Thus, M arises out of a potential function and the inclination angle θ of the mag-
netic field M with the lower plate is determined from [Bhat (2003)]

cotθ
∂θ

∂x
+

∂θ

∂ z
=

bx−acosecω

bcosecω(xacosecω− x2)
(7)

whose solution is determined from the equations [Bhat (2003)]

cosec2
θ = C2(xacosecω− x2)

C(2x−bcosecω) = [C2a2 cosec2
ω−4sin(Cz)]1/2, (8)
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C being an arbitrary constant. The modified Reynolds’ equation [Prakash and Vij
(1973), Patel and Deheri (2007)] governing the film pressure p in the present case
is obtained as

1
x

d
dx

[
xh3 d

dx

(
p−0.5µ0µM2)]=

12µ
•
h
0

sin2
ω

(9)

where h is film thickness, ω is semi-vertical angle of cone, µ is fluid viscosity, µ

represents the magnetic susceptibility and µ0 stands for permeability of the free
space.

It is easily observed that α , σ and ε are all independent of x and while α and ε

can assume both positive and negative values, σ is always positive. Following the
average process discussed by Andharia, Gupta and Deheri (1997) and using Eq.5,
Eq.9 takes the form

1
x

d
dx

[
xm(h)−1 d

dx
(p−0.5µ0µK(acosecω− x)(x−bcosecω))

]
=

12µ
•

h0

sin2
ω

(10)

where p is the expected value of the lubricant pressure p while

m(h) = h
−3
[
1−3αh

−1 +6h
−2 (

σ
2 +α

2)−20h
−3 (

ε +3σ
2
α +α

3)] (11)

Introducing dimensionless quantities

H =
h
h0

, X =
x
a
, M(H) = h3

0m(h), α =
α

h0
, σ =

σ

h0
, ε =

ε

h3
0
, k =

b
a
,

µ
∗ =

−µ0µh3
0k

µ ḣ0
and P =

−ph3
0

µ ḣ0π(a2−b2)cosecω
, (12)

Eq.10 becomes

1
X

d
dX

[
XM(H)−1 d

dX

(
P− 0.5µ∗(1−X sinω)(X− k cosecω)

π(1− k2)

)]
=

12cosecω

π(k2−1)
(13)

The associated boundary conditions are

P(k cosecω) = 0; P(cosecω) = 0 (14)
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Integrating Eq.13 and using boundary condition P(k cosecω) = 0, we get

d
dX

(
P− 0.5µ∗(1−X sinω)(X− k cosecω)

π(1− k2)

)
=

6M(H)k2 cosec3ω

π(1− k2)
1
X
− 6M(H)cosecω

π(1− k2)
X (15)

Integrating Eq.15 with the use of boundary condition P = 0 at X = cosecω , the
dimensionless pressure is obtained as

P =
1

2π(1− k2)

[
µ
∗(1−X sinω)(X− k cosecω)

+6M(H)cosec3
ω
{
(1−X2 sin2

ω)+2k2 ln(X sinω)
}]

(16)

where

M(H) = H−3 [1−3αH−1 +6H−2 (
σ

2 +α
2)−20H−3 (

ε +3σ
2
α +α

3)] (17)

The load carrying capacity

w = 2π

acosecω∫
bcosecω

xpdx (18)

of the bearing in non-dimensional form can be expressed as

W =
−wh3

0

µ ḣ0(a2−b2)2π2 cosec2ω

=
2

(1− k2)cosecω

cosecω∫
k cosecω

XPdX

=
µ∗(1− k)2 cosec3ω

24π
+

3M(H)cosec5ω

4π(1− k2)
[
(1− k2)(1−3k2)−4k4 ln(k)

]
(19)

If the time taken by the plate to move from the film thickness h1 (at time t1) to h,
(at time t2), then the dimensionless squeeze time ∆T is obtained from Eq.19 as

∆T =
wh2

0
µπ2(a2−b2)cosec2ω

∆t

=
W
2

(
1

h2
2 −

1

h1
2

) (20)
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where

h1 =
h1

h0
and h2 =

h2

h0
. (21)

3 Results and Discussion

It is clearly seen from Eqs. 16, 19 and 20 that the dimensionless pressure, load
carrying capacity and response time depend on various parameters such as µ∗, σ ,
α , ε , ω and k. These parameters described respectively, the effect of magnetic fluid
lubricant, longitudinal roughness, angle associated with the truncated cone and the
aspect ratio. Further, Eq.16 and Eq.19 suggest that the pressure increases by

µ∗(1−X sinω)(X− k cosecω)
2π(1− k2)

(22)

while the load carrying capacity enhances by

µ∗(1− k)2 cosec3ω

24π
(23)

It is clear that setting the roughness parameters to be zero one obtains the discus-
sions carried out by Patel and Deheri (2007) in the absence of porosity. Further,
taking µ∗ as zero this investigation reduces to the study of Prakash and Vij (1973)
concerning the truncated conical plates in the absence of porosity. Also, Eqs. 16, 19
and 20 suggest that the pressure, load carrying capacity and response time increase
with the magnetization parameter.

Figs. 2 – 9 present the distribution of load carrying capacity with respect to the
magnetization parameter µ∗ for various values of roughness parameters, semi-
vertical angle and aspect ratio. These figures show that the load carrying capac-
ity increases marginally with respect to the magnetization parameter µ∗ while it
decreases substantially due to semi-vertical angle and the aspect ratio. Figs. 2 –
4 makes it clear that the load carrying capacity decreases due to α (+ve) and ε

(+ve). However, standard deviation (σ ) increases the load carrying capacity. Fur-
ther, negatively skewed roughness improves the performance of the bearing system
and so is the case with negative variance. In addition, it is revealed that the effect
of the semi-vertical angle is relatively sharp as compared to that of aspect ratio.
Of course, the combined effect of negative variance, negatively skewed roughness
and the standard deviation presents a considerably better performance, while the
combined effect of α (+ve) and ε (+ve) leads to a reduced load carrying capacity.
In Figs. 10 – 13 one can have the variation of load carrying capacity with respect
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to the semi-vertical angle for various values of variance, skewness, standard devi-
ation and the aspect ratio. A close look at these figures indicates that the aspect
ratio plays a prominent role in reducing the load carrying capacity. The effect of
standard deviation turns out to be positive which is indicated by Figs. 4 and 7.
Figs. 14 – 17 present the profile of the load carrying capacity with respect to the
aspect ratio for various values of variance, skewness, standard deviation and the
semi-vertical angle. From these figures it is clearly seen that the aspect ratio may
play a crucial role in designing the bearing system. The combined effect of the
aspect ratio and the standard deviation is really appealing in the case of negatively
skewed roughness in presence of negative variance.

Lastly, it is clear from Eq.20 that the response time almost follows the trends of
load carrying capacity.

This investigation offers the suggestion that the effect of negatively skewed rough-
ness is slightly better than the effect of negative variance with respect to the semi-
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Figure 2: Variation of load carrying ca-
pacity with respect to α and µ∗ for k =
0.5, ω = 50˚, ε = –0.05 and σ = 0.05.
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Figure 3: Variation of load carrying ca-
pacity with respect to ε and µ∗ for k =
0.5, ω = 50˚, α = –0.05 and σ = 0.05.
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Figure 4: Variation of load carrying ca-
pacity with respect to σ and µ∗ for k =
0.5, ω = 50˚, α = –0.05 and ε = –0.05.
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Figure 5: Variation of load carrying ca-
pacity with respect to µ* and α for k =
0.5, ω = 50˚, ε = –0.05 and σ = 0.05.



120 Copyright © 2011 Tech Science Press FDMP, vol.7, no.1, pp.111-124, 2011

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1

μ∗

Lo
ad

ε = −0.05 ε = −0.025 ε = 0 ε = 0.025 ε = 0.05
 

Figure 6: Variation of load carrying ca-
pacity with respect to µ* and ε for k =
0.5, ω = 50˚, α = –0.05 and σ = 0.05.
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Figure 7: Variation of load carrying ca-
pacity with respect to µ* and σ for k =
0.5, ω = 50˚, α = –0.05 and ε = –0.05.
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Figure 8: Variation of load carrying ca-
pacity with respect to µ* and ω for k =
0.5, α = –0.05, ε = –0.05 and σ = 0.05.
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Figure 9: Variation of load carrying ca-
pacity with respect to µ* and k for ω =
50˚, α = –0.05, ε = –0.05 and σ = 0.05.
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Figure 10: Variation of load carrying
capacity with respect to ω and α for k =
0.5, µ∗ = 0.01, ε = –0.05 and σ = 0.05.
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Figure 11: Variation of load carrying
capacity with respect to ω and ε for k
= 0.5, µ∗ = 0.01, α = –0.05 and σ =
0.05.
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Figure 12: Variation of load carrying
capacity with respect to ω and σ for k =
0.5, µ∗ = 0.01, α = –0.05 and ε = –0.05.
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Figure 13: Variation of load carrying
capacity with respect to ω and k for µ∗

= 0.01, α = –0.05, ε = –0.05 and σ =
0.05.
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Figure 14: Variation of load carrying
capacity with respect to k and α for ω =
50˚, µ∗ = 0.01, ε = –0.05 and σ = 0.05.
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Figure 15: Variation of load carrying
capacity with respect to k and ε for ω

= 50˚, µ∗ = 0.01, α = –0.05 and σ =
0.05.
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Figure 16: Variation of load carrying
capacity with respect to k and σ for ω =
50˚, µ∗ = 0.01, α = –0.05 and ε = –0.05.
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Figure 17: Variation of load carrying
capacity with respect to k and ω for µ∗

= 0.01, α = –0.05, ε = –0.05 and σ =
0.05.
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vertical angle and the aspect ratio. However, the effect of standard deviation with
respect to the semi vertical angle is a little better than its effect with respect to
the aspect ratio. It is interesting to observe that the combined effect of magnetiza-
tion parameter and standard deviation prevents the response time to fall rapidly for
suitable choices of aspect ratio and semi vertical angle.

4 Conclusion

This article tends to suggest that the negative effect induced by positive variance,
semi-vertical angle and the aspect ratio can be considerably reduced by the positive
effect of magnetization parameter and standard deviation in the case of negatively
skewed roughness. Thus, this investigation establishes that there exist sufficient
scopes for enhancing the performance of a longitudinally rough bearing system
by suitably choosing magnetization parameter, radii ratio and semi-vertical angle
of the cone. The importance of this study lies in the fact that besides providing
additional degree of freedom it offers ample scopes for having improved perfor-
mances. In addition this investigation makes it mandatory to account for roughness
while designing such magnetic fluid based bearing system even if a proper choice
of angle – aspect ratio combination has been considered especially, from life period
point of view.
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