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Rayleigh-Marangoni Instability of Binary Fluids with
Small Lewis Number and Nano-Fluids in the Presence of

the Soret Effect

A. Podolny1,2, A. Nepomnyashchy3 and A. Oron4

Abstract: A general model for two-component transport phenomena applica-
ble for both nanofluids and binary solutions is formulated. We investigate a com-
bined long-wave Marangoni and Rayleigh instability of a quiescent state of a binary
(nano-) liquid layer with a non-deformable free surface. The layer is heated from
below or from above. The concentration gradient is induced due to the Soret effect.
A typical behavior of monotonic and oscillatory instability boundaries is examined
in the limit of asymptotically small Lewis numbers and poorly conducting bound-
aries in the two important long-wave domains k ∼ Bi1/2 and k ∼ Bi1/4.
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1 Introduction

Investigation of the combined buoyancy-driven (Rayleigh) and surface-tension-
driven (Marangoni) convection in binary fluids was started several decades ago
[Nield (1967); Castillo and Velarde (1978)]. A special attention was paid to the in-
stability of a quiescent liquid layer subject to an imposed vertical temperature gradi-
ent, when the concentration gradient is produced by the Soret effect (see [Cross and
Hohenberg (1993); Oron and Nepomnyashchy (2004)] and the references therein).
An essential progress in understanding the instability phenomena was achieved in
the case of nearly insulated boundaries, i.e., small Biot number Bi (see [Podolny,
Nepomnyashchy, and Oron (2008)]), where a longwave instability was considered.
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However, a binary fluid has one more natural small parameter that is the Lewis
number L, i.e., the ratio of the characteristic heat conduction time and the diffu-
sion time. This parameter is especially small for a new class of fluids, nanofluids,
where the role of solute molecules is played by nanoparticles in the size range of
about 10 to 50 nm. From the point of view of dynamics and heat/mass transfer,
a typical nanofluid behaves as a Newtonian binary fluid with an extremely small
Lewis number (L ≤ 10−4) and high Soret coefficient (∼ 10− 102) [Shliomis and
Souhar (2000); Mazzoni, Cerbino, Brogioli, Vailati, and Giglio (2004); Kim, Hong,
and Choi (2006)]. There is a significant number of publications on the buoyancy
convection in nanofluids [Shliomis and Souhar (2000); Mazzoni, Cerbino, Brogi-
oli, Vailati, and Giglio (2004); Kim, Hong, and Choi (2006); Xuan and Li (2000);
Xuan and Roetzel (2000); Khanafer, Vafai, and Lightstone (2003); Kim, Kang,
and Choi (2004); Savino and Paterna (2008)], including binary nanofluids [Ryskin,
Muller, and Pleiner (2003); Kim, Kang, and Choi (2005); Kim, Jung, and Kang
(2007); Kim, Kang, and Choi (2007)]. The Marangoni convection in nanofluids is
still scarcely investigated, though an essential influence of nanoparticles on surface
tension was revealed in some experiments [Xue, Fan, Hu, Hong, and Cen (2006);
Dong and Johnson (2003b); Dong and Johnson (2003a); Ravera, Ferrari, Liggieri,
Loglio, Santini, and Zanobini (2008)]. The latter phenomenon can be significant
for applications of nanofluids in boiling devices [Xue, Fan, Hu, Hong, and Cen
(2006)], including those used in microgravity conditions. Nanofluids with a free
surface are used in heat pipes, therefore the problem of interfacial convection in
non-isothermal nanofluids is of a great practical importance.

The previous investigation of the longwave Rayleigh-Marangoni convection [Po-
dolny, Nepomnyashchy, and Oron (2008)] was carried out under the assumptions
Bi� 1, L = O(1). The formal limit L→ 0 taken in the framework of the previous
theory, corresponds to the case Bi� L� 1, and it does not include the important
cases Bi = O(L) and Bi � L. Also, only the longwave type of instability was
studied.

In the present paper, we consider the Rayleigh-Marangoni instability of a binary
fluid layer or a layer of nano-fluid in the case where both Bi and L are small. In
Sec. 2, we formulate a mathematical model applicable for both binary solutions
and nanofluids. Sec. 3 contains the main results of the linear stability analysis for
both monotonic and oscillatory instability modes. Sec. 4 contains the discussion of
results and the conclusions.

2 Formulation of the Model

As stated in the introduction, we consider both binary solutions and nano-fluids.
The formulation of the model that describes the Rayleigh-Marangoni convection in
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a binary liquid is well known, and we refer the reader to the books [Colinet, Legros,
and Velarde (2001); Nepomnyashchy, Velarde, and Colinet (2002)]. In the present
section, we discuss in more detail the case of nanofluids.

In order to develop a realistic two-component model for transport phenomena in
nanofluids, it is important to understand the mechanisms by which the nanoparti-
cles can develop a slip velocity with respect to the carrier fluid. According to the
estimates in [Buongiorno (2006)], Brownian diffusion and thermophoresis are im-
portant as slip mechanisms, while gravity settling is negligible. Thus, the diffusion
mass flux for the nanoparticles can be written as the sum of two components: the
term proportional to the concentration gradient ~jp,B, representing Brownian dif-
fusion, whereas the term proportional to the temperature gradient ~jp,T , which is
identical to that corresponding to the Soret effect in a binary solution, represents
thermophoresis

~jp = ~jp,B +~jp,T =−ρpDB∇c−ρpDT
∇ϑ

ϑ
. (1)

Here DB =
kB ϑ

3π µ dp
is Brownian diffusion coefficient ranging from 4×10−10 to 4×

10−12 m2/s , kB is Boltzmann’s constant, ϑ is temperature, µ is dynamic viscosity
of the fluid (µ ∼ 1 mPa s), dp is nanoparticle diameter dp < 100 nm, ρp is the mass
density of the nanoparticles (ρp ∼ 4 g/cm3), c is nanoparticle volumetric fraction,

DT = δ
µ

ρ
c is "thermal diffusion coefficient", δ = δ (kth,k

(p)
th ) is the function of

both thermal conductivity of the fluid kth and that of the particle material k(p)
th . For

instance, for alumina nanoparticles in water δ ∼ 0.006.

We consider a fluid layer under terrestrial gravity conditions subjected to a trans-
verse temperature gradient. A concentration gradient is induced due to the Soret
effect. The layer is exposed to the ambient gas phase at its nondeformable free
surface.

In the framework of our theory we consider two convection mechanisms. First,
surface tension is assumed to depend on both temperature and solute concentration,
hence both Marangoni, thermo- and soluto -capillary effects are taken into account:

σ(ϑ ,c) = σ0−σt(ϑ −ϑ0)+σc(c− c0), (2)

where σ0 = σ(ϑ0,c0) σt =−∂σ/∂ϑ , σc = ∂σ/∂c.

In the case of binary solution, the approximation (2) is standard. In the case of a
nanofluid, the very idea of using a thermodynamic equilibrium relation between the
surface tension σ and the concentration of nanoparticles c needs some comments.
A significant influence of the nanoparticle concentration on the surface tension was
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observed in experiments [Okubo (1995); Xue, Fan, Hu, Hong, and Cen (2006);
Dong and Johnson (2003b); Dong and Johnson (2003a); Ravera, Ferrari, Liggieri,
Loglio, Santini, and Zanobini (2008)]. However, there is a strong evidence that un-
der conditions of a real experiment, a true thermodynamic equilibrium between the
bulk and interface is never achieved [Steinchen (2008)]. We leave the analysis of
the physical roots of the surface tension dependence on the particle concentration,
as well as the incorporation of more delicate non-equilibrium and nonlinear effects,
such as ordering and aggregation of particles at the interface for a future research.
In the present paper, we will use assumption (2) which seems to be sufficient for
the development of a linear stability theory.

The liquid density ρ is assumed to depend on both the temperature ϑ and solute
concentration c,

ρ = ρ̄[1− β̃ (ϑ − ϑ̄)− γ̃(c− c̄)], (3)

where ρ̄, ϑ̄ , c̄ are, respectively, reference values of density, temperature and solute

concentration, β̃ =− 1
ρ̄

(
∂ρ

∂ϑ

)
p
, γ̃ =− 1

ρ̄

(
∂ρ

∂c

)
p
. Thus, the effect of buoyancy

is included in the analysis. Recall that in the layer, where a combination of Rayleigh
and Marangoni convection takes place, deformation of the free surface is irrelevant.

The set of conservation equations for nanofluids consists of the continuity equation
(4), the momentum equation (5) in the Oberbeck-Boussinesq approximation, so
that gravity results in the buoyancy force produced by temperature and concentra-
tion stratification, the nanofluid energy equation (6) and the nanoparticle continuity
equation (7) [Buongiorno (2006)]:

∇ ·~v = 0, (4)

~vt +(~v ·∇)~v =−ρ
−1
0 ∇ p+ν ∇

2~v+ β̃ (ϑ −ϑ)~ez + γ̃(c− c)~ez, (5)

ϑt +~v ·∇ϑ = κ∇
2

ϑ +
ρp ηp

ρ η

{
DB∇c ·∇ϑ +DT

∇ϑ ·∇ϑ

ϑ

}
, (6)

ct +~v ·∇c = ∇

{
DB ∇c+DT

∇ϑ

ϑ

}
. (7)

Here, ∇ =
{

∂

∂ x
,

∂

∂ y

}
, ν is kinematic viscosity, κ is thermal diffusivity, ρ is fluid

density (ρ ∼ 1g/cm3), η is nanofluid specific heat, ηp is nanoparticle specific
heat, and ϑ ,c are constant average values of the temperature and concentration,
respectively. The third equation (6) states that heat can be transported in nanofluids
by convection (second term in the left-hand side), conduction (first term in the
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right-hand side) and also by nanoparticle diffusion (second and third terms in the
right-hand side). It should be noted that two last terms in the right-hand side in
the nanofluid energy equation (6) account for the additional contribution associated
with the nanoparticle motion relative to the carrier fluid. The last equation (7) states
that nanoparticles can move homogeneously with the fluid (second term in the left-
hand side), but they also possess a slip velocity relative to the fluid due to Brownian
diffusion and thermophoresis.

To estimate the relative importance of the various transport mechanisms in nanoflu-
ids, it is useful to make the conservation equations non-dimensional. For this pur-
pose we use the following standard scaling

t→
h2

0
ν

t, (x,z)→ h0(x,z), (u,w)→ κ

h0
(u,w),

ϑ → ϑ∞ +ah0T, ∆ϑ ≡ ah0 = ϑ0−ϑ∞,

c→ σt

σc
ah0C, p→ µκ

h2
0

p.

(8)

The system (4-7) takes form

∇ ·~v = 0,

~vt +P−1(~v ·∇)~v =−∇p+∇
2~v+ rth (T −T ) ·~ez + rc (C−C) ·~ez,

PTt +~v ·∇T = ∇
2T +KC∇C ·∇T +KT ∇T ·∇T,

PL−1Ct +L−1~v ·∇C = ∇
2C + χ∇

2T,

(9)

where the last term of the fourth equation in (9) stands for the Soret effect taken

into account. Also, we assume
δϑ

ϑ∞

� 1 applying linearization around a certain

reference temperature in the equations (6) and (7).

Order-of-magnitude estimations of the contribution of each term in the non-dimen-
sional nanofluid energy equation show that heat transfer associated with nanoparti-
cle dispersion is negligible compared with heat conduction and convection:

KC =
ρp ηp

ρ η
· DB

κ
· σt

σc
·∆ϑ ∼ 10−5,

KT =
ρp ηp

ρ η
· DT

κ
· ∆ϑ

ϑ∞

∼ 10−6.
(10)

Therefore, the consistent model for the description of hydrodynamics and heat
transfer in nanofluids is identical to the set of equations for a binary mixture with
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the Soret effect:

∇ ·~v = 0,

~vt +P−1(~v ·∇)~v =−∇p+∇
2~v+ rth (T −T ) ·~ez + rc (C−C) ·~ez,

PTt +~v ·∇T = ∇
2T,

PL−1Ct +L−1~v ·∇C = ∇
2C + χ∇

2T.

(11)

The boundary conditions at the bottom rigid surface z = 0 reflect the no slip condi-
tion for the velocities, and a specified heat flux and mass impermeability:

z = 0 : ~v = 0, Tz =−1, Cz = χ. (12)

At the free non-deformable liquid-gas interface, the boundary conditions are, re-
spectively, the kinematic boundary condition, heat and mass flux balance, and the
balance of tangential stresses (the temperature of the gas is chosen as the reference
temperature):

z = 1 : ~v ·~ez = 0, Tz +BiT = 0, Cz−χBiT = 0,

∂zu = Mth(Cx−Tx).
(13)

The dimensionless parameters of the problem are given as P =
ν

κ
- Prandtl number,

L−1 =
κ

DB
- inverse Lewis number, Bi =

qh0

kth
- Biot number, mth =

σtah2
0

µκ
-thermal

Marangoni number, mc =
ασcah2

0
µκ

- concentration Marangoni number, χ =
mc

mth
=

ασc

σt
- Soret number, α =

DT

DB ϑ̄
, rth =

gβ̃ah4
0

κν
- thermal Rayleigh number, rc =

gγ̃σtah4
0

σcκν
- concentration Rayleigh number, ϕ̃ =

rc

rth
=

σt γ̃

σcβ̃

- buoyancy separation

number, Σ =
σh0

µκ
- inverse capillary number.

3 Linear Stability Theory

We carry out linear stability analysis of the base state given by the following ex-
pressions:

~v0 = 0, T0 =−z+
1+Bi

Bi
, C0 = χ z. (14)
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The expression for the base state pressure p0 is omitted here because it is not im-
portant in the current analysis.

We introduce a stream function ψ via u = ψz, w =−ψx and use it in the forthcom-
ing derivations. A two-dimensional linear problem for the case of a non-deformable
interface is solved using normal modes for perturbation functions

(p,T,C,ψ) = (p̃(z), T̃ (z),C̃(z), ψ̃(z))eikx+ωt , (15)

where k and ω are wave number and growth rate of the disturbance, respectively.

Finally, we obtain the following linear set of equations for perturbation functions:

ω(ψ̃ ′′− k2
ψ̃) = ψ̃

′′′′−2k2
ψ̃
′′+ k4

ψ̃− ik rth (T̃ + ϕ̃C̃),

ωPT̃ + ikψ̃ =−k2T̃ + T̃ ′′,

ωPL−1C̃− ikL−1
χψ̃ =−k2C̃ +C̃′′+ χ(−k2T̃ + T̃ ′′).

(16)

The boundary conditions are:

at z = 0 :

ψ̃ = ψ̃
′ = 0, T̃ ′ = C̃′ = 0, (17)

at z = 1 :

ψ̃ = ψ̃
′ = 0, T̃z +BiT̃ = 0, C̃z−χBiT̃ = 0,

ψ̃
′′ = ikmth(C̃− T̃ ),

(18)

where primes denote derivatives with respect to z.

We study the case of the combined long-wave Marangoni-Rayleigh convection of
the system with poorly conducting boundaries in the limit of asymptotically small
Lewis numbers. The behavior of the critical Marangoni and Rayleigh numbers is
determined by the relationships between various small parameters of the problem,
such as Biot number Bi, Lewis number L and the wave number k.

We apply a new approach in which L is considered as a basic small parameter, while
the smallness of k and Bi with respect to L can be different. This approach, which
is especially important in the case of nanofluids, reveals an essential difference in
the scaling of the monotonic and oscillatory instability thresholds and the shape of
the eigenfunctions. Thus, consideration of the nanofluids, even in the framework of
the binary-fluid model, leads to solution of new non-trivial mathematical problems.
In order to obtain the full neutral curve we consider several distinguished limits.
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3.1 Monotonic instability mode

3.1.1 Long-wave combined Marangoni and Rayleigh convection.

We first consider the long-wave monotonic instability threshold ω = 0 in the case
when Bi∼ L∼ k2. We use the following expansions for the perturbation functions,
and parameters of the problem

k = ε K, ψ̃ = ε(Ψ0 + ε
2
Ψ2...),

(T̃ , C̃) = (T0, C0)+ ε
2(T2, C2)+ ...

(mth, rth) = (m0, r0)+ ε
2(m2, r2)+ ...

(19)

Substituting the above expansion into the system (16)-(18) in the leading order of
approximation with respect to small ε yields

Ψ0,zzzz− iK r0(T0 + ϕ̃ C0) = 0,

T0,zz = 0,

C0,zz + χ T0,zz =−iK χ l−1Ψ0,

(20)

at z = 0 :

Ψ0 = Ψ0,z = T0,z = C0,z = 0, (21)

at z = 1 :

Ψ0 = T0,z = C0,z = 0,

Ψ0,zz = iK m0(C0−T0).
(22)
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Solving the set of equations (20)-(22) results in

m0 =
{
−2
((

3 i−
√

3
)

eγ +2
√

3e3γ −
(

3 i+
√

3
)

ei
√

3γ+

4
(
−3 i+

√
3
)

e
(3+i

√
3)γ

2 +4
(
3 i+
√

3
)

e(3+i
√

3)γ −
(
3 i+
√

3
)

e(4+i
√

3)γ−

8
√

3e
(5+i

√
3)γ

2 −
(
−3 i+

√
3
)

e(3+(2 i)
√

3)γ +4
(
−3 i+

√
3
)

e
(5+(3 i)

√
3)γ

2 +

4
(
3 i+
√

3
)

eγ+i
√

3γ −8
√

3e
3(γ+i

√
3γ)

2 +2
√

3eγ+(2 i)
√

3γ

)
l γ4
}

/{(
3 i+
√

3
)

K2 χ

(
eγ + e3γ + ei

√
3γ +18e(2+i

√
3)γ −4e

(3+i
√

3)γ

2 −4e(3+i
√

3)γ+

e(4+i
√

3)γ −4e
(5+i

√
3)γ

2 + e(3+(2 i)
√

3)γ−

4e
(5+(3 i)

√
3)γ

2 −4eγ+i
√

3γ −4e
3(γ+i

√
3γ)

2 + eγ+(2 i)
√

3γ

)}
,

(23)

where γ =
K

1
3 ϕ̃

1
6 χ

1
6 r0

1
6

l
1
6

. In the limit of small K we obtain

m0 =
3 ϕ̃ r0

20
. (24)

On the other hand, expanding the expression (3.35) from [20] in the limit of a small
Lewis number L, yields

m0 =
3 ϕ̃ r0

20
+
−3L (−320+(1+ ϕ̃) r0)

20 χ︸ ︷︷ ︸
O(L)

+... (25)

Thus, in the limit of small K, the critical threshold m0(r0) retains its sign and is
slightly curved. This result suggests that the region m,r = O(L) has to be investi-
gated in more detail.

For this purpose, we use a modified scaling

t→
h2

0
D

t, (x,z)→ h0(x,z), (u,w)→ D
h0

(u,w),

ϑ → ϑ∞ +ah0T, ah0 = ∆ϑ , c→ αah0C, p→ µD
h2

0
p,

(26)
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where D = DB. Applying scaling (26) to our original system (4)-(7) leads to the
modified system

∇ ·~v = 0,

P−1L[~vt +(~v ·∇)~v] =−∇p+∇
2~v+Rth (T −T ) ·~ez +Rc (C−C) ·~ez,

Tt +~v ·∇T = L−1
∇

2T + K̃C∇C ·∇T + K̃T ∇T ·∇T,

Ct +~v ·∇C = ∇
2C +∇

2T,

(27)

where

K̃C =
ρp ηp

ρ η
·α ∆ϑ ∼ 15.

K̃T =
ρp ηp

ρ η
· DT

D
· ∆ϑ

ϑ∞

∼ 45.

K̃C, K̃T � L−1 =
κ

D
∼ 107.

(28)

Therefore, using the modified scaling (26) we prove once again that the contribu-
tion of the terms which account for the additional contribution associated with the
nanoparticle motion relative to the carrier fluid in the nondimensional nanoparti-
cle energy equation is negligible compared with heat conduction and convection.
Thus, system (27) can be applied for the description of the monotonic instability in
the nanofluids in the framework of a binary-fluid model with the Soret effect when
the two last terms in the right-hand side in the nondimensional nanoparticle energy
equation can be safely omitted. In the new representation, the boundary conditions
take the following form:

z = 0 : ~v = 0, Tz =−1, Cz = 1. (29)

z = 1 : ~v ·~ez = 0, Tz +BiT = 0, Cz−BiT = 0,

∂zu = McCx−MthTx.
(30)

Application of the modified scaling (26) leads to the new definitions of the Marangoni

number, Rayleigh number and buoyancy separation ratio: Mth =
σtah2

0
µD

-thermal

Marangoni number, Mc =
ασcah2

0
µD

- concentration Marangoni number, Rth =
gβ̃ah4

0
Dν

- thermal Rayleigh number, Rc =
gγ̃αah4

0
Dν

- concentration Rayleigh number,
αγ̃

β̃

-
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buoyancy separation number. The relation between the two kinds of scaling (8) and
(26) can be presented as

mth = Mth L, rth = Rth L, ϕ̃ = ϕ/χ. (31)

The linear set of equations for the perturbation functions in the new scaling is

ω P−1 L(ψ̃ ′′− k2
ψ̃) = ψ̃

′′′′−2k2
ψ̃
′′+ k4

ψ̃− i k Rth T̃ − i k Rc C̃,

L [ωT̃ + ikψ̃] =−k2T̃ + T̃ ′′,

ωC̃− ikψ̃ =−k2C̃ +C̃′′− k2T̃ + T̃ ′′.

(32)

The linearized boundary conditions are:

at z = 0 :

ψ̃ = ψ̃
′ = 0, T̃ ′ = C̃′ = 0, (33)

at z = 1 :

ψ̃ = 0, T̃ ′+Bi T̃ = 0, C̃′−Bi T̃ = 0, ψ̃
′′ = ik (McC̃−MthT̃ ). (34)

Substituting standard expansions (19) along with

(Mth, Rth) = (M0, R0)+ ε
2 (M2, R2)+ ... (35)

into the set (32)-(34) for both limits k2 ∼ L and k4 ∼ L yields in the leading order
of approximation the expression for the monotonic instability threshold

1− χ M0

48
+

ϕ R0

320
= 0, (36)

that can be recast upon introduction of the Bond number B = Rth/Mth in the form

M0 =
960

−3Bϕ +20 χ
. (37)

The second-order correction in the subcase k4 ∼ L, i.e., k = ε K, L = ε4 l, Bi = ε4 β

is given by

M2 =
−640K2

(
261B2 ϕ2−3608Bϕ χ +9240 χ2

)
231(3Bϕ−20 χ)3 . (38)

Therefore, the long-wave monotonic instability with kc = 0 sets in when Bϕ/χ <
3.3945 and when Bϕ/χ > 10.4292 (Fig. 1).
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Figure 1: Long-wave monotonic neutral curves in the limit k = εK, L = ε4l, Bi =
ε4β .

In the next subcase k = ε K, L = ε2 l, Bi = ε2 β , the second-order correction to the
monotonic instability threshold can be written as

M2 = AK2
[

1− F
K2 +β

]
, (39)

where

A =
M2|K4∼L

K2 , F =
693 l (3Bϕ−20 χ)(3B(ϕ−1)−20(1+ χ))

522B2 ϕ2−7216Bϕ χ +18480 χ2 . (40)

Our analysis shows that in this limit in the parameter regions Bϕ/χ < 3.3945 and
Bϕ/χ > 10.4292, the monotonic neutral curve has a minimum of the absolute
value in the long-wave region either at K(β )

c = 0 for F(β ) ≤ 1 (Fig.2a), or at finite
K(β )

c =
√√

F(β )−1 for F(β ) > 1 (Fig.2b), where K(β )
c = K/

√
β , F(β ) = F/

√
β .

It should be noted that the previous limit is a particular case of the latter when K
tends to infinity.

Next, we consider the limit of Bi ∼ L2 and L ∼ k: k = δ K, L = δ l, Bi = δ 2 β . In
this case, the higher-order correction can be obtained from the previous case when
k = O(

√
L) in the limit of a small K

lim
K→0

M2|k'√L = M1 =
960 l K2[3B(ϕ−1)−20(1+ χ)]

(K2 +β )(3Bϕ−20χ)2 . (41)

Depending on the parameters of the problem the minimum of the full monotonic
neutral curve is obtained either at k = 0 or it is located beyond the region k = O(δ )
(Fig.3).
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Figure 2: Typical forms of the long-wave monotonic neutral curve in the limit.
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Figure 3: Examples of the monotonic neutral curves in the limit Bi∼ L2 and L∼ k:
k = δ K, L = δ l, Bi = δ 2 β . Depending on the problem parameters the minimum
of the full monotonic neutral curve is attained at k = 0 (right panel), when M0 >
0, M1 > 0 ((36), (41)) or the minimum is located beyond the region k = O(δ ) (left
panel), when M0 < 0, M1 > 0 ((36), (41)).

It should be noted that in the limit k = ε K, L = ε2 l, Bi = ε4 β , using scaling (8)
for the monotonic instability problem we can examine the asymptotic behavior of
the monotonic neutral curve for K� 1. Our analysis reveals that for ϕ̃ χ r0 > 0, the
minimum of the neutral curve is located beyond the region k = O(ε)

m0 =
2 l δ 4

K2/3χ
, (42)

where δ = |ϕ̃ χ r0|1/6/l1/6. Thus, in this subcase a new analysis in the short-wave
domain is essential.
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We complete our investigation of the monotonic instability for small Lewis num-
bers by a numerical investigation of the region of finite wave numbers. Our analysis
shows that for both ways of heating, the neutral curves exist for all Bond numbers.
When B < 3.3945, the minimum is attained at zero for heating from below and
in the region of finite k for heating from above, see Fig.4. When B > 10.4292,
the situation is opposite: the long-wave instability appears for heating from above
and the short-wave one for heating from below, see Fig.5. In the intermediate
region, for both ways of heating the minimum is attained in the region of finite
wave numbers, but the sign of M(k = 0) changes at B = 6.667, as shown in Figs.6-
8. In Fig. 9, the variations of the minimum value of the monotonic Marangoni
number and of the corresponding critical wave number with the Bond number are
presented. A numerical investigation shows that for heating from above with a de-
crease in the Bond number, the minimal Marangoni number tends to infinity when
the Bond number approaches a certain finite value. Figure 10 presents the varia-
tion of the minimal value of the critical Rayleigh number with the Bond number
(ϕ = 0.5), see the left panel, and that of the critical Rayleigh number versus the crit-
ical Marangoni number, see the right panel, for the case of monotonic instability in
the limit Bi∼ L2, k = O(1).
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Figure 4: Examples of the monotonic neutral curves in the limit Bi∼ L2, k = O(1)
in the region Bϕ < 3.3945, (for ϕ = 0.5). When Bϕ < 3.3945, the minimum is
attained at zero for heating from below, whereas for heating from above it is located
in the domain of finite k. When Bϕ exceeds this value, the minimum of the neutral
curve appears for k 6= 0 for heating from below.

3.1.2 Long-wave Rayleigh convection.

When the fluid layer is relatively thick, the buoyancy effect becomes dominant be-
cause the Rayleigh number is proportional to the fourth power of the layer depth,
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Figure 5: Examples of the monotonic neutral curves in the limit Bi∼ L2, k = O(1)
in the domain Bϕ > 10.4292, (for ϕ = 0.5). When Bϕ exceeds this value, the
minimum of the neutral curve is located at k = 0 for heating from above. For
heating from below the minimum of the neutral curve is attained in the region of
finite wave numbers.
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Figure 6: Examples of the monotonic neutral curves in the limit Bi∼ L2, k = O(1)
in the domain 3.3945 < Bϕ < 10.4292, (for ϕ = 0.5). When Bϕ > 6.667, the sign
of the monotonic neutral curve changes.

Ra∼ h4, whereas the Marangoni number is proportional to the squared layer depth,
Ma∼ h2. Assuming the limit of asymptotically small Lewis numbers k = O(1), L =
O(ε2), R0 = O(1), M0 = 0 in the leading order of approximation with respect to
the small ε we obtain the following problem for the concentration perturbation
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Figure 7: Examples of the monotonic neutral curves in the limit Bi∼ L2, k = O(1)
in the domain 3.3945 < Bϕ < 10.4292, (for ϕ = 0.5). For both directions of heating
the neutral curves emerge with a minimum in the region of finite wave numbers.
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Figure 8: Examples of the monotonic neutral curves in the limit Bi∼ L2, k = O(1)
in the domain 3.3945 < Bϕ < 10.4292, (for ϕ = 0.5). For both directions of heating
the neutral curves emerge with a minimum in the region of finite wave numbers.

function:

CV I
0 (z)−3k2CIV

0 (z)+3k4C
′′
0(z)− k2C0(z)(k4 +ϕR0) = 0,

z = 0 : C
′
0 = 0, −k2C0 +C

′′
0 =−k2C

′
0 +C

′′′
0 = 0,

z = 1 : C
′
0 = 0, −k2C0 +C

′′
0 =−k2C

′′
0 +C

′′′′
0 = 0.

(43)
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Figure 10: Variation of the minimal value of the monotonic Rayleigh number with
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the critical Marangoni number (right panel) in the case of the monotonic instability
in the limit Bi∼ L2, k = O(1).

Assuming the long-wave limit when k� 1, we use following expansions with re-
spect to a small k:

C0(z) = c0(z)+ k2c2(z)+ ...

R0 = r0 + k2r2 + . . . .
(44)
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Solving (43) with (44) we obtain

r0 =−320
ϕ

, r2 =−18560
693ϕ

. (45)

Thus, in the case of a pure buoyancy convection in the limit of asymptotically
small Lewis numbers, the minimum of the neutral curve is always located at k = 0.
We conclude that the standard assumption that in the case of poorly conducting
boundaries (for a small Biot number), the longwave convection sets in, is correct
for both pure Rayleigh convection (B→∞) and pure Marangoni convection (B = 0).
However, it is violated for the combined convection in the interval 3.3945 < B <
10.4292. In the latter, short-wave disturbances can significantly reduce the stability
region.

3.2 Oscillatory instability mode

We proceed with investigation of the onset of long-wave oscillatory instability in
the framework of linear stability theory applying standard scaling (8) and assumimg
the limit k = ε K, L = ε2 l, Bi = ε4 β with ε � 1.

We use the following expansion for perturbation functions (stream function, tem-
perature and concentration)

ψ̃ = εΨ̃ = ε(Ψ0 + ε
2
Ψ2 + ...), T̃ ,C̃ = (T0,C0)+ ε

2(T2,C2)+ . . . , (46)

and for the growth rate, the thermal Rayleigh and Marangoni numbers, respectively,

ω = ε
2(ω0 + ε

2
ω2 + ...), rth,mth = (r0,m0)+ ε

2(r2,m2)+ . . . . (47)

Substituting these expansions into the linearized system for the amplitudes of per-
turbation functions with boundary conditions (16)-(18) yields in the leading order
of approximation

Ψ0,zzzz− iK r0(T0 + ϕ̃ C0) = 0,

T0,zz = 0,

C0,zz + χ T0,zz = ω0 Pl−1C0− iK χ l−1Ψ0,

(48)

at z = 0 :

Ψ0 = Ψ0,z = T0,z = C0,z = 0, (49)

at z = 1 :

Ψ0 = T0,z = C0,z = 0,

Ψ0,zz = iK m0(C0−T0).
(50)
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The solvability condition in the next order of approximation ε2 reads

ω0 PT0 + iK
∫ 1

0
Ψ0dz =−K2T0. (51)

Introducing Ψ0 = iK Φ0 and ω0 = K2Λ0, we study the limit of small wave numbers
K and look for the solution in the form of series with respect to K2

Φ0 = Φ
(0)
0 +K2Φ

(2)
0 + . . . , (T0,C0) = (T (0)

0 ,C(0)
0 )+K2(T (2)

0 ,C(2)
0 )+ . . . ,

m0 = m(0)
0 +K2m(2)

0 + . . . , Λ0 = Λ
(0)
0 +K2Λ

(2)
0 + . . . .

(52)

Looking for the onset of the oscillatory instability threshold we set the real part of
Λ0 to zero, i.e., Λ0 = iΩ0, where

Ω0 = Ω
(0)
0 +K2Ω

(2)
0 + . . . . (53)

Assuming that T0 = 1, i.e., T (0)
0 = 1, T (2)

0 = 0, and using the solvability condition
at zero order of approximation with respect to small K in the form

PΛ
(0)
0 −

∫ 1

0
Φ

(0)
0 (z)dz =−1, (54)

we obtain

960PΛ
(0)
0

(
1+PΛ

(0)
0

)
−20m0

(
χ +P(1+ χ)Λ

(0)
0

)
+

3r0

(
ϕ̃ χ +P (ϕ̃χ−1) Λ

(0)
0

)
= 0.

(55)

It is possible to separate between the real and imaginary parts of the expression
(55) and to obtain

Ω
(0)2

0 =−χ (20m0−3 ϕ̃ r0) (20 (1+ χ) m0−3 (−1+ ϕ̃ χ) r0)
921600P2 , (56)

and

1− m0

48
(1+ χ)+

r0

320
(ϕ̃ χ−1) = 0, (57)

where Λ
(0)
0 = iΩ(0)

0 , and ϕ̃, χ are separation numbers.

Substituting (57) into (56) we finally obtain

Ω
(0)2

0 =
χ (−320+(1+ ϕ̃) r0)

320P2 (1+ χ)
. (58)
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Thus, oscillatory instability sets in when −1 < χ < 0 for |r0| < 320/|1 + ϕ̃| and
when χ <−1, χ > 0 for |r0|> 320/|1+ ϕ̃|.
Using a second-order correction to the oscillatory instability threshold we deter-
mine the parameter domains for the Soret number, separation ratio and Rayleigh
number, where destabilization takes place with the growth of the wave number K.
Typical variations of the monotonic and oscillatory instability boundaries are ex-
amined in all distinguished parameter limits.

Using the solvability condition at fourth order with respect to small K in the form

∫ 1

0

[
Pl−1

{
Λ

(0)
0 C(2)

0 +Λ
(2)
0 C(0)

0

}
+ χ l−1

Φ
(2)
0

]
dz = 0, (59)

we obtain

Ω
(2)
0 =−(1+ ϕ̃) χ2 r0 (−3520+(11+ ϕ̃ (16+5 χ)) r0)

283852800 l P2 (1+ χ)2
Ω0

, (60)

Ω
2
0 = Ω

(0)
0

2
+2K2

Ω
(0)
0 Ω

(2)
0 +O(K4),

and therefore,

Ω
2
0 =

χ (−320+(1+ ϕ̃) r0)
320P2 (1+ χ)

−

K2 (1+ ϕ̃) χ2 r0 (−3520+(11+ϕ (16+5 χ)) r0)
141926400 l P2 (1+ χ)2 +O(K4),

(61)

The second-order correction to the critical Marangoni number in the oscillatory
case with respect to small K reads

m(2)
0 =

1
22176000 l (1+ χ)2 χ (−35481600−1760(ϕ̃(85 χ−26)−111)r0−

(ϕ̃χ−1)(ϕ̃(241 χ−23)−264)r2
0
)
.

(62)
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Rewritten in terms of the Bond number the full oscillatory neutral curve is given by

m0 = m(0)
0 +K2 m(2)

0 +O(K4) =
960

20(1+ χ)+3B(1− ϕ̃χ)
·

·
{

1−K2 χ (165+4620(1+ χ)+ ϕ̃ (−11 (26+41 χ)+36(−1+ ϕ̃χ)))
6930 l (1+ χ) (3−3 ϕ̃ χ +20 (1+ χ))

}
+

+O(K4).
(63)

Depending on the parameters of the problem, the minimum of the full oscillatory
neutral curve (63) is attained at K = 0 or outside the region of the validity of the
used expansions (Fig.11). It follows from the latter fact that for certain parameter
values our theory is inapplicable and one must use different expansions there.
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Figure 11: Full oscillatory neutral curve (63) in the limit Bi∼ L2 ∼ k4. Depending
on the problem parameters the minimum of this curve is attained at K = 0 (left
panel) or outside the validity region of the expansions (right panel) used here.

3.3 Marangoni convection in very thin films

Finally, we investigate the case of pure Marangoni convection in the case of suffi-
ciently thin films, when the buoyancy effect is neglected. We consider the mono-
tonic instability mode in the limit k = O(1), L = O(ε2), Bi = O(ε4). In the leading
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order of approximation we obtain

Ψ0,zzzz−2k2Ψ0,zz + k4Ψ0 = 0,

k2T0−T0,zz = 0,

k2C0 + k2χT0− ikχl−1Ψ0−C0,zz−χT0,zz = 0,

z = 0 : Ψ0 = Ψ0,z = T0,z = C0,z = 0,

z = 1 : Ψ0 = T0,z = C0,z = Ψ0,zz− ikm0(T0−C0) = 0.

(64)

Solving the set (64) for the monotonic neutral curve we find

m0 =
16k2l(k− cosh(k)sinh(k))

2kχ {2+ k2− k cosh(k)}−χ sinh(2k)
, (65)

which reduces in the long-wave limit k→ 0 to

m0 =
48 l
χ

+
16 l k2

5χ
+O(k3). (66)

Thus, in the case of asymptotically small Lewis numbers, the monotonic instability
is always longwave.

In the more general long-wave limit of k = qε̃, Bi = β̂ ε̃2, L = O(1), we obtain the
following expressions for monotonic and oscillatory neutral curves, respectively,

Mmon
0 (q) =

48L(q2 + β̂ )

β̂ χ +q2(χ +L(1+ χ))
,

Mosc
0 (q) =

48(q2(1+L)+ β̂ )
q2(1+ χ)

.

(67)

It is noteworthy that the monotonic neutral curve changes its sign through infinity
at

q1 =

√
−β̂ χ

χ +L(1+ χ)
, (68)

and both neutral curves merge at

q2 =

√
−(2+L)β̂ χ + β̂L

√
−χ(4+3χ)

2[χ +L(L+ χ +Lχ)]
. (69)
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It should be noted that in the leading order of approximation, the contribution of
the thermocapillary effect rapidly decreases with a decrease of the disturbance wave
number, and the solutocapillary effect becomes the dominant factor triggering the
instability:

T0 =
k2L

χ(Bi+ k2(1+L))
C0⇒ T0�C0, when k2� Bi. (70)

Typical forms of the neutral curves in the case of a pure Marangoni convection
depending on the value of the Soret number are presented in Figs. 12-15.
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Figure 12: Examples of the neutral curves in the case of a pure Marangoni con-
vection described by Eqs.(67). The solid curve represents the monotonic neu-
tral curve. In the left panel, for χ < −1 the minimum of the monotonic neutral
curve is attained in the long-wave region k = O(Bi1/4). In the right panel, for
−1 < χ < χ1 = −1/(1 + L−1) the minimum of the monotonic neutral curve is lo-
cated at k = 0.

4 Discussion

A comparison of the obtained results with the case of a pure buoyancy convection
(m0 = 0) shows drastic changes of the instability criteria in the case of the combined
Marangoni/Rayleigh convection. We find from Eq.(36) that the monotonic instabil-
ity in the absence of the Marangoni effect can take place only for a specific way of
heating, i. e., for ϕ R0 < 0. At the same time, Eq.(37) shows that the instability can
take place for different directions of heating depending on the relation between the
buoyancy separation ratio ϕ and the Soret number χ . Reformulating the expression
for the second-order correction to the monotonic instability threshold (39) in terms
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Figure 13: Examples of the neutral curves in the case of a pure Marangoni
convection described by Eqs. (67). The solid and broken curves are, respec-
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Figure 15: Examples of the neutral curves in the case of a pure Marangoni con-
vection described by Eqs. (67). The solid and broken curves are, respectively, the
monotonic and oscillatory neutral curves. on the left panel, for χ2 < χ < 0 and
q < q1 eq. (68), the oscillatory instability sets in for heating from below with the
wavenumber in the long-wave domain k = O(Bi1/4), and the monotonic instability
sets in for heating from above with a zero wavenumber. In the right panel, for χ > 0
the monotonic neutral curve has a minimum in the long-wave domain k = O(Bi1/4).

of R2 and the Bond number B, and taking the limit of large Bond numbers B→ ∞,
that corresponds to the case of a pure Rayleigh convection, we find that the mini-
mum of the neutral curve R2(K) is located at Kc = 0 when 693 l (ϕ−1)/(58ϕ)≤ 1,
or this minimum is attained at finite K for 693 l (ϕ−1)/(58ϕ) > 1. Thus, the pres-
ence of the Marangoni effect can significantly change the stability properties of the
system.

5 Conclusions

A general two-component non-homogeneous equilibrium model for transport phe-
nomena applicable for both nanofluids and binary solutions has been formulated in
this paper. In the framework of this model, we investigate a combined long-wave
Marangoni and Rayleigh instability of a quiescent state of a binary (nano-) liquid
layer with a non-deformable free surface and subjected to a transverse tempera-
ture gradient. Our analysis taking into account the Soret effect considers a relevant
limit of asymptotically small Lewis numbers and poorly conducting boundaries.
We find that in the case of small Biot numbers two important long-wave regions
k = O(Bi1/4) and k = O(Bi1/2) exist. Typical variations of the monotonic and oscil-
latory instability boundaries are examined in distinct parameter limits using a new
approach in which Lewis number is considered as a basic small parameter. Thus,
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consideration of the nanofluids, even in the framework of a binary-fluid model,
leads to the solution of new mathematical problems.
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