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Marangoni-Natural Convection in Liquid Metals in the
Presence of a Tilted Magnetic Field

S. Hamimid1 and A. Amroune1

Abstract: The Navier–Stokes and energy equations are numerically solved to
investigate two-dimensional convection (originating from the combined effect of
buoyancy and surface tension forces) in a liquid metal subjected to transverse mag-
netic fields. In particular, a laterally heated horizontal cavity with aspect ratio
(height/width) =1 and Pr=0.015 is considered (typically associated with the hor-
izontal Bridgman crystal growth process and commonly used for benchmarking
purposes). The effect of a uniform magnetic field with different magnitudes and
orientations on the stability of the two distinct convective solution branches (with a
single-cell or two-cell pattern) of the steady-state flows is investigated. The effects
induced by increasing values of the Rayleigh and Hartmann numbers on the heat
transfer rate are also discussed.

Keywords: Numerical modeling, semiconductor melt, magnetic field suppres-
sion, thermocapillary convection, solidification.

Nomenclature
−→
B Uniform magnetic field, Bx

−→ex +By
−→ey [T ]

Bx,By Space independent components of B of constant [T ]
B0 Magnitude of

−→
B [T ]

Cp Specific heat at constant pressure [J.kg−1.k−1]
g Gravitational acceleration [m.s−2]
Ha Hartmann number =B0L/(σeρν)1/2

H Enclosure height [m]
k Effective thermal conductivity w.m−1.k−1

Ma Marangoni number =γ∆T/µα

Nu Nusselt number
Nuavg Average Nusselt number
P Fluid pressure [Pa]

1 UMBB, Boumerdes, ALGERIA.
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Pr Prandtl number =ν/α

Ra Rayleigh number = gβ∆T L3

να

t Time [s]
T Temperature [K]
T0 Reference temperature = TC−TH

2 [K]
u Velocity in x-direction [m.s−1]
v Velocity in y-direction [m.s−1]
−→
V Field velocity (u−→ex + v−→ey) [m.s−1]
x,y Cartesian coordinates [m]
X,Y Dimensionless coordinates

Greek symbols

α Thermal diffusivity [m2.s−1]
β Coefficient of thermal expansion of fluid. [k−1]
ρ Fluid density at reference temperature (T0)
σ Surface tension [N.m−1]
σe Electrical conductivity [S.m−1]
µ Effective dynamic viscosity [Kg.m−1.s−1]
ν Effective kinematic viscosity [m2.s−1]
γ Temperature coefficient of the surface Tension [N.m−1.K−1]
∆T Difference in temperature = [TC−TF K]
Ψ Streamfunction [m2.s−1]
θ Dimensionless temperature = T−T0

∆T .
ϕ The orientation of the magnetic field with horizontal axis [◦]
τ Dimensionless time

Subscripts

max Maximum value
min Minimum value
avg Average value
0 Reference state
C Cold
H Hot
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1 Introduction

When a free surface is present in free convection liquid flow, the variation in the
surface tension at the free surface due to temperature gradients can induce motion
within the fluid. Such flow is known either as thermocapillary flow or Marangoni
convection.

Thermocapillary convection is of importance in a wide variety of materials pro-
cesses associated with unbalanced surface tension, in particular, benefiting; from
the reduction of buoyancy convection and hydrostatic pressure in low gravity.

Marangoni convective flows are encountered in many technological processes in-
volving free surfaces of a liquid with a nonuniform temperature distribution. Wide-
spread interest in these flows is related with manufacturing of semiconductor mono-
crystals in a microgravity environment [Ostrach (1982) and Favier (1990)].

Hadid and Roux (1990) investigated numerically the influence of thermocapillary
forces on natural convection flow in a shallow cavity. Numerous studies have been
already devoted to the numerical modeling of buoyancy flows in cavities [e.g.,
Achoubir et al. (2008), Bucchignani (2009), Djebali et al. (2009), Mezrhab and
Naji (2009)] and to the electromagnetic stabilization of the convective flows in sev-
eral different configurations [e.g., Weiss (1981), Ben Hadid and Henry (1997)].

Such magnetoconvective flows in bounded domains have been solved through two-
and three-dimensional numerical simulations by several researchers in recent years
[Ozoe and Maruo (1987); Ozoe and Okada (1989); Armour and Dost (2009);
Mechighel et al. (2009)].

Rudraiah and Venkatachalappa (1995), in particular, investigated the effect of sur-
face tension gradients on buoyancy driven flow of an electrically conducting fluid in
a square cavity in the presence of a vertical transverse magnetic field. The purpose
of the investigation was to see how this force damps hydrodynamic movements
(since, this is required to enhance crystal purity, increase compositional uniformity
and reduce defect density).

In the present investigation, we have considered the problem of combined buoyancy
and thermocapillary convection flow of an electrically conducting fluid within a
square enclosure under an externally imposed constant uniform magnetic field. We
have chosen a fluid that is characterized by a small Prandtl number (Pr = 0.015,
which is appropriate for liquid metal and semi-conductor melts, (Tab. 1)) and a
Marangoni number (Ma =1000). The transport equations describing the momentum
and heat transfer have been discretized using the finite volume method (FVM) with
staggered grids. Solutions of the problem in terms of streamlines, isotherms as well
as heat transfer rate from the heated surface have been obtained for values of the
Rayleigh number, Ra, equal to 104, 105 and 106, the Hartmann number, Ha, which
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depends on the transverse magnetic field magnitude, ranging from 0.0 to 150.

Table 1: Physical properties of silicon melt

Melting point temperature Tm [K] 1685
Densityρ

[
g/cm3

]
2.42

Thermal diffusivity α
[
cm2/s

]
2.44×10−1

Kinematic viscosity ν
[
cm2/s

]
2.45×10−3

Prandtl number 0.015
Thermal conductivity λ [w/cmk] 0.64
Surface tension σ [dyne/cm] 7.33×102

2 Mathematical model and analysis

The liquid is assumed as a Newtonian fluid filling a square enclosure as shown in
Fig. 1. The right and the left walls are maintained at uniform temperatures TH and
TC, respectively, and are such that TH � TC. The upper and lower boundaries are
considered to be adiabatic.

We further assume that the cavity is permeated by a uniform magnetic field

−→
B = Bx

−→ex +By
−→ey (1)

The free surface is idealized as non-deformable and adiabatic from the environ-
mental gas. The surface tension is considered to be a linearly decreasing function
of the temperature, as:

σ(T ) = σ(T0)− γ(T −T0) (2)

Fluid flow in the system is described by the Navier–Stokes equation (continuity and
momentum equations). Assuming incompressible flow, the equation of continuity
can be expressed as

∂U
∂X

+
∂V
∂Y

= 0 (3)

Using the Boussinesq approximation, the Navier–Stokes equations for momentum
for an unsteady laminar flow can be written as
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 Figure 1: The flow configuration and coordinate system.

∂U
∂τ

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+Pr(
∂ 2U
∂X2 +

∂ 2U
∂Y 2 )+PrHa2(V sinϕ cosϕ−U sin2

ϕ)

(4)

∂V
∂τ

+U
∂V
∂X

+V
∂V
∂Y

=−∂P
∂Y

+Pr(
∂ 2V
∂X2 +

∂ 2V
∂Y 2 )+RaPrθ +PrHa2(U sinφ cosφ−V cos2

φ)

(5)

Assuming negligible viscous heat dissipation, the differential thermal energy bal-
ance equation may be expressed as

∂θ

∂τ
+U

∂θ

∂X
+V

∂θ

∂Y
= (

∂ 2θ

∂X2 +
∂ 2θ

∂Y 2 ) (6)

The effect of the induced electric current on the external magnetic field and the
Joule heating are neglected in the formulation (2)–(6). This is justified by the es-
timation of non-dimensional parameters characteristic for liquid metals and semi-
conductors (some details are given in Ref. [Gelfgat and Bar-Yoseph (2001) ]).

The dimensionless initial and boundary conditions are:

U = V = θ = 0 for τ = 0

U = V = 0, θ = θH = 0.5 for 0≤ Y ≤ 1 at X = 1

U = V = 0, θ = θC =−0.5 for 0≤ Y ≤ 1 at X = 0

U = V = 0, ∂θ

∂Y = 0 for 0≤ X ≤ 1 at Y = 0
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V = 0, ∂θ

∂Y = 0, ∂U
∂Y = Ma ∂θ

∂X for 0≤ X ≤ 1 at Y = 1

In the above equationsRa, Pr, Ha and Ma are, respectively, the Rayleigh number,
Prandtl number, Hartmann number and the Marangoni number which are defined
as follows:

Ra =
gβ∆T L3

ν2 , Pr =
ν

α
, Ha = B0L(σe/ρν)1/2, Ma =

γ∆T L
µα

.

The non-dimensional heat transfer rate in terms of local Nusselt number, Nu, from
the right vertical heated surface is given by

Nu(Y ) = −∂θ(X ,Y )
∂X

∣∣∣∣
X=1

(7)

The corresponding value of the average Nusselt number, denoted by Nuav, may be
calculated from the following relation

Nuav =
1∫

0

Nu(y)dy =−
1∫

0

(
∂θ(x,y)

∂x

)
dy (8)

3 Numerical solution methodology

The governing equations are discretized using the control volume approach of
Patankar. In addition, the power law formulation is employed to determine the
combined advective and diffusive fluxes across the boundaries of each control vol-
ume.

The unsteady term is treated with backward difference. The buoyancy and Lorentz
forces in the x and y-momentum equations are treated as source terms. The con-
ventional staggered grid system used originally in the SIMPLE scheme is adopted.
The discretized equations are solved iteratively with the line-by-line procedure of
tri-diagonal matrix algorithm. In this study, no uniform mesh sizes are used and
140 X 140 grids are chosen for the grid arrangement and it is found that this grid
solution is enough.

4 Results and discussion

Numerical results are presented in order to determine the effects of the presence
of a magnetic field, buoyancy and thermocapillary forces on the natural convec-
tion flow of an electrically conducting fluid in a square cavity. Values of the
magnetic field parameter Ha range between 0 to 250, the Rayleigh numberRa,
between 0 and 105 but for the Marangoni number, Ma, equal to 1000. Typical
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value of direction of the external magnetic field with the horizontal considered to
be ϕ = 0,π/6,π/4,π/3,π/2,4π/6,5π/6,π,7π/6,8π/6,9π/6,10π/6,11π/6 and
2π .
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Figure 2: Convergence of the (a) average Nusselt number, (b) the maximum values
of the stream function and (c) the minimum values of the stream function with grid
refinement.

In order to obtain grid independent solution, a grid refinement study is performed
for a square cavity (A= 1) with Ha = 100, Ra = 20 and φ = 0. Fig. 2 shows the
convergence of the average Nusselt number, Nu, at the heated surface, Fig. 2(a), the
maximumψmax, Fig. 2(b), and the minimumψmin, Fig. 2(c), values of the stream
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function with grid refinement. It is observed that grid independence is achieved
with a 140×140 grid beyond which there is insignificant change inNuav, ψmax and
ψmin. This grid resolution is therefore used for all subsequent computations.

4.1 Effects of varying the Rayleigh number on the flow field and the heat trans-
fer

The resulting flow and temperature distributions are depicted in Fig. 3 where the
convective flow streamlines for increasing values of the Rayleigh number. In this
figure the presence of two cells flow patterns is noticed (Fig. 3a); one cell on
the upper region of the cavity induced by of thermocapillary forces. From the
streamlines one may also see that the size of the upper cell gradually decreases
with the increase of the buoyancy parameter, Ra. This is possible, since an increase
in the value of Ra will increase the dominancy of the buoyancy force over the
magnetic field effect and the thermo-capillary force.

The corresponding effect of the increasing buoyancy forces on the isotherms is
shown in Fig. 3b. From the figure we can ascertain that the increase in the buoy-
ancy force causes the isotherms to deform significantly, and thin thermal boundary
layers form near both the heated and cooled surfaces, which have enhanced the heat
transfer rate as displayed in fig. 4.

4.2 Effects of varying the Hartmann number on the flow field and the heat
transfer

Fig. 5a illustrates the effect of increasing values of the magnetic field parameter on
the flow patterns when the magnetic field is applied horizontally (ϕ = 0). As the
magnetic field increases forces, the convective flow in the cavern slows down and
the vortex shifts to the right and upwards, thus, concentrating near the free surface
of the melt. At Ha = 100, the Lorentz forces dominate and, as a result the distortion
of the isotherms caused by the melt flow is very small, Fig. 5b. In the case of the
horizontal magnetic field, it is seen that the streamlines in the upper part of the
maps and the isotherms are equidistant. The main vortex shifts noticeably towards
the upper surface, and the flow as a whole becomes multilayered. At Ha = 100 and
150, four and five vortices, respectively, are observed. From the value Ha=175, the
structure of streamlines do not have a big change in their form, and remains the
same for values of Ha> 200, fig. 6. It may be seen also, that the isotherms become
more vertical and straighten out owing to the increase of the magnetic field strength,
which is expected; since the magnetic field tend to weaken the flow, as observed
above. The flow can be considered to be dominated by conduction phenomenon,
as the convective motion has been totally inhibited. This effect can also be seen in
Fig. 7.
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         (a) 
     maxψ =                      0.121                          1.941                       2.217         

     minψ =                     -1.018                         -1.003                      -0.719      

      (b) 
    maxθ =                      0.5        0.5           0.5 
    minθ =                     -0.5                 -0.5          -0.5 
 

Figure 3: Streamlines (top) and isotherms (bottom) for Ra= 103,104,105 while
Ma=103, Ha=20 and ϕ = 0.

4.3 Effect of the direction of the external magnetic field on the flow and the
temperature distribution

The effect of the direction of the external magnetic field, on the flow and the tem-
perature distribution, is now discussed. Fig.8a, represents the streamlines obtained
for ϕ = 0,π/6,π/4,π/3 and π/2 at Ra = 102, Ma= 103 and Ha= 102. As the di-
rection of the external magnetic changes from horizontal to vertical, the flow rate in
both the primary and the secondary cells decreases which causes an increase in the
effect of the thermocapillary force and the flow becomes unicellular forφ = π/2.
The corresponding isotherms are depicted in Fig. 8b. In this figure, one can see that
as the direction of the external magnetic field changes from 0 to π/4, the isotherms
near the heated surface become parabolic; whereas a further change of the direction
to π/2, that is when the magnetic field acts in the vertical direction, the isotherms
near the heated and cold surface become more vertical and straighten out. All these
because change in the direction reduces the flow rate in the cells which results in



378 Copyright © 2010 Tech Science Press FDMP, vol.6, no.4, pp.369-384, 2010

0,0 0,2 0,4 0,6 0,8 1,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

N
u

Y

         Ra
 103

 104

 105

 

 Figure 4: Numerical values of the local Nusselt number, Nu, on the right heated
surface for different Ra and with Ma = 103, Ha = 20 and ϕ = 0.

 (a) 
maxψ =              0.046                         0.039                         0.034                       0.029   

minψ =             -2.121                        -0.796                        -0.599                     -0.491 
 

            (b) 
maxθ =                0.5       0.5            0.5                           0.5 

minθ =               -0.5                  -0.5           -0.5                         -0.5 
 

Figure 5: Streamlines (top) and isotherms (bottom) for Ha=0, 50,100,150 with
Ma=103, Ra=20 and ϕ = 0.
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maxψ =              0.026                         0.023                         0.021                       0.019       

minψ =             -2.121                        -0.796                        -0.599                      -0.491 
 

Figure 6: Streamlines for Ha=175, 200, 220,250 with Ma=103, Ra=20 and ϕ = 0.
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 Figure 7: Numerical values of the local Nusselt number, Nu, on the right heated
surface for different Ha with Ma=103, Ra=20 and ϕ = 0.

heat transfer rate reduction on the heated surface Fig. 9.

The variation of the average Nusselt number along the heated surface for differ-
ent Hartmann number is shown in Fig. 10. It can be seen that the mean Nusselt
number for Case Ra=105 is higher than that of Case Ra=20. Globally, the mean
Nusselt number is a decreasing function of Hartmann number on nonisothermal
wall. Differences between Nusselt numbers decrease with the increasing of Hart-
mann number due to increasing of domination of conduction mode of heat transfer,
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   (a) 
maxψ =      0.035                       0.0137                       0.005                        0.0025                  -63.69x10  

minψ =     -0.600                      -0.319                        -0.193                       -0.134                       -0.098 

        (b) 
maxθ =        0.5             0.5     0.5                          0.5                          0.5 

minθ =       -0.5                        -0.5    -0.5                         -0.5                        -0.5 
 

Figure 8: Streamlines (top) and isotherms (bottom) ϕ = 0,π/6,π/4,π/3 and
π/2while Ra= 102, Ma= 103 and Ha= 102.
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 Figure 9: Numerical values of local Nusselt number, Nu, at the right heated surface
for different ϕ at Ra= 102, Ma= 103 and Ha= 102.

due to the domination of the Lorentz forces. Variation of mean Nusselt numbers
becomes constant for Ha> 100 in case that Ra=20, and for Ha> 150 in case that
Ra> 105. This result is valid for all two cases considered for φ = 0 or φ = π/2.
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 Figure 10: Variation of the average Nusselt number at the heated surface with Hart-
mann numberHa while Ra= (102,105), Ma= 103, Ha= 102 and φ = (0,π/2).

Fig. 11 depicts Variation of the average Nusselt number at the heated surface for
differentφ , for Ra= 20 and 105, the inclination angle φ of the magnetic field have an
influence on Nuav. As can be further seen from this figure, Nuavtends to decrease
when the magnetic field is inclined between φ = 0◦ and φ = 90◦(and between φ

= 180◦ and φ = 270◦), and tends to increase when the magnetic field is inclined
between φ = 90◦ and φ = 180◦(and between φ = 270◦ and φ = 360◦), and everything
is in the case of the dominancy of the thermo-capillary force over the buoyancy
force. A minimal value of Nuavhas been observed at φ = 180◦(and φ=270). The
physical mechanism behind this conclusion is that both the convective effect of the
hot wall and the unstable effect of the cold wall are reduced by the inclination angle
φ of magnetic field. But higher values of Nuav are obtained in the case of φ = 0◦,
180◦(and 360◦) .

In the case of the dominancy of the buoyancy force over the thermo-capillary force
(Ra=105), we have a sinusoidal change of the average Nusselt number, Nuavtends
to decrease when the magnetic field is inclined between φ = 0◦ and φ = 30◦ and
between φ = 150◦ and φ = 180◦, and tends to increase when the magnetic field is
inclined between φ = 30◦ and φ = 150◦. The same change is observed in the other
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semi-circle (between φ = 180◦ and φ = 360◦). A minimal value of Nuavhas been
observed at φ = 30◦(and φ = 210◦) and a maximal value at φ = 150◦(and φ = 330◦).
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 Figure 11: Numerical values of average Nusselt number, Nuav, at the right heated
surface for different φ while Ra= (102,105), Ma= 103 and Ha= 102.

5 Conclusions

The following conclusions may be drawn from the present investigations in which a
laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015
subjected to both surface tension and buoyancy forces was considered:

In the case of the vertical magnetic field, both the isotherms and the streamlines
are equidistant. The flow becomes unicellular; the flow can be considered to be
dominated by conduction phenomena. In the case of the horizontal magnetic field,
as the intensity of the magnetic field grows, the flow becomes multilayered with the
main vortex shifted towards the free surface of the melt. The maximum absolute
values of the stream function appear to be higher than the corresponding values
obtained for the vertical field.
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