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Thermocapillary and Natural Convection in Double Layer
Systems of Herschel-Bulkley and Newtonian Fluids, Exact

Solutions
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Abstract: A variety of exact analytical solutions describing natural and thermo-
capillary convection in a horizontal double layer system consisting of Newtonian
and Herschel-Bulkley fluids subjected to longitudinal temperature and concentra-
tion gradients is constructed. The lower boundary of the system is a solid wall with
no-slip, while the upper ones if either a solid wall or a free surface. It was demon-
strated that, depending on the governing parameters of the system, viscoplastic
layer is entirely yielded or unyielded, or it can be yielded partially, exhibiting up
to 5 flowing and quasi-solid layers. The dependence of the flow patterns (appear-
ance and position of unyielded regions), velocity and temperature profiles, on the
governing parameters have been studied.
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1 Introduction

Viscoplastic media exhibit a solid-like behavior being exposed to low levels of
stress and flow if the stress level exceeds a critical value, commonly known as
the yield stress. Such materials appear in various natural phenomena as well as
in a variety of technological applications. Known yield-stress fluids include mud,
cements, lava, glues and paints, various food stuffs, fermentation broths, foams,
suspensions, emulsions, gels, rocket fuels and other polymer mixtures. Many bio-
logical tissues exhibit viscoplastic behavior as well.

The analysis of the mechanics of yield stress materials has been of continuous in-
terest since the pioneering work of Bingham (1922), and several invariant models
for the rheology were formulated throughout the years (see e.g. Oldroyd (1947a,b)
and Prager (1954)). A popular generalization of the Bingham constitutive descrip-
tion is known as the Herschel-Bulkley model (see, e.g. Burgos, Alexandrou and
Entov, 1999).
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Many natural and industrial processes involve combined motion of yield stress and
Newtonian media, such as flow of the water over mud bottom, co-extrusion in
bi and multi layer polymer film production or gravity-induced sedimentation or
rise of drops and bubbles in a viscoplastic material. Frigaard (2001) and Moyers-
Gonzalez, Frigaard, and Nouar (2004) have demonstrated that using of viscoplastic
lubricant can stabilize multi layer sheared flows. These theoretical findings were
recently approved experimentally by Huen, Frigaard and Martinez (2007).

A number of results are available that concern the behavior of bubbles in a yield
stress medium. One of the early studies of fluid particle dynamics in yield stress
materials was reported by Bhavaraju, Mashelkar and Blanch (1978), who employed
perturbation in the Bingham parameter to study the motion of a non-deformable
bubble in an unbounded medium. Stein and Buggish (2000) applied perturba-
tion techniques to demonstrate that bubbles trapped in visco-plastic medium can be
made to rise by applying an external oscillatory pressure and reported experimen-
tal results confirming these predictions. Vasil’chenko and Potapov (1996) studied
the rise of large bubbles in a column filled with a viscoplastic fluid (with bubble
length scale being comparable or larger than the column radius) and observed that
the bubble rise velocity became constant beyond a certain size. A recent work by
Dubash and Frigaard (2004) addresses the buoyancy-induced motion of deformable
bubbles and uses variational principles (Prager, 1954) to establish bubbles stopping
conditions. Experiments involving the rise of air bubbles in a column of viscoplas-
tic fluid (Carbopol solution) are reported by Dubash and Frigaard (2007).

The motion of viscous inclusions in yield stress environment attracted less atten-
tion so far. Numerical simulations of deformation and rupture of a viscous drop in
an entirely yielded Bingham liquid was reported by Li and Renardy (2000). Simu-
lations of axisymmetric gravity-induced settling of single and multiple interacting
deformable viscous drops in a Bingham fluid were performed by Potapov, Spivak,
Lavrenteva and Nir (2006). The focus of this study was on the influence of the
drops deformations on the shape and extent of the yield regions and on the veloc-
ities of the drops. Recently Singh and Denn (2008) reported a numerical study of
the buoyancy-driven motion of bubbles and droplets in a Bingham fluid in two-
dimensional geometry that enables to explore non-axisymmetric configurations.

Numerous industrial processes and physical applications involving yield stress ma-
terials are accompanied by intensive heat and mass transfer and, thus, the study of
convective motion of such media is important. Cherkasov (1979) and Lyubimova
and Lyubimov (1980) investigated free and induced convection of Bingham plastic
in vertical layers. Nouar (2008) studied the combined forced and free convection
heat transfer of a yield stress fluid in a horizontal duct heated uniformly with a con-
stant heat flux density. A recent paper by Metivier and Nouar (2008) is devoted to
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the onset of the Rayleigh-Benard thermal convection cells for a horizontal layer of
viscoplastic fluid heated from below and for which an axial laminar flow is added.

Most of the studies of the motion of viscoplastic fluids are focused on macro scale
flows, where capillary effects on the viscoplastic-fluid interfaces are minor and,
thus, these effects in application to yield stress media are almost unstudied so far.
However, at smaller scales, capillary and thermocapillary effects are expected to be
important, especially for processes accompanied by intensive heat or mass transfer.

We report on a variety of exact analytical solutions describing natural and thermo-
capillary convection in a horizontal double layer system consisting of Newtonian
and Herschel-Bulkley fluids subjected to a longitudinal temperature and concen-
tration gradients. The dependence of the flow patterns (appearance and position of
unyielded regions), velocity, temperature and concentration profiles on the govern-
ing parameters have been studied. The constructed solutions generalize the well–
known Birikh (1966) solution, where the velocity is directed horizontally and de-
pends on a vertical coordinate, y, while the temperature and concentration fields
are sums of linear functions of a horizontal coordinate, x, and non-linear func-
tions of y. Birikh solutions were generalized to a two-layer flow by Napolitano
(1980) and to 3D case by Pukhnachov (2000). Note that most studies of this type
of flow assume non-deformable interfaces, neglecting normal stress balance. Re-
cently, Goncharova and Kabov (2009) constructed Birikh type solutions satisfying
all exact conditions at the interfaces between liquid and co-current gas flow and
demonstrated that the gas flow can be used to control convection in liquid. In this
work we follow the approach of Goncharova and Kabov (2009).

Physical and mathematical formulations for the problem under consideration are
presented in section 2. Basic equations, boundary conditions, scaling, governing
parameters and special type of solutions are introduced. In section 3, various pos-
sible regimes of the flow in viscoplastic layer are described and their dependence
on governing parameters is studied. In sections 4 and 5, results of computations of
velocity, temperature and concentration profiles for various sets of governing pa-
rameters are presented and discussed for the cases of free and solid upper boundary
of the system. Conclusions and discussion of possible further generalizations of
the results are given in section 6.

2 Problem formulation

Consider a horizontal two-layer system of an infinite extent in the longitudinal di-
rection x lying on a rigid plane y =−dHB, see Fig. 1.

From above the system is bounded at y = dN either by a solid wall, or by a free
boundary. The upper and lower layer consist of Newtonian and Herschel-Bulkley
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Figure 1: System schematics.

fluid, respectively. The temperature, T , and the concentration of a soluble sub-
stance, C, in the vicinity of the bottom are linear in x,

T = T0 +aT x, C = C0 +aCx, y =−dHB. (1)

The surface tensions at the interface, σHB, and at the free boundary, σN , are as-
sumed to be linear with temperature and concentration

σm = σm,0 +σm,C (C−C0)+σm,T (T −T0) , m = N,HB. (2)

The flow is due to density gradient and thermo-capillary (Marangoni) effect at the
free boundary and the interface of the two fluids.

Adopting the Boussinesq approximation, the governing momentum and continuity
equations are of the form:

ρ0,m

(
∂Ui

∂ t
+Uk

∂Ui

∂xk
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Here U denotes fluid velocity, g is the gravitation acceleration, ρ0,m = ρm (T0,C0)
is fluid density at temperature T 0 and concentration C0,
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m = N for the Newtonian fluid and m=HB for the Herschel-Bulkley fluid, p is
the dynamic pressure and τττ is the excess stress tensor. For the Newtonian fluid
τττ = µND, while for the Herschel-Bulkley viscoplastic medium{

τττ =
(

K |D|(n−1) + τY
|D|

)
D |τττ|> τY ,

D = 0 |τττ|< τY ,
(4)

Here D is the rate of strain tensor, Di j = (∂Ui/∂x j +∂U j/∂xi) and |A|=
√

∑A2
i j/2

denotes a second invariant of a tensor A. THe rheological parameters of a Herschel-
Bulkley fluid are the yield stress,τY , the consistency factor,K, and the power law
index, n. The viscosity of Newtonian fluid is denoted by µN .

Mass and heat transfer is governed by
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)
, x ∈Ωm, m = N,HB.

(5)

Here D, DT and κ denote diffusivity, thermo-diffusivity coefficient and thermal
conductivity, respectively. At the bottom no slip boundary conditions

U = 0, (6)

are satisfied, while the temperature and concentration are of the form (1).

At the inter interface separating the two layers ΓHB, the velocity is continuous

[U] = 0, x ∈ ΓHB, (7)

and the dynamic conditions are satisfied,

[τik] t̂in̂k−σHB,T
∂T
∂xi

t̂i−σHB,C
∂C
∂xi

t̂i = 0,

− [p]+ [τik] n̂in̂k = HHBσHB, x ∈ ΓHB.

(8)

Here and below [ ] denotes jump at the interface, while n̂ and t̂ are normal and
tangential unit vectors, respectively, H is the mean curvature of the surface.

Temperature, heat and mass fluxes are continuous at the interface, while the con-
centrations in the two layers are in local thermodynamic equilibrium,

[T ] = 0, CN = αeqCHB,

[
κ

∂T
∂xi

]
n̂i = 0,[

D
∂C
∂xi

+DT ∂T
∂xi

]
n̂i = 0, x ∈ ΓHB,

(9)
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where αeq is the equilibrium constant.

The upper boundary of the double layer is either a free surface or a solid wall. In
the first case, the boundary conditions are

τikt̂in̂k +σN,T
∂T
∂xi

t̂i +σN,C
∂C
∂xi

t̂i = 0,

− p+ τikn̂in̂k = HNσN− p0,

(10)

κN
∂T
∂xi

n̂i = QT ,

(
DN

∂C
∂xi

+DT
N

∂T
∂xi

)
n̂i = QC, x ∈ ΓN . (11)

In the case of a solid upper boundary, conditions (10) are replaced by the no-slip
conditions

U = 0, x ∈ ΓN . (12)

For the temperature and concentration, we either consider the condition (11), or
replace one or both of these by the first order conditions

T = T1 +aT x, C = C1 +aCx, x ∈ ΓN . (13)

We are looking for stationary solutions of the problems (1)-(11) and (1)-(9), (12),
(13) in the form

U = (V (y) ,0,0) , T = T0 +aT x+Θ(y) , C = C0 +aCx+Φ(y) ,
τxx = τyy = τxz = τyz = τzz = 0, τxy = τ(y), p = f (y)x+P(y) ,

(14)

with boundaries ΓHB and ΓN being the planes y= 0 and y = dN , respectively.

Introduce dimensionless variables scaling the length with Herschel-Bulkley fluid
layer depth dHB, stress, pressure and Pm (y) function with the characteristic stress
induced by the density variations in viscoplastic medium,

τ
∗ =

∣∣(aT β
T
HB +aCβ

C
HB
)

gρ0,HBd2
HB

∣∣ .
The function f (y) is scaled with τ∗/dHB, velocity with V ∗ = dHB (τ∗/K)1/n and
temperature with T ∗ = |aT dHB|. The concentration is scaled by its characteris-
tic change at the length scale, C∗, which equals |aCdHB| if aC 6= 0 and |C1−C0|
or |QCdHB| in the opposite case. For simplicity of presentation, the notations for
scaled variables are the same as for the original dimensional ones. Thus, the lower
viscoplastic and upper Newtonian fluids occupy the domains (1,0) and (0,d), re-
spectively, with d = dN/dHB.
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It follows from the momentum equations that

f (y) = δmy−Bm, (15)

and, hence,

τ (y) =
δmy2

2
−Bmy+Mm, y ∈Ωm, m = N,HB, (16)

where

δHB = 1, δN = δ =
aT β T

N +aCβC
N

aT β T
HB +aCβC

HB
, (17)

while Bm and Mm (m = N,HB) are constants of integration to be determined from
the boundary conditions. The choice δHB = 1 corresponds to the choice of the x
axis direction such that the density of the Herschel-Bulkley fluid increases with x.
Scaled stress and velocity field are related byτ =

∣∣∣dV
dy

∣∣∣n−1
dV
dy +Bnsign

(
dV
dy

)
, |τ|> Bn,

dV
dy = 0, |τ| ≤ Bn,

(18)

for the viscoplastic medium, and by

τ = µ
dV
dy

, (19)

for the Newtonian fluid. Here

Bn =
τY

τ∗
, µ =

µNV ∗

dHBτ∗
. (20)

Solving (18) and (19) with respect to dV /dy leads to

dV
dy

= sign(τ(y)) [max(|τ(y)|−Bn,0)]1/n , y ∈ (−1,0),

dV
dy

=
1
µ

τ(y), y ∈ (0,d).

(21)

Substituting the presentation (14) into the transport equations (5) results in the fol-
lowing equations for the functions Θ(y)andΦ(y)

d2Θ

dy2 = PeT
mV,

d2Φ

dy2 = PeC
mV, (22)
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where

PeT
m =

ρ0,mcpmV ∗dHB

κm
, PeC

m =
V ∗aCd2

HB

C∗Dm
− aCdHBDT

m

C∗Dm
PeT

m. (23)

Note that while PeT
m is always positive,PeC

m can be negative as well.

Function P(y) that determines the pressure distribution satisfies

dP(y)
dy

= gρ0,m
[
β

C
mΦ(y)+β

T
m Θ(y)

]
, (24)

Boundary conditions at the bottom, y = – 1, are

VHB(−1) = 0; ΘHB(−1) = 0; ΦHB(−1) = 0. (25)

At the interface, y = 0,

τHB(0)− τN(0) = MaHB =
(
σ

C
HBaT +σ

C
HBaC

)
/τ
∗, VHB(0) = VN(0),

ΘHB(0) = ΘN(0), ΦHB(0) = αeqΦN(0), Θ
′
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Φ
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Θ
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(26)

At the upper free boundary y = d,

τN(d) = MaN =
(
σ

C
N aT +σ

C
N aC

)
/τ
∗; P(d) = P0 = patm/τ

∗, f (d) = 0,

Θ
′
N(d) = qT =

QT

κNaT
, Φ

′
N(d)+

DT
NT ∗

DNC∗
Θ
′
N(d) = qC =

QCdHB

DNC∗
.

(27)

In the case of an upper solid wall, at y = d, the velocity vanishes,

VN(d) = 0. (28)

For the heat and mass transport at the upper solid wall, we specify either heat and
mass fluxes, resulting in boundary conditions analogous to (27), or temperature and
concentration distribution analogous to that at the bottom.

ΘN(d) = θ = T1/T ∗, ΦN(d) = φ = C1/C∗. (29)

The velocity field is governed by 7 parameters, MaHB, MaN , δd, Bn, µ, and n for
the case of free boundary, and by the same parameters except for MaN for flow
between two parallel solid walls.
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The first and the last of the conditions (26) yield that MHB = M = MN +MaHB and
BN = BHB = B, respectively. The stress distribution is, thus,

τHB (y) =
y2

2
−By+M, τN (y) =

δy2

2
−By+M−MaHB. (30)

The problem is reduced to finding two constants, B and M, and the functions Vm(y),
Φm(y), Θm(y) and Pm(y), satisfying equations (21), (22) and (24) with τm(y) given
by (30) and boundary conditions (25)–(27) or (25), (26), (28) and (29).

3 Regimes of the flow in the viscoplastic layer.

The viscoplastic fluid is yielded if |τHB| > Bn, y ∈ (−1,0), with τHB given by
(30). Hence, the regime of the flow is determined by a relation between 3 pa-
rameters: B, M and Bn. The Herschel-Bulkley medium flows or remains qui-
escent near the bottom if |τHB (−1)| = |M +B+1/2| > Bn, or |M +B+1/2| ≤
Bn,respectively. Similarly, the viscoplastic fluid is yielded or unyielded near the
interface if |τHB (0)| = |M| > Bn, or |M| ≤ Bn, respectively. Since τHB is a square
polynomial in y, it has a single minimum at y = B. If this minimum is located
inside the domain occupied by the Herschel-Bulkley medium, –1< B < 0, and
|τHB (B)| =

∣∣B2/2−M
∣∣ > Bn, a domain of yielded fluid is present inside the vis-

coplastic layer, which may be unyielded near the bottom and the interface. Sim-
ilarly, if –1< B <0, and

∣∣B2/2−M
∣∣ < Bn, a domain of unyielded fluid is present

inside the Herschel-Bulkley layer, which may be yielded near the bottom and the
interface. It is easy to see that 9 different regimes of the flow with up to 5 alternating
yielded and unyielded layers are possible:

1. Entirely yielded, 1a: M < min(−Bn,−B− 1/2−Bn) or M > Bn, B >0 or
M >−B−1/2+Bn, B <−1, or B2/2 > M +Bn, B ∈ [−1,0].

2. Entirely unyielded, 1b: M < min(Bn,−B− 1/2 + Bn) or −B− 1/2−Bn <
M < Bn or −Bn < M < −B− 1/2 + Bn or B2/2− Bn < M < min(−B−
1/2+Bn,Bn). This regime is possible solely if Bn > 1/16, i.e. if the stresses
induced by density variation are not strong enough to yield the fluid.

3. Two layers, lower one is yielded, 2a: |τHB (0)| = |M| ≤ Bn and M < −B−
1/2−Bn, or max(B2/2−Bn,−B−1/2+Bn)< M < Bn, B < 0, or max(−Bn,−B−
1/2+Bn) < M < Bn, B > 0.

4. Two layers, lower one is unyielded, 2b: |τHB (−1)| = |M +B+1/2| ≤ Bn
and {M <−Bn or (M > max(B2/2−Bn,Bn), B >−1) or B <−1}.
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Figure 2: Maps of flow regimes in (B,M) parametric plane at various Bingham
numbers. (a) Bn = 1/36, (b) Bn = 1/16; (c) Bn = 1/8; (d) Bn = 1/2. Na and Nb
correspond to a N-layer regime with yielded and unyielded lowest layer, respec-
tively. Boundaries between domains of different regimes are marked by solid lines.
Dashed and dashed-dotted lines are the curves QHB(B,M,n,Bn) = 0 for n= 1 and n=
1/4, respectively.

5. Three layers, lower one is yielded, 3a: Bn−B−1/2 < M < −Bn or (−1 <
B < 0 and max(B2/2−Bn,Bn,Bn−B− 1/2) < M < B2/2 + Bn.) or Bn <
M <−Bn−B−1/2.

6. Three layers, lower one is unyielded, 3b: −B < M < min(B2/2−Bn,Bn,Bn−
B−1/2) and −1 < B < 0.
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7. Four layers, lower one is yielded, 4a: −1 < B < 0 and max(Bn−B−1/2,−Bn)<
M < min(B2/2−Bn,Bn).

8. Four layers, lower one is unyielded, 4b: Bn < M < min(B2/2−Bn,Bn−B−
1/2), −1 < B < 0.

9. Five layers, lower one is yielded, 5a: max(Bn,−B−1/2+Bn) < M < B2/2−
Bn, −1+2

√
Bn < B <−2

√
Bn.

Maps of possible flow regimes at (B,M) plane for various constant Bn are presented
in Fig. 2. Fig. 2a corresponds to the cases of small Bingham number, Bn = 1/36, at
which stresses induced by density variation are strong enough and the viscoplastic
layer cannot be entirely unyielded. The interplay between stresses induced by sur-
face tension and density variation results in various regimes with up to 5 yielded
and unyielded regions. The configuration presented in Fig. 2a is typical for any Bn
< 1/16. In Fig. 2b, Bn = 1/16. Here 5-layer regime is not possible, as well as for
higher values of the Bingham number, and the domains corresponding to 4-layer
flow shrink. Figure 2c corresponds to the case Bn = 1/8. A region corresponding to
entirely unyielded Herschel-Bulkley fluid (1b, marked grey) is evident. This con-
figuration is typical for 1/16 < Bn < 1/4. In Fig 2(d) Bn = 1/2. One can observe
that the regions of 4 and 5 layer regimes disappear, and that corresponding to an
entirely unyielded plastic is extended. The configuration is typical for high val-
ues of the Bingham number, Bn > 1/4, i.e. for cases when Marangoni convection
dominates over the natural convection, e.g. under microgravity conditions.

As soon as the stress distribution is known, the velocity field in the Herschel-
Bulkley layer can be obtained by integrating equations (21) with no-slip condition
at the bottom, y = – 1, which results in the expressions

VHB(y) =
y∫
−1

sign [τHB(η)]{max [|τHB(η)|−Bn,0]}1/ndη , y ∈ (−1,0). (31)

Several typical graphs of velocity in viscoplastic layer versus y are presented in Fig
3 for n=1 (Bingham fluid). In Figs. 3 (a)-(d) Bn = 0.02 < 1/16. For such small val-
ues of Bingham number, various multilayer regimes of the flow are possible. Each
of these figures illustrates the change of the regime with the relative magnitude of
Marangoni traction, M, for fixed value of the parameter B.

In Figure 3 (a) B= –0.4, M= 0.28, 0.044 and 0.06 for dashed, solid and dashed-
dotted curves, respectively. One can see that with the growth of the Marangoni
traction in the positive direction the four-layer pattern (dashed line) changes to a
5-layer (solid line) and then to a 3-layer (dashed-dotted) one.
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Figure 3: Velocity profiles in viscoplastic fluid for various values of parameters.
(a) Bn = 0.02, B = −0.4, M = 0.28, 0.044 and 0.06 for dashed, solid and dashed-
dotted curves, respectively; (b) Bn = 0.02, B = – 0.28, M = – 0.032, – 0.01 and
0.002, for dashed, solid and dashed-dotted curves, respectively; (c) Bn = 0.02, B=
– 0.78, M= 0.258, 0.272, 0.3 and 0.324 for dashed, solid, dashed-dotted and dotted
curves, respectively; (d) Bn = 0.02, B= – 0.52, M = 0.032, 0.056, 0.09 and 0.124
for dashed, solid, dashed-dotted and dotted curves, respectively, (e) Bn = 0.068, B=
– 0.74, M= 0.16, 0.188, 0.22 and 0.338 for dashed, solid, dashed-dotted and dotted
curves, respectively; (f) Bn = 0.068, B = – 0.32, M = – 0.086, – 0.066, – 0.04 and
–0.012 for dashed, solid, dashed-dotted and dotted curves, respectively.
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In Figure 3 (b) the magnitude of the parameter B is smaller, B = – 0.28, M = –
0.032, –0.01 and 0.002, for dashed, solid and dashed-dotted curves, respectively.
In this case, the 3-layer pattern (dashed line) changes to a 4-layer (solid line) and
then to a 2-layer (dashed-dotted) ones.

In Figure 3 (c) B = – 0.78. At M = 0.258 (dashed line) the Marangoni traction
is relatively weak, and the negative direction of the flow is determined by natural
convection. Three-layer regime is evident. At M = 0.272 (solid curve) the traction
in positive direction is higher. The fluid near the bottom is unyielded, then flows in
the negative direction, then follow a second quasi-solid region, and a yielded layer
with changing flow direction. At M = 0.3 (dashed-dotted line) the region of the
flow with negative velocity disappears and a 2-layer regime with unyielded lower
region is observed. At M = 0.324 (dotted curve), the fluid near the bottom is again
yielded, but the velocity is positive.

In Figure 3 (d) B = – 0.52. At M = 0.032 (dashed line) quasi-solid regions are
presented near the bottom and near the interface while in the middle the fluid is
yielded and flows in the negative direction. At M = 0.056 (solid curve) a second
yielded region appears near the interface. At M = 0.09 (dashed-dotted line) a 5
layer pattern takes place and at M = 0.124 (dotted curve) a yielded region in the
middle disappears and a 3b regime is observed.

In Figs. 3 (e) and 3 (f) the Bingham number is higher Bn = 0.068 > 1/16 and a 5
layer regime is not possible. In Figure 3 (e) B = – 0.74. The flow pattern changes
from a 3-layer flow in the negative direction at M = 0.16 (dashed line) to a 4 layers
at M = 0.188 (solid curve), then to two layers with unyielded fluid near the bottom
at M = 0.22 (dashed-dotted line) and, finally, to a 3 layer regime with flow in the
positive direction at M = 0.338 (dotted curve).

In Figure 3 (f) B = – 0.32. The flow pattern changes from a 2-layer flow with
unyielded fluid near the bottom at M = – 0.086 (dashed line) to a 3-layer regime
M = – 0.066 (solid curve), then to a 4-layer pattern at M = – 0.04 (dashed-dotted
line) and to 2 layers with an unyielded one near the interface at M = – 0.012 (dotted
curve).

4 Free boundary flow

Assume a free upper boundary. It follows immediately from (27), that

B = δd, M = MaN +MaHB +BNd− δ

2
d2 = MaN +MaHB +

δ

2
d2 (32)

and, thus, the stress distribution is given explicitly by (30). Note that regimes with
more than 3 layers are possible only if B < 0 and, hence, δ < 0, i.e. when the
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combined effect of temperature and concentration variation on the density of the
upper layer is negative (the density of the Newtonian fluid decreases with x).

As soon as the stress distribution is known, the velocity field can be obtained by
integrating equations (21) with a no-slip condition at the bottom, y = – 1, and
continuity at the interface, y = 0, which results in the expressions

VHB(ξ ) =

ξ∫
−1

sign [τHB(η)]{max [|τHB(η)|−Bn,0]}1/ndη , ξ ∈ (−1,0),

VN(ξ ) =
0∫
−1

sign [τHB(η)]{max [|τHB(η)|−Bn,0]}1/n dη +d

ξ∫
0

τN(η)dη

= VHB(0)+
δd3

6µ
ξ

3− Bd2

2µ
ξ

2 +
(M−MaHB)d

µ
ξ

= VHB(0)+
MaNd

µ
ξ +

δd3

2µ

(
ξ 3

3
−ξ

2 +ξ

)
= VHB(0)+βξ +

γ

2

(
ξ 3

3
−ξ

2 +ξ

)
, ξ ∈ (0,1).

(33)

where ξ = y for y < 0 and ξ = y/d for y ≥ 0. Note that, while VN is a simple
polynomial of the vertical coordinate, integration of (33) in elementary functions
is possible for the special case of a Bingham fluid, e.g., n = 1, in which case V HBis
a piecewise polynomial function. Explicit expressions in this case are given in the
Appendix.

It is evident from (33) that, while the velocity in the viscoplastic domain is a func-
tion of parameters M, B, Bn and n solely, that in the Newtonian liquid depends on
3 additional parameters, β = MaNd/µ,γ = δd3/µ and d. The dependence of ve-
locity profile on the parameter d is solely through the stretched coordinate ξ . The
effect of the parameters β ,γ,n and Bn is illustrated in Fig. 4, where the velocity in
both phases is plotted versus the spatial coordinate ξ .

In Fig. 4a, Bn = 0.02, B = – 0.4, M = 0.044, β = 0.02,γ =−0.1 and n= 0.8, 1 and
1.2 for dashed, solid and dashed-dotted curves, respectively. A strong influence of
the power law index is evident. Note that this parameter affects the motion in the
Newtonian fluid solely through the change of the velocity at the interface. Thus the
curves in the Newtonian region ξ > 0 are parallel.

Figure 4b illustrates the effect of the Bingham number on the velocity profile. Here
B = – 0.4, M = – 0.044, n= 1, β = 0.02 and γ = −0.1. Dashed-dotted line is
computed for Bn = 0.05. A two-layer regime of the flow of the Herschel-Bulkley
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fluid is evident. For lower values of the yield stress at Bn = 0.015 (solid curve)
and Bn = 0.005 (dashed curve) one can observe a 5 layer and an entirely yielded
flows. The dependence of velocity on the Bingham number, in contrast to all the
other parameters, is not always monotonic. See the intersection of solid and dashed
dotted curves. Similar to Fig 4a, the curves in the Newtonian region ξ > 0 are
parallel, since the Bingham number does not enter the equations governing the
motion of Newtonian fluid and, thus, affects its motion solely through the change
of the velocity at the interface.

Figures 4c and 4d demonstrate the influence of the parameters β and γ . These have
no effect on the flow of the viscoplastic medium. Thus, a single curve is seen at
ξ < 0 and all the curves corresponding to the Newtonian fluid intersect at ξ = 0.

When the velocity is known, the temperature and concentration distributions are
determined by integrating equations (22) with boundary and interfacial conditions
(25)-(27), which results in:

ΘHB(y) = κ

qT −PeT
N

d∫
0

V (η)dη

(y+1)−PeT
HB

0∫
−1

[1+min(y,η)]V (η)dη ,

ΘN(y) =κ

qT −PeT
N

d∫
0

V (η)dη

+qT y

−PeT
HB

0∫
−1

(1+η)V (η)dη−PeT
N

y∫
0

min(y,η)V (η)dη ,

(34)

ΦHB(y) =
DN

DHB

(
qC−

DT
NT ∗

DNC∗
qT +PeC

N

d∫
0

V (η)dη− DT
HBT ∗

DHBC∗
Θ
′
HB(0)

+
DT

NT ∗

DHBC∗
Θ
′
N(0)

)
(y+1)−PeC

HB

0∫
−1

[1+min(y,η)]V (η)dη ,

(35)
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 Figure 4: Velocity profiles in Herschel-Bulkley and Newtonian fluids for free
boundary flow. (a) Bn = 0.02, B = – 0.4, M = 0.044, β = 0.02,γ =−0.1, n= 0.8, 1
and 1.2 for dashed, solid and dashed-dotted curves, respectively; (b) B = – 0.4, M
= – 0.044, n= 1, β = 0.02,γ = −0.1,Bn = 0.005, 0.015 and 0.05 for dashed, solid
and dashed-dotted lines, respectively; (c) Bn = 0.02, B= – 0.44, M= 0.044, n = 1,
γ =−0.1,β = 0.02,0.025 and 0.03 for dashed, solid and dashed-dotted curves, re-
spectively; (d) Bn = 0.02, B= – 0.44, M = 0.044, n = 1, β = 0.02,γ =−0.05,−0.06
and – 0.07 for dashed, solid and dashed-dotted lines, respectively.

ΦN(y) =

DN

αeqDHB

qC−
DT

NT ∗

DNC∗
qT +PeC

N

d∫
0

V (η)dη− DT
HBT ∗

DHBC∗
Θ
′
HB(0)+

DT
NT ∗

DHBC∗
Θ
′
N(0)


+
(

qC−
DT

NT ∗

DNC∗
qT

)
y−PeC

HB

0∫
−1

(1+η)V (η)dη−PeC
N

y∫
0

min(y,η)V (η)dη .

(36)
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If the temperature/concentration distribution is specified on the upper boundary
instead of the corresponding flux, in the above formulae

qT =

Θ1 +PeT
N

d∫
0

(k−η)V (η)dη +PeT
HB

0∫
−1

(1+η)V (η)dη

/(κ +d),

qC =

Φ1 +PeC
N

d∫
0

(k−η)V (η)dη +PeC
HB

0∫
−1

(1+η)V (η)dη

/(κ +d)

the explicit expressions for the temperature profile in the case of Bingham fluid
with various types of boundary conditions are given in the Appendix.

The results for the temperature field corresponding to zero flux condition at the
upper boundary and to the velocity profiles presented in Fig. 4 are given in Fig.
5. In Fig. 5a, Bn = 0.02, B = – 0.4, M = 0.044, β = 0.02,γ = −0.1 and n= 0.8,
1 and 1.2 for dashed, solid and dashed-dotted curves, respectively. The velocity is
positive (see Fig 4a), hence, the temperature is convex and temperature deviation
is negative everywhere. The magnitude of temperature deviation increases with the
velocity.

Figure 5b illustrated the effect of the Bingham number on the temperature profile.
Here B = – 0.4, M = – 0.044, n= 1, β = 0.02 and γ = −0.1. Solid, dashed and
dashed-dotted lines are computed for Bn = 0.0015, 0.005 and 0.05, respectively.
One can see that the curves computed for low Bingham numbers almost coincide,
though the velocity profiles are essentially different. At higher Bn, the velocity and
the temperature deviation magnitudes are considerably smaller.

Figures 5c and 5d demonstrate the influence of the parameters β and γ that have
no influence on the flow of the viscoplastic medium (see Figs. 4c and 4d). How-
ever, the effect on the temperature distribution is evident. In contrast to the cases
presented in Figs 5a and 5b, here the flow changes its direction and the temperature
profiles are not monotonic, but exhibit several maxima and minima.

For all the examples we chose a heat insulated upper boundary, qT = 0, and equal
thermal properties for the two fluids, Pe=1 and κ = 1. If qT 6= 0 an appropriate
linear function should be added to the temperatures calculated for zero heat flux.
Different thermal conductivities result in a jump of dΘ/dy at the interface. Due
to the similarity of the equations for the temperature and concentration the latter is
proportional to Θ (for homogeneous boundary conditions) and we do not present
its distribution separately. However it is worth noting that while the Peclet number
for the temperature is positive, in the presence of the Soret effect, the combined
Peclet number for the concentration, see (23), can be negative as well and result in
a negative proportionally coefficient between the temperature and concentration.
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 Figure 5: Temperature profiles in Herschel-Bulkley and Newtonian fluids for qT =
0, κ = 1, Pe = 1 and various values of other parameters. (a) Bn = 0.02, B = – 0.4, M
= 0.044, β = 0.02,γ =−0.1, n= 0.8, 1 and 1.2 for dashed, solid and dashed-dotted
curves, respectively; (b) B = – 0.4, M = – 0.044, n= 1, β = 0.02,γ = −0.1,Bn =
0.005, 0.0015 and 0.05 for dashed, solid and dashed-dotted lines, respectively; (c)
Bn = 0.02, B= – 0.44, M= 0.044, n = 1, γ = −0.1,β = 0.02,0.025 and 0.03 for
dashed, solid and dashed-dotted curves, respectively; (d) Bn = 0.02, B= – 0.44,
M = 0.044, n = 1, β = 0.02,γ = −0.05,−0.06 and – 0.07 for dashed, solid and
dashed-dotted lines, respectively.

A popular approximation employed by most of previous works on Birikh solutions
for the Newtonian is that of non-deformable interfaces, which normal stress bal-
ance at free boundary and interfaces. The misbalance in the boundary conditions at
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the flat interfaces results naturally in its deformations. The non-deformable inter-
face approximation is consistent with the case of very large surface tension (small
capillary number) providing that the induced deformations remain negligibly small.
In this paper we concentrate on exact solutions satisfying all the boundary condi-
tions. A brief discussion on possible modification of these solutions to the case of
non-deformable interfaces is given below.

Neglecting the normal stress balance leaves 2 parameters, BHB and BN , free. Choos-
ing these parameters allows to prescribe the fluxes of the both fluids. Normally,
these fluxes are chosen to be zero, to model the flow in a container of finite exten-
sion.

The fluxes of each phase are

QHB =
0∫
−1

VHB(y)dy =
0∫
−1

ysign [τHB(y)]{max [|τHB(y)|−Bn,0]}1/ndy,

QN = d
1∫

0

VHB(ξ )dξ =− 5δd4

12µ
+

BNd3

3µ
+

MaNd2

2µ
+VHB(0)d

(37)

Note that QHB is a function of parameters M,BHB, Bn and n solely,

QHB = QHB(M,BHB,Bn,n).

Hence, the parameter BHB can be determined specifying the flux of the Herschel-
Bulkley fluid. The flux of Newtonian fluid, QN , depends on 3 additional parameters
d,µ and MaN , QN = QN (M,BHB,Bn,n,d,µ,MaN ,BN). When QN is known BN is
found from (3) explicitly. An interesting case of zero flux of the Herschel-Bulkley
fluid modeling the flow in a finite length container (far from the lateral boundaries)
corresponds, for given values of Bn and n, to the curve

QHB(M,BHB,Bn,n) = 0, (38)

in the (BHB,M) plane. Examples of such curved are presented in Fig. 2 (dashed
lines, B=BHB).

If the Herschel-Bulkley fluid is entirely unyielded, it does not flow and has a zero
flux. Hence equation (38) is satisfied by any (M,BHB) corresponding to the regime
1b (see Fig 2). Thus for Bn > 1/4, 0 < B < 2Bn – 1/2, any M ∈ (Bn, Bn−BHB−
1/2) satisfies (38). Similarly, in the case Bn > 1/4, and – 2Bn – 1/2 < BHB < 0, the
solution is M ∈ (max(B2

HB/2−Bn, −Bn−BHB−1/2), min(Bn,Bn−BHB−1/2)),
while for any pair BHB ∈ (−2

√
Bn,−1+2

√
Bn), M ∈ (B2

HB/2−Bn, min(Bn,Bn−
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BHB−1/2)) satisfies (38) if 1/16 < Bn < 1/4. If Bn≤ 1/16 or 1/16 < Bn < 1/4 and
BHB /∈ (−2

√
Bn,−1 + 2

√
Bn) or Bn > 1/4 and BHB /∈ (−2Bn− 1/2,2Bn− 1/2),

equation (38) has a unique solution M(Bn,n,BHB). Examples of sets defined by
(38) are presented in Fig 2 for n = 1 (dashed lines) and n = 0.25 (dashed-dotted
curves). Any point of domains marked by grey, belongs to this set as well.

It is easy to see that for a given Bn, the curves QHB(Bn,n,M,BHB) = 0 intersect at
the point (BHB = 0, M= – 1/4). For a free boundary flow, BHB = 0 correspond to
a special case of the absence of natural convection in the upper layer (i.e. a single
layer flow and the case when the upper layer has constant density).

Note that not all the flow regimes described in section 2 are compatible with the
zero flux condition, which requires that velocity is either identically zero or it
changes sign. Since the velocity vanished at the bottom, the stress should change
sign as well, hence zero flux is possible only for 3, 4 and 5-layer regimes.

5 Flow between two solid walls.

When the system is bounded from above by a solid wall instead of free boundary,
the first two conditions (26) are replaced by the no-slip condition V (d)=0 and by
specifying the total flux in the lower layer, QHB. This flux can be fixed arbitrary,
but in this paper we concentrate on the case QHB = 0, that corresponds to the mod-
eling of the flow in the container with final horizontal extension. In this case the
parameter M and B that govern the flow regime in the viscoplastic medium can-
not be determined independently from the velocity field, but should be obtained by
solving equations

QHB(Bn,n,M,B) = 0, (39)

Vy=d(Bn,n,MaHB,µ,δ ,d,M,B) = 0, (40)

with respect to M and B.

The effect of the parameters δ ,µ,d and MaHB on the flow pattern is illustrated in
Fig. 6, where the velocity in both phases is plotted versus the spatial coordinate ξ .
All the curves are computed for n= 1, Bn = 1/36. For a given velocity field, the
temperature distribution is given by (14). Temperature distributions corresponding
to velocity fields presented in Fig 6 are illustrated in Fig 7. Solid lines are computed
for δ= – 1, d = 1, µ= 20 and MaHB= 0.3. This choice of parameters corresponds
to a 5-layer flow regime for the Herschel-Bulkley fluid. As in the previous section
we chose a heat insulated upper boundary, qT = 0, and equal thermal properties
of the two fluids, Pe=1 and κ = 1. The effect of these parameters is similar to
that discussed in section 4. The deviation of concentration is proportional to the
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deviation of temperature, with the proportionality coefficient that can be negative
(see the discussion in section 4).

In Figs. 6a and 7a, δ= – 1, d = 1, µ= 20 and MaHB= 0, 0.16 and 0.3 for dashed-
dotted, solid and dashed lines, respectively. Dashed-dotted lines correspond to the
flow induced by natural convection solely. The Newtonian fluid flows in negative
direction. The velocity in this layer is a monotonically increasing function of y.
With the growth of the Marangoni traction, the velocity near the interface increases.
At MaHB= 0.16 (dashed curve), flow in different directions is observed and the ve-
locity profile exhibits internal minimum and maximum. At higher Marangoni trac-
tion MaHB= 0.3 (solid line), the Newtonian fluid flows in positive direction, with the
velocity monotonically decreasing with y. For the range of parameters presented in
Fig 6a, the velocity of the Herschel-Bulkley fluid decreases near the bottom and in-
creases near the interface. The corresponding temperature profiles computed with
heat insulated upper boundary presented in Fig.7a change from positive monotoni-
cally increasing (dashed-dotted line) to positive with an internal maximum (dashed
curve) and, finally, to a monotonically decreasing negative one (solid line).

Figures. 6b and 7b illustrate the effect of the Newtonian fluid viscosity on the flow
and heat transfer. Here, δ= – 1, d = 1 and MaHB= 0.3. µ = 2 and 20 for dashed
and solid lines, respectively. Dashed-dotted line presents a limit µ → ∞. In the
latter case, the Newtonian fluid is almost quiescent, and a 5-layer flow is evident
in the Herschel-Bulkley medium. The corresponding temperature deviation grows
in the viscoplastic layer and almost does not change in the Newtonian region. At
relatively high viscosity, µ = 20 (solid line), the Newtonian fluid flows in the pos-
itive direction and the velocity monotonically decreases with y. The corresponding
temperature deviation profile is negative. At lower viscosity, µ = 2 (dashed line),
the velocity profile in the upper layer is not monotonic, and a region of flow in
the negative direction is evident. The corresponding temperature deviation profile
exhibits several alternating concave and convex regions. The velocity in the lower
layer grows with µ near the bottom and decays near the interface.

Figures 6c and 7c demonstrate the influence of the parameter δ that characterizes
the natural convection in the Newtonian fluid. Here d = 1, µ= 20 and MaHB= 0.3. In
the case when the natural convection in the upper layer is absent, δ= 0 (dashed line),
the velocity profile in the upper layer is a quadratic parabola (Couette – Poiseuille
flow). At δ= – 1 (solid curve), the velocity in the upper layer changes its direction
and regions of convex and concave profile are evident. At δ= 1 (dashed-dotted
curve), the density in the upper layer grows with x, in contrast to all the other ex-
amples described so far. Here a 4-layer flow regime in the Herschel-Bulkley fluid
is observed. The velocity profile in the upper layer has a convex shape. The tem-
perature deviation profiles change from negative corresponding mostly to positive
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Figure 6: Velocity profiles in Herschel-Bulkley and Newtonian fluids for the flow
between two solid walls: (a) δ= – 1, d = 1, µ= 20, MaHB= 0.16, 0.3 and 0 for
dashed, solid and dashed-dotted lines, respectively. (b) δ= – 1, d = 1, MaHB= 0.3.
Dashed, solid and dashed-dotted curves are computed for µ = 2, 20 and µ → ∞,
respectively; (c) d = 1, µ= 20, MaHB= 0.3, δ= – 1, 1 and 0 for solid, dashed-dotted
and dashed lines, respectively; (d) δ= – 1, µ= 20, MaHB= 0.3, d = 1.5, 2 and 1 for
dashed, dashed-dotted and solid curves, respectively.



Thermocapillary and Natural Convection 63

 
Figure 7: Temperature profiles in Herschel-Bulkley and Newtonian fluids for the
flow between two solid walls: (a) δ= – 1, d = 1, µ= 20, MaHB= 0.16, 0.3 and 0 for
dashed, solid and dashed-dotted lines, respectively; (b) δ= – 1, d = 1, MaHB= 0.3.
Dashed, solid and dashed-dotted curves are computed for µ = 2, 20 and µ → ∞,
respectively; (c) d = 1, µ= 20, MaHB= 0.3, δ= – 1, 1 and 0 solid, dashed-dotted
and dashed lines, respectively; (d) δ= – 1, µ= 20, MaHB= 0.3, d = 1.5, 2 and 1 for
dashed, dashed-dotted and solid curves, respectively.
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velocity at δ= – 1 (solid line), to positive concave shapes for mostly negative ve-
locity (dashed and dashed dotted lines).

Figures 6d and 7d illustrate the influence of the Newtonian layer width. δ= –
1, µ= 20, MaHB= 0.3 and d = 1, 1.5 and 2 for solid, dashed and dashed-dotted
lines, respectively. One can observe a strong retardation effect of the upper wall at
small d (solid line). In this case the flow in the Newtonian layer is weak and has
an almost linear profile. With the increase of d, the retardation becomes weaker.
The flow in the Newtonian fluid is intensified, together with the velocity in the
viscoplastic medium near the interface. In contrast to this, the velocity near the
bottom decreases with the growth of the upper layer width, and at d = 2 one can
observe an unyielded quiescent region adjacent to the bottom. The temperature
deviation in these cases is negative.

6 Conclusions and discussion

A variety of exact analytical solutions describing natural and thermocapillary con-
vection in a horizontal double layer system consisting of a Newtonian and Herschel-
Bulkley fluids subjected to longitudinal temperature and concentration gradients is
constructed. The velocity is directed horizontally and depends on a vertical co-
ordinate, y, while the temperature and concentration fields are the sums of linear
functions of horizontal coordinate, x, and non-linear functions of y. This type of
solutions that was first found by Birikh (1966), is widely used to model thermo-
capillary flows in single and multi-layer configurations. Birikh (1966) and most of
subsequent studies employed this solution to model experiments, where the flow
takes place in a container of finite extension, requiring zero flux condition. Re-
cently, Goncharova and Kabov (2009) constructed Birikh type solutions satisfying
all exact conditions at the interfaces between liquid and co-current gas flow and
demonstrated that the gas flow can be used to control convection in liquid. In this
work we follow the approach of Goncharova and Kabov (2009).

The lower boundary of the system is a solid wall with no-slip, while the upper one
if either a solid wall or a free surface. It was demonstrated that, depending on the
governing parameters of the system, viscoplastic layer is entirely yielded or un-
yielded, or it can be yielded partially, exhibiting up to 5 flowing and quasi-solid
layers. The dependence of the flow patterns (appearance and position of unyielded
regions), velocity profile, mass and heat transfer rate on the governing parameters
have been studied. Regimes with partial yielding and unyielded regions located
near the interface are of special interest. As was demonstrated by Frigaard (2001)
and Moyers-Gonzalez, Frigaard, and Nouar (2004), in a somewhat similar isother-
mal flow, such configurations can suppress interfacial instability and result in a
super-stable flow.
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In this work all the physical parameters of the media, except for the interfacial ten-
sion and density, are assumed temperature and concentration independent. How-
ever, the rheological characteristics of many viscoplastic fluids exhibit strong de-
pendence on the temperature and on the concentration of some chemical species.
The constructed solutions can be generalized to the case of, say, concentration de-
pendent parameters, if the flow is induced by a longitudal temperature gradient,
concentration being a function of vertical coordinate solely. We plan to study such
solutions in our future work.
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Appendix

The temperature profile in the Newtonian fluid layer is given by

ΘN = ΘHB (0)−C1y+PeT
N

[
VHB (0)

y2

2
+

MaN

µ

y3

6
+

δ

12µ

(
y5

10
− y4

2
+ y3

)]
,

y ∈ [0,d],
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where C1 = qT −PeT
N

(
VHB (0)d + MaN

µ

d2

2 + δ

2µ

(
d4

12 −
d3

3 + d2

2

))
.

The velocity and the temperature profiles in Herschel-Bulkley fluid are given by
(31) and (34) respectively. For the case of Bingham fluid, n = 1, these integral pre-
sentations can be simplified. The results are given below for various flow regimes,
which are numbered according to section 3 (see Fig. 2)

1. Entirely yielded, 1a.

VHB =
y3 +1

6
−B

y2−1
2

+M (y+1) , y ∈ [−1,0]

ΘHB = PeT
HB

[
1
6

(
y5

20
+

y2

2
− 9

20

)
− B

2

(
y4

12
− y2

2
+

5
12

)
+M

(
y3

6
+

y2

2
− 1

3

)]
−κC1 (y+1) ,

2. Entirely unyielded, 1b.

VHB = 0, ΘHB =−κC1 (y+1) , y ∈ [−1,0]

Herschel-Bulkley flows if |τHB| > Bn. The pass from yielded to unyielded regime
can occur at y = a, b, c or h, where a = B+

√
B2−2(M−Bn), b = B+

√
B2−2(M +Bn),

c = B−
√

B2−2(M +Bn) and h = B−
√

B2−2(M−Bn).
3. Two layers, lower one is yielded, 2a
We define the depth of unyielded region by d1,-1 < d1 (a or c) < 0.

VHB =

{
y3+1

6 −B y2−1
2 +M (y+1) , y ∈ [−1,d1]

d3
1+1
6 −B d2

1−1
2 +M (d1 +1) = V1, y ∈ [d1,0]

ΘHB(y) =

{
ΘHB,1(y), y ∈ [−1,d1]
ΘHB,2(y), y ∈ [d1,0]

ΘHB,1 =PeT
HB

[
1
6

(
y5

20
+

y2

2
− 9

20

)
− B

2

(
y4

12
− y2

2
+

5
12

)
+M

(
y3

6
+

y2

2
− 1

3

)]
+

+C2(y+1), y ∈ [−1,d1]

C2 =−κC1 +V1PeT
HBd1−PeT

HB

[
1
6

(
d4

1
4

+d1

)
− B

2

(
d3

1
3
−d1

)
+M

(
d2

1
2

+d1

)]
ΘHB,2 = V1PeT

HB

(
y2−d2

1
)

2
−κC1 (y−d1)+ΘHB,1 (d1) , y ∈ [d1,0]
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3. Two layers, lower one is unyielded, 2b
Let d1 be the depth of yielded region, -1 < d1 (b or h) < 0, then

VHB =

{
0 y ∈ [−1,d1]
y3−d3

1
6 −B y2−d2

1
2 +M (y−d1) , y ∈ [d1,0]

ΘHB(y) =

{
ΘHB,1(y) = C3(y+1), y ∈ [−1,d1]
ΘHB,2(y), y ∈ [d1,0]

,

C3 = PeT
HB

[
1
8

d4
1 −

B
3

d3
1 +

M
2

d2
1

]
−κC1,{

ΘHB,2 = PeT
HB

[
1
6

(
y5

20 −d3
1

y2

2

)
− B

2

(
y4

12 −d2
1

y2

2

)
+M

(
y3

6 −d1
y2

2

)]
−κC1y+C4,

C4 = C3 (d1 +1)−PeT
HB
[
− 3

40 d5
1 + 5B

24 d4
1 − M

3 d3
1

]
−κC1d1

3. Three layers, lower one is yielded, 3a
Let the unyielded region lay between d1 and d2, –1 < d1< d2< 0. In this case d1 and
d2 can be a and b or c and d.

VHB =


sign(τ1)

[
y3+1

6 −B y2−1
2 +M (y+1)

]
, y ∈ [−1,d1]

sign(τ1)
[

d3
1+1
6 −B d2

1−1
2 +M(d1 +1)

]
= V1, y ∈ [d1,d2]

sign(τ3)
[

y3−d3
2

6 −B y2−d2
2

2 +M(y−d2)
]
+V1, y ∈ [d2,0]

Here and further denotes the sign of shear stress function at the yielded (unyielded)
region i.

ΘHB(y) =


ΘHB,1(y), y ∈ [−1,d1]
ΘHB,2 (y) , y ∈ [d1,d2]
ΘHB,3 (y) , y ∈ [d2,0]

ΘHB,1 =PeT
HBsign(τ1)

[
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2
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)]
+C5 (y+1) ,

C5 =−PeT
HBsign(τ1)
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8
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3
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M
2
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]
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HBsign(τ3)
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8
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B
3

d3
2 −

M
2
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]
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ΘHB,2 = V1PeT
HB

y2

2
+C6y+C7,

C6 =−PeT
HBsign(τ3)

[
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B
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M
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]
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C7 = ΘHB,1 (d1)−C6d1−V1PeT
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C8 =sign(τ3)
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M
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3. Three layers, lower one is unyielded, 3b
Yielded region is between d1 = b and d2 = c. –1 < d1< d2< 0.

VHB =


0, y ∈ [−1,d1]

sign(τ2)
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ΘHB(y) =


ΘHB,1(y) = C9(y+1), y ∈ [−1,d1]
ΘHB,2 (y) , y ∈ [d1,d2]
ΘHB,3 (y) , y ∈ [d2,0]

C9 =−PeT
HBsign(τ2)
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3. Four layers, lower one is yielded, 4a
–1 < d1= a < d2= b < d3= c < 0. Yielded regions are between -1 and d1 and between
d2 and d3,

VHB =
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]
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C16 =−PeT
HBsign(τ3)
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3
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3. Four layers, lower one is unyielded, 4b
–1 < d1 = b < d2 = c < d3 = d < 0. Yielded regions are between d1 and d2 and
between d3 and 0.

VHB =



0, y ∈ [−1,d1]
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ΘHB(y) =


ΘHB,1(y) = C19 (y+1) , y ∈ [−1,d1]
ΘHB,2 (y) , y ∈ [d1,d2]
ΘHB,3 (y) , y ∈ [d2,d3]
ΘHB,4 (y) , y ∈ [d3,0]
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ΘHB,3 = V1PeT
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3. Five layers, 5a
–1 < d1=a < d2=b < d3=c < d4=h < 0. Yielded regions are between -1 and d1, d2
and d3, and between d4 and 0.
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