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On Flows Driven by Mechanical Stresses in a Two-Phase
System

Yu. Gaponenko1, I. Ryzhkov2 and V. Shevtsova3

Abstract: Gas-liquid flows in annulus are analyzed for fluids in large range of
viscosity ratios. The geometry corresponds to a liquid bridge co-axially placed
into an outer cylinder with solid walls. The internal core consists of solid rods at
the bottom and top, while the central part is a relatively short liquid zone filled
with viscous liquid and kept in its position by surface tension. The gas enters into
the annular duct and entrains initially quiescent liquid. The flow structures in the
liquid and gas are obtained numerically for different shapes of solid rods. Solution
for fully developed flow in annulus with moving core is found analytically. The
regions, where the flow can be considered as locally fully developed, are identified
by comparing numerical and analytical results. The role of mechanical stresses in
the interface dynamics is examined and the optimal choice of supporting rods shape
is discussed.
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1 Introduction

The dynamics of fluid systems involving interfaces remains a challenging problem
of modern physics. The great majority of literature on adiabatic, isothermal, two-
phase flow systems prior to the 1950th was devoted mainly to the demands of the
oil fields.

At the same time, considerable interest was shown in the study of two phase flow
with heat/mass transfer in relation to such applications as power generation and
refrigeration. Nowadays, heat/mass transfer on the moving gas-liquid interface is
an important subject directly related to many industrial applications from crystal
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growth to cooling of electronic devices. In the present study, the attention is focused
on flows in cylindrical geometry. Such systems have a large field of applications in
the production of highest quality semi-conductors, fibers, micro-jets, etc.

The best quality crystals are grown by floating zone technique. Studies on the
mechanisms governing the flow dynamics and heat transfer are particularly helpful
in controlling the crystal growth process and thereby the quality of its products.
The scientific model, which is used to mimic industrial floating zone technique, is
called a liquid bridge. During last decades, a significant progress has been achieved
in understanding nonlinear regimes of buoyant-thermocapillary convection in liq-
uid bridges, see for example monographs by Kuhlmann (1999) and Lappa (2004).
However, only recently it was recognized that the flow in surrounding gas phase
and heat/mass transfer at the interface are important factors for the stability of flow
inside liquid bridge. The experimental results were the first to indicate the extreme
sensitivity of flow stability in liquid bridges to environmental conditions. Experi-
ments performed in different configurations by Shevtsova et al. (1999, 2005), Mi-
aldun & Shevtsova (2006) and Kamotani et al. (2007, 2007a) have demonstrated
a similar tendency that ∆Tcr changes by a factor of two or three by varying the air
temperature relative to the cold wall temperature.

The number of publications considering flow both in liquid bridge and surrounding
gas is still very limited, see Irikira et al. (2005), Tiwari and Nishino (2007). As a
rule, the flow is considered inside liquid, and the boundary conditions on the free
interface capture the impact of surrounding gas through the Biot number, e.g. Mel-
nikov et al. (2007). Note that experiments by Kamotani et al. (2003) have shown
that the disturbances of gas flow near the interface produce significant impact on
the stability of the liquid flow.

It is desirable to perform additional experimental studies on the threshold of in-
stability with varying mechanical and/or thermal stresses at the interface (espe-
cially in microgravity environment where buoyant convection is almost absent).
The Space experiment JEREMI (Japanese European Space Research Experiment
on Marangoni Instabilities) is planned to be performed in 2012 in the Japanese
Experiment module on ISS using the dedicated FPEF (Fluid Physics Experiment
Facility). The experiment is aimed on investigating the influence of ambient gas on
the behavior of free interfaces and fluid flow beneath. The behavior of the liquid
flow under mechanical stresses produced by co- or counter flow of the ambient gas
is one of the objectives to be studied.

The present study is one of the first and preliminary steps on the way of the exper-
iment preparation. We provide insight into the role of mechanical stresses on the
interface and analyze the optimal choice of supporting rods shape. In this paper, the
emphasis is on isothermal, adiabatic two-phase gas-liquid flow in cylindrical geom-
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etry without mass transfer in configuration where liquid zone has limited length.

The gravity effect is not included into consideration so the channel orientation is
not important. In addition, this results remains valid for flow in the micro- and
large nano-channels with cross-sectional diameters of the order 300-500 nm with
one-two order of magnitude reduction in the hydrolic diameter, see Yarin et al.
(2009).

2 Variety of the liquid bridge geometry

Sketches of different experimental set-ups generally used for studying flows in liq-
uid bridges are shown Fig. 1. Here the internal parts are surrounded by co-axial
cylindrical tube of radius Rout . Liquid bridge itself (shown by blue color) is a drop
of liquid kept by surface tension between two differently heated rods. Usually, the
system is heated from above. The temperature of the lower rod is either kept con-
stant or decreased to maintain constant the mean temperature in the system. The
thermocapillary flow arises in liquid for any temperature difference ∆T between
the supporting rods. In ground conditions, this flow is modified by the buoyancy
force.

Usually numerical studies consider only the flow inside liquid zone. However,
experimental set-ups include rods of different lengths and configurations. Let us
briefly describe the most popular once. Type 1 has the simplest geometry, in which
the cylindrical supporting rods do not have any grooves or protrusions. To prevent
fluid from creeping over the edges of the rods, they have to be coated with an anti-
wetting-barrier, which depends on the liquid and on the material of rods, Frank &
Schwabe (1997).

To skip anti-wetting coating or to reinforce arrangement, the bottom rod is often
processed into a sharp edge, e.g. see Shevtsova et al. (2005), Nishimura et al.
(2005). This geometry corresponds either to Type 2 or Type 3. The difference be-
tween them is not important for ground based experiments and choice belongs to
the question of fabrication. However, Type 2 is more functional for Space exper-
iments, where liquid bridge should stay in operation by hours. A small creeping
during experiment in Type 3 will provoke accumulation of liquid inside groove,
kept by surface tension. In long-duration experiments, it may provoke the breakage
of a liquid bridge when liquid completely fills the groove. The process might be
accelerated by on-board g-jitters. Both geometries allow manufacturing the upper
rod from transparent sapphire for visual observations of flow patterns through the
top.

In the experiments with large ∆T , while heating from above, the use of anti-wetting-
barrier may be not sufficient for prevention of creeping. In this case, the grooves
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Type 1 Type 2

Type 3 Type 4 Type 5
Figure 1: (online color) Sketches of different experimental set-ups used for study-
ing of liquid bridges
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are also made at the upper rod, see Type 4 or Type 5. The latter one was used in
experiments by Kamotani et al. (2003) and we plan to use it for a ground-based
prototype. Type 4 is a candidate to be used for future JEREMI experiment.

3 Formulation of the problem

To study the influence of mechanical stresses imposed on the interface, the various
gases will be blown in the cylindrical channel with different velocities. Gas of
constant flow rate Qin flows through annular duct of outer diameter r = Rout and
inner diameter r = Rb

0, see notation in Fig. 1. Reaching the liquid zone after distance
H from the tube inlet, it creates flow in quiescent liquid due to viscous stress. After
passing the liquid zone of length d, gas continues to flow through annular duct of
inner radius r = R0 over the distance H up to the tube outlet. Subscript "b" stands
for "bottom". The total length of the tube is L = 2H + d. The radius of liquid
zone is R0. The geometrical scales are given in Table 1. In addition, size of triangle
protrusion/groove is 0.5mm in horizontal and vertical directions. We analyze the
flow field in the gas and liquid for all five types of the set-ups presented in Section
2. The gas is assumed incompressible in consistency with the low pressure drop
between the tube ends.

The dynamics of system in the geometry of Fig. 1 is described by the momentum
and continuity equations for an incompressible Newtonian fluid in gas (g) and liquid
(l) in cylindrical coordinates (r,z):

Vg ·∇Vg = − 1
ρg ∇Pg +

µg

ρg ∇
2Vg (1)

∇ ·Vg = 0, (2)

and

Vl ·∇Vl = − 1
ρ l ∇Pl +

µ l

ρ l ∇
2Vl (3)

∇ ·Vl = 0, (4)

where the velocity V = [V,U ] includes the radial V and axial U components; µ is
the dynamic viscosity and ρ is the density.

Boundary conditions are:
on the liquid–gas interface r = R0:

U l = Ug, V l = V g = 0, (5)

µ
l ∂U l

∂ r
= µ

g ∂Ug

∂ r
, (6)
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on liquid bridge axis r = 0:

∂rU l = 0, V l = 0, (7)

on the wall of the external tube r = Rout :

Ug = 0, V g = 0, (8)

no-slip conditions are also imposed on the supporting rods.

Inlet conditions between cylinders z = 0, r = Rb
0 < r < Rout . During the experi-

ments, external gas is blown into the cylindrical channel through a layer of porous
media to avoid azimuthal motion of gas around the rod (kind of vortex tube). It will
provide quasi-constant velocity at the inlet. Thus one can impose

U = U0 = const, V = 0 (9)

or constant flow rate, calculated as Qin = U0π(R2
out −R2

0).
Outlet conditions at z = L, r = R0 < r < Rout . The flow velocity and pressure at the
outlet are not known prior to solution of the flow problem. The zero flux conditions
applied at outflow boundaries are approached physically in fully-developed flows,
i.e. flows in which the flow velocity profile is unchanging in the flow direction.

∂zUg = 0, ∂zV g = 0 (10)

Since these boundary conditions are artificially imposed, the outlet boundary is to
be sufficiently remote from the liquid bridge to avoid numerical reflections. The
question whether these conditions allow perturbations to penetrate back inside the
tube will be discussed in Section 3.2.

Hereafter, the hydraulic diameter,

Dh = 2Rout −2R0, (11)

will be used as characteristic length scale.

Table 1: Geometrical scales used in calculations, unless otherwise stated; Dh =
4 ·10−3m.

Rout R0 Rb
0 H d L

10−3m 10−3m 10−3m 10−3m 10−3m 10−3m

5 3 2.5 or 3 20 3 43
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4 Fully developed flow in annulus; analytical solutions.

Let us consider the flow in duct between infinite coaxial cylinders when the inner
wall is moving and the outer wall is motionless. The internal core has constant
radius R0. The fully developed flow of an incompressible Newtonian fluid in an
annular channel in the cylindrical coordinates (r,z) shown in Fig. 1 is described by

−∂Pg

∂ z
+ µ

g 1
r

∂

∂ r

(
r

∂Ug

∂ r

)
= 0 (12)

The boundary conditions are :
r = R0, U = U l

0, r = Rout , U = 0.

The solution can be obtained in the form of an elegant algebraic expression

Ug =
R2

4µg
∂Pg

∂ z

[( r
R

)2
−1− γ2−1

γ2 lnγ
ln

r
R

]
−

U l
0

lnγ
ln

r
R

, (13)

where R = Rout and γ = Rout/R0 is the aspect ratio. In the absence of the velocity
on the surface of internal cylinder, i.e. U l

0 = 0, the Eq.13 is reduced to the solution
of the Poiseuille-type flow in annulus

Ug =
R2

4µg
∂Pg

∂ z

[( r
R

)2
−1− γ2−1

γ2 lnγ
ln

r
R

]
, (14)

which can be found in literature.

5 Numerical procedure

5.1 Solution method

One of the goals of the present study is to analyze the influence of rod shapes on the
flow structure. It requires a complicated computational mesh. For convenience and
with the aim of making our results readily reproducible by others, we have used the
well-tested commercial solver FLUENT v.6.3 (laminar steady). The computational
mesh generated by commercial code GAMBIT is depicted in Fig.2. The cells are
mostly square and rectangular; near areas with shape change, they are triangles.
In the liquid bridge area the mesh is square with the equal radial and axial length
∆z = ∆r = 3.75 ·10−5m that corresponds 80 nodes in any direction. In the gas area
the edge mesh has the stretch factor 1.05 and 50 nodes in any direction. Note that
the smallest cells lie at the region of the liquid zone and around grooves/protrusions.
In this region the smallest size mesh cell is 2 ·10−5m.
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Figure 2: Grid of the central part of the considered domain for Type 4 in horizontal
layout. Denser mesh is provided in the areas adjacent to the channel shape change,
near solid walls and interface.

An issue requiring consideration is the treatment of the interface. Using stan-
dard FLUENT option VOF or two-phase flow appears to be extremely slow. The
problem was treated iteratively performing calculations at one time only in a sin-
gle phase. The solutions were coupled through continuity of velocity and shear
stress boundary conditions. At first step the flow in gas phase is calculated con-
sidering internal cylinder as rigid. At the output a viscous stress τg = µg∂rUg is
calculated at the area of liquid bridge location. At the 2nd step the flow inside
liquid bridge is calculated using the known viscous stress as boundary condition
τ l(r = R0) = τg = µ l∂rU l. The output of this step is the velocity distribution on the
free surface, U = Ul(r = R0). On 3rd step the flow in gas phase is again calculated
with prescribed value of velocity on the interface. This procedure is considered
as one iteration. The solutions converge rather rapidly. The maximal difference
between two successive iterations for the velocity on the free surface for the worse
case ( U0 = 0.25 m/s, Type 4) is

max|(U l
1it −U l

2it)/U0|= 2.1 ·10−5,

max|(U l
2it −U l

3it)/U0| ≤ 1.0 ·10−8.

As a rule after third iteration the calculations were stopped. The similar approach,
i.e. using coupling of solutions for flows in two different fluids was successfully
used for treating near-interface turbulence by Lombardi et al (1996).
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Figure 3: Development of Poiseuille
profile when U0 = 0.05m/s. Velocity
field near the tube inlet.

5.2 Validation of the numerical results

The use of commercial code does not give guarantee of obtaining the physically
correct results. Validation of results is done by comparison with Poiseuille profile
in coaxial cylinders, when the entire internal part is solid. Once gas enters into an
annular channel with velocity U = Ug

0 , the fluid in contact with the walls basically
stops while the fluid away from the wall surface continues to move. Close to the
inlet region, significant viscous effects will be concentrated in the thin boundary
layers near the solid walls. Moving further into the pipe, these boundary layers
will increase in thickness until they reach a point where they merge, so that the
whole fluid is significantly affected by viscosity. Poiseuille profile is developing
and fully developed flow has its onset, see Fig. 3. For the case of fully developed
flow (similar to that in infinite cylinders), the solution was obtained analytically,
see Section 4.

To check validity of outlet boundary conditions (Eq. 10) the flow was examined
at that region for all five types of geometries in Fig. 1. For the largest considered
inlet velocity, U0 = 0.25m/s, the numerical solutions were compared with fully
developed (FD) profile. The analysis showed that approaching the outlet above
liquid bridge, z≈ 0.8−0.9L , the FD profile is re-established. However closer to the
outlet, z≈ 0.95L, a small difference re-appears. There is no physical reason for this
difference except boundary conditions. Therefore, we have performed simulations
with extended upper part, z = L + H/2, to minimize artificial boundary effects in
the results obtained. The results below are analyzed for initially prescribed length,
0 < z < L, and extended zone is not under discussion.

For validation of results, the calculations have been performed in extended geom-
etry when the internal circular core is solid and inlet velocity is Ug

0 = 0.05m/s.
The results were compared with analytical solution, Eq. 14, where pressure drop
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Figure 4: (online color) Comparison
of velocity profiles obtained numeri-
cally and analytically for fully devel-
oped flow.

was taken from the results of calculations, ∂Pg/∂ z = −2.668 Pa/m and γ = 5/3.
Figure 4 shows the axial velocity U : a) near the inlet z = 0.12L by red rhombus;
b) near the outlet z = 0.98L by grey circles and c) the analytical solution, Eq. 14,
by solid line. They are practically indistinguishable at the presented scale. The
maximal difference near the inlet is located near the rigid walls (r = 3.17mm and
r = 4.35mm) and its value is

max
|UEq.13−Ug

z=0.12L|
Ug

0
≈ 1.7 ·10−4.

Close to the tube outlet the maximal difference occurs at the middle of the duct and
its value is

max
|UEq.13−Ug

z=0.98L|
Ug

0
≈ 2.0 ·10−4.

Thus, in the case of rigid core only 5mm from the inlet (0.12L/Rout ≈ 1) the flow
has well developed Poiseuille type profile.

6 Discussion

6.1 Flow structure in gas

For a two-phase system of a liquid entrained by gas, different internal flow struc-
tures can occur depending on the size or shape of the flow channel, the magnitudes
of the gas flow parameters, and on the physical properties of the two phases. In ad-
dition to the geometrical scales given in Table 1 the physical properties of working
fluids are summarized in Table 2.
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Type 1 Type 2 Type 3

Type 4 Type 5

Figure 5: Flow patterns at different geometries in 5cSt silicone oil/air system
when Qin = 12.57 ·10−6 m3/s

Table 2: Physical properties of the fluids.

µ, Pa · s ρ, kg/m3 µ/µair

air 17.9 ·10−6 1.25 1
neon 31.3 ·10−6 0.90 1.75

ethanol 1.084 ·10−3 785 60.6
5cSt silicone oil 4.56 ·10−3 912 255

acetone 3.31 ·10−4 791 18.5

The analysis of gas flow was done for 5cSt silicone oil and air, while the study of
the flow in a liquid phase was performed for the large variety of systems listed in
Table 2.

The flow patterns for different geometries are shown in Fig. 5 for the same flow
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rate at inlet, Qin = 12.57 · 10−6 m3/s. As a general trend gas flow is laminar and
unidirectional without large recirculation zones. Small recirculation cells exist in-
side all angle-shaped grooves (Types 3, 4, 5), but they are not visible on the chosen
scale. The most perturbed flow structures are observed in the cases with conical
shape of protrusions at lower part (Types 2, 4), where Rb

0 < R0. Note, that the initial
velocity U0 for this shape is smaller as duct size Dh/2 is larger, i.e. U0 = 0.213 m/s
for Types 2, 4 while U0 = 0.25 m/s for Types 1, 3, 5. More detailed analysis of the
gas flow structure indicates that the disturbances penetrate downstream below the
liquid zone.

Figure 6 shows an axial velocity in the center of the duct at r = Dh/4 when z
varies between two segments with fully developed flow. Tracking the curve for
conical shape of protrusion (upper plot) shows that velocity feels upstream dis-
turbances below liquid zone at z ≈ 0.85 H (0.017m), which provoke at first tiny
diminution of the velocity and then noticeable increase. Due to inertial effects
the velocity begins to rise up before entering to the narrower part, which starts at
z = 0.975 H (0.0195m). Further, when entraining liquid, the gas velocity deceler-
ates (see dashed part of the curve). Passing the liquid zone the channel becomes
wider due to the groove at upper part and it leads to local decrease of velocity.
Behind the groove the fully developed flow is again established.

The evolution is different in the case of two angle-shaped grooves, see bottom
graph at Fig. 6. In Type 5 the flow feels upstream perturbations closer to liquid
zone than in Type 4. There exists two drop-jumps on the velocity profile at the

Figure 6: Axial velocity in z-direction in the middle of the duct, r = Dh/4 for
Types 4, 5. Dashed curve depicts z-area parallel to the liquid zone.
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Type 4 Type 5

Figure 7: Axial velocity Ug(r) at the beginning, z = H, middle, z = H +d/2, and
at the end, z = H +d, of liquid zone; Qin = 12.57 ·10−6 m3/s.

grooves location. The velocity drops down due to inertial effects, as the duct size
locally increases in radial direction. Note, that flow disturbances propagate below
and above grooves in non-symmetrical way.

The above analysis considers velocity evolution in gas phase along the central line.
The flow in radial direction locally loose symmetry near the liquid bridge. In Fig 7
the axial velocity distribution in radial direction Ug(r) is shown at different heights
along liquid zone: at the beginning, middle and at the end. The axial velocity is not
equal zero at the interface, r = R0 = 3mm, but it is two order of magnitude smaller
than max(Ug). Thus it is not distinguishable in given scale. For Type 4 the velocity
profile at the beginning of liquid zone, z = H, is strongly asymmetric: maximum
velocity is smaller and shifted to the internal core. However at the mid-height of
liquid bridge this asymmetry already disappears.

It is worth observing that for Type 5, rod with two grooves, the velocity profiles do
not change much over length of the liquid zone. All velocity maxima are located
at the same radial position rmax, which is very close to that in the case of fully
developed flow (from Eq. 13):

rmax =

√
U l

0
lnγ

2 µ

∂P/∂ z
+
(

1− 1
γ2

)
R2

0
2 lnγ

. (15)

According this formula the maximum is only slightly shifted to the core from center
of duct (rmax = 3.95), with increase of the liquid velocity U l

0 the shift becomes
stronger.

Interestingly, that for all the shapes the maximal axial velocity at the end of liquid
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Type 2 Type 3

Type 4 Type 5

Figure 8: Radial velocity in gas V g(r) at the beginning, z = H, middle, z = H +
d/2, and at the end, z = H +d, of liquid zone; Qin = 12.57 ·10−6 m3/s.

zone is roughly similar. One may compare blue curves for the most distinctive
two cases (Type 4, 5) in Fig. 7, other ones are not shown. Over this study the
maximal values were calculated for different inlet velocities, 0.01≤Ug

0 ≤ 0.25m/s
and the data are summarized in Table 3 (Type 5). The values of Reynolds number,
Re = ρU0Dh/µ, vary from Re ∼ O(1) to Re ∼ O(100), and for latter once the
inertial effect can be important. Last column shows that the maximal axial velocity
at the end of liquid bridge normalized by inlet velocity is almost constant for flow
rates under consideration : max[Ug

z=H+d(r)]/Ug
0 ≈ 1.49.

Hence, the flow structure is developing in linear regime.
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Table 3: Maximal Ug for different flow rates at z = H +d; water-silicone oil system

Qin×10−6 U0 Re max(Ug) max(Ug)/U0

m3/s [m/s] [m/s]

0.503 0.01 2.8 0.0147 1.47
2.51 0.05 14.0 0.0746 1.492

12.57 0.25 70.0 0.372 1.488

6.2 Flow regimes

Typically for two phase gas-liquid system, the main task is to determine the phys-
ical properties of fluids and flow parameters at which the transition from one flow
pattern to another will take place, so-called flow map regimes. For considered set
of parameters, we may quantify zones where the flow regime can be considered as
"locally fully developed".

The level of flow perturbations associated with the shape of the rods can be ana-
lyzed on the basis of radial velocity magnitude. In the case of fully developed flow,
see Eq. 13, the radial velocity is equal to zero. Hence, the smaller is the radial
velocity in the gas, the smaller is the level of perturbations. Figure 8 shows radial
distribution of gas velocity V g(r) at different locations along the liquid zone. Ve-
locity profiles for Type 1 are not shown as they are rather small and cannot be seen
in a given scale. All graphs reveal a general trend that maximum of V g(r) is shifted
towards the liquid interface r = R0 and the strength of perturbations is minimal at
mid-height (green lines). Figure 8 clearly indicates that the upstream disturbances
(below liquid zone) shown by red curves are larger in the presence of conic protru-
sion on the bottom part, i.e. Type 2, 4. Comparison of blue curves (z = H +d) for
Type 4, 5 reveals that level of downstream perturbations is almost similar in these
geometries and the flow in that region is not visibly affected by prehistory, i.e. by
the protrusion/groove shape at the lower part.

On the basis of the above study, the flow regime map, which identifies transitions
between fully developed flow and simple forced flow, can be suggested. Figure 9
shows the flow regime map, where non-shaded areas corresponds to fully developed
flow for the inlet velocity Ug

0 = 0.21−0.25 m/s. There is an evident hydrodynamic
entrance length Le, where the flow is developing. Based on the analytical and
experimental investigations available up to date, the best estimate of the entrance
length Le for laminar flow in circular pipes is:

Le/D = 0.6+0.056Re,

where D is a pipe diameter, see Schetz and Fuhs (1999).
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Type 1 Type 2 Type 3 Type 4 Type 5

Figure 9: Flow regime maps Qin = 12.57 ·10−6 m3/s.

For our particular geometry, the parabolic profile forms inside the duct size Dh/2,
which should be taken as characteristic length. This estimate does not work well for
small velocities, but it gives correct trend that Le < 10 mm for the largest Reynolds
number in Table 1.

The important point of this estimate and numerical calculations, which give 5mm <
Le < 10mm, is that for typical experimental set-ups the entrance length is small
enough and does not influence the flow near liquid zone. Protrusion/groove shape
plays pivotal role in the flow structure in the vicinity of the liquid bridge. As a
rule, thermocapillary flows in liquid are studied on the length of liquid zone using
sophisticated in-house made codes. Correct inlet and outlet boundary conditions
are an important issue for comparison with the experiment.

Figure 9 shows that in the case of flat rods Type 1 the flow is unperturbed except
small area in the beginning of liquid zone. For this shape with a good tolerance the
fully developed profile could be used for boundary conditions. For other shapes the
flow is perturbed below and above liquid zone. The largest perturbation of gas flow
occurs in system of Type 4.

6.3 Pressure drop

The pressure difference in examined system is caused by two main effects: due
to changes of the channel cross-section and due to dynamic effects. For consid-
ered Reynolds numbers the viscous pressure drop is dominant although inertial
(Bernoulli) pressure drop is not negligible when Re→ 100. The flow is locally
fully developed (FD) inside two segments, below and above liquid bridge, but not
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at the entrance region and transition region between segments where significant ve-
locity changes occur. Figure 10 shows the calculated pressure drop between non-
perturbed regions on different sides of liquid zone. In a given scale, the pressure
drop is roughly a linear function of the inlet velocity. Our analysis includes large
inlet velocities, V = 0.25 m/s, and as a consequence, it is difficult to see the small
variations between the curves for different geometries.

Nevertheless for each particular velocity the pressure drop is not constant along the
liquid zone. Here two effects can be underlined: change of channel size and shape
effect. In fully developed flow, the pressure is a linear decreasing function and the
value of the pressure gradient (pressure drop per unit length) is constant (∆p/∆z =
const < 0). For the region of interest, pressure along the axial cooordinate looks
like piecewise linear curve where different sections have different slopes. To follow
the transitions near the liquid zone, we analyze not the pressure drop between the
ends, but the local pressure gradient. Each change of the slope on the pressure
curve will result in a drop-jump of the pressure gradient. Figure 11 shows this
"local" pressure drop for three different shapes along the annulus. Hereafter the
evolution of the pressure gradient will be discussed in terms of its absolute value.
To make picture clear, only three geometries are shown in Fig. 11. Two vertical
lines depict the location of the liquid zone in the core. For all geometries, near the
entrance |d p/dz| decreases approaching constant value, which corresponds to FD
flow.

Figure 10: Pressure difference between top and bottom ∆P/∆z as a function of
the entrance velocity. ∆z is a distance between two sections with "locally" fully
developed flow.
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Figure 11: Pressure gradient over the annulus length for different geometries of
rods

Tracking the pressure gradient in geometry Type 4 shown by solid (black) line
reveals that it lies higher than others as hydraulic diameter Dh near the bottom
is larger. When approaching the protrusion, an asymmetrical flow pattern forms
as weak perturbations penetrate downstream. Though the velocity change is very
weak at this region, the pressure gradient reveals a small drop on the curve. En-
tering the narrower part, the velocity rises up, see Fig 6. Inertial effect becomes
important, the pressure slope is changing, and pressure gradient starts to increase.
Being in agreement with velocity profile (Fig 6), |d p/dz| increases, reaches its
maximum slightly inside the liquid zone and then goes down. At the end of the
liquid zone, the flow is influenced by the upper groove. It provokes local decrease
of the velocity and the pressure gradient reacts by small twist on the curve. Further
the flow gradually undergoes transition to the fully developed one.

Tracking |d p/dz| in geometry Type 5 shown by dashed (blue) line demonstrates
different behavior. Below liquid zone, a drop of |d p/dz| is much larger than in
Type 4, and it is located closer to the liquid. This drop-jump is provoked by local
diminishing of the axial velocity because of the low groove. The following drop on
the curve is caused by viscous stresses at the interface. The final twist is induced by
the second groove above liquid zone. It has much smaller amplitude than previous
once.

The dynamics of pressure gradient in flat geometry (Type 1) shown by dashed-
dotted (red) curve is almost similar to the FD flow except small area below the
liquid zone.

Certainly, for the same flow rate (inlet velocity) the pressure drop depends on cross-
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Figure 12: Pressure drop as a function of the aspect ratio, γ = Rout/R0. Curves
1,2,3 corresponds to different flow rates Qin = (0.503,2.51,12.57) ·10−6 m3/s.

section of the channel. Figure 12 shows pressure drop as a function of aspect ratio
γ = Rout/R0 for the flow rates. The curves 1-3 correspond to the different flow
rates listed in Table 3. Here Rout is fixed while R0 changes. The curves in are
obtained on the basis of Eq. 13 when interface velocity is U l

0 = 10−2Ug
max. For

aspect ration γ = 5/3 the results are in excellent agreement with the data in Fig. 10.
The conclusion out of this figure is that for the larger flow rate one needs wider
duct to keep the same pressure drop in the system.

6.4 Flow structure in liquid

One of the goal of the study is to examine the role of mechanical stresses in the in-
terface dynamics. The motion inside quiescent liquid is created by gas flow through
viscous stresses. The rate of exchange of momentum between gas and liquid phases
depends on the size and shape of the flow channel, the length of interfacial area,
the ratio of viscosities, and the gas flow parameters.

Gas entrains the liquid on the interface and one vortex flow structure develops in the
bulk, see Fig. 5. In the case of the large viscosity ratio, i.e. µoil/µair = 255 for air
- 5cSt silicone oil, the resulting motion in liquid is rather weak even for relatively
high flow rates (Re∼ 100). Figure 13 shows axial and radial velocity inside liquid
as a function of r for all geometries. Comparison between axial velocities in liquid
(Fig. 13) and gas (Fig. 7) reveals the difference of two orders of magnitude.

Figure 13a shows that for examined set of parameters, the axial velocity profile
does not strongly depends on the geometry of the rods. The maximum of axial
velocity reaches at the interface. The point where velocity changes the sign, r ≈
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Figure 13: Velocity inside 5cSt silicone oil at mid-height z = H +d/2 for different
shapes of rod: (a) axial velocity; (b) radial velocity ; Qin = 12.57 ·10−6 m3/s.

0.78−0.8R0, characterizes the vortex center. However, the location and maximum
value of the radial velocity is different for various geometries, see Fig. 13b. The
location of max|V (r)| indicates more precisely the position of the vortex center: is
it shifted to the bottom or to the top.

The viscosity ratio plays a crucial role on the flow intensity in the liquid. Figure 14
shows velocity profiles on the interface for the same flow rate at different two-
phase systems: air-silicone oil; neon-silicone oil; air-ethanol; air-acetone. It clearly
demonstrates that velocity increases when the viscosity ratio diminishes for the
same gas flow rate. The viscosity ratio strongly influences not only the value of
the velocity but the flow structure as well. For large viscosity ratios the center of
vortex is located in the middle of liquid zone, while for smaller once it is shifted in
the direction of gas flow.

Figure 15 shows the maximum value of the interface velocity as a function of the
viscosity ratio. On one hand the flow enhancement, when the ratio µl/µgas dimin-
ishes, is expected because as the liquid is driven by viscous stresses. On the other
hand the rate of decrease is unexpectably strong, especially taken into account the
limited length of interfacial contact. Thus to conclude, mechanical stresses imposed
by gas blowing can create significant motion in a liquid depending on viscosity ra-
tio.

7 Conclusions

Two-phase flows in annulus are analyzed for fluids in a large interval of viscosity
ratios. The problem is solved numerically in complex geometry, which corresponds
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Figure 14: Velocity profiles on liquid interface driven by gas flow for different
gas/liquid systems; Type 5, Ug

0 = 0.25m/s.

to a liquid bridge axially placed into an outer cylinder with solid walls. The internal
core consists of solid rods with grooves and protrusions at the bottom and top, while
the central part occupied by liquid is relatively short. The air enters into the annular
duct and entrains initially quiescent liquid. The flow rate was varied in such a way
that analysis includes both viscous and inertial effects, 2.8 < Re < 240. The flow
structure in the liquid and gas was examined for five most typical experimental
geometries of the solid core. The configuration, in which the cross-sections of
annular channel at the entrance and along the liquid zone are different, produces
the strongest perturbation in gas flow. In the case of flat supporting rods, the gas
flow can be considered as fully developed. Solution for fully developed flow in
annulus with moving core is found analytically. The obtained flow regime maps
show the areas, where the gas flow can be considered as fully developed.

It was found that the pressure difference between top and bottom areas, where the
gas flow is "locally" fully developed, is a linear function of flow rate (inlet veloc-
ity). However, the detailed analysis indicates that near the liquid zone the pressure
gradient is sensitive to the shape of the annulus (the supporting rods change the
velocity of gas).

The analysis has shown that mechanical stresses imposed by gas blowing induces
the motion of liquid. The enhancement of this flow depends on the viscosity ratio,
gas flow rate, interface length, etc. One of the pivotal characteristics is the viscos-
ity ratio which can be changed for the developed experimental set-up. The flow
structure in liquid phase has been studied when viscosity ratio µl/µgas is changing
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Figure 15: Maximal velocity of liquid versus viscosity ratio, µl/µgas; Geometry
Type 5

from 18 to 255. The flow intensity in liquid strongly increases when viscosity ratio
decreases.

We have also discussed how the present problem can be developed further by taking
into account thermocapillary effects. In this case, configuration with flat rods (Type
1) can be calculated only on the length of liquid zone with Poiseuille profile as
the boundary conditions for gas at the inlet and outlet. For other geometries, more
sophisticated models are desirable.

Note, though the problem was considered in a specified geometry, the results can
be interesting for a wide research community. The trends obtained in the analysis
of viscosity ratio and pressure drop effects can be representative for two-phase
flows involving liquid films of finite length. Besides, the flow near grooves and
protrusions well indicates the role of the surface roughness, which is important for
many applications.
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