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A Phase Field Description of Spatio-Temporal Behavior in
Thin Liquid Layers

Rodica Borcia1 and Michael Bestehorn2

Abstract: We study numerically the fully nonlinear evolution of thin liquid films
on solid supports in three spatial dimensions. A phase field model is used as mathe-
matical tool. Homogeneous and inhomogeneous substrates are taken into account.
For flat homogeneous substrates the stability of thin liquid layers is investigated
under the action of gravity. The coarsening process at the solid boundary can be
controlled on inhomogeneous substrates. On substrates chemically patterned in an
adequate way with hydrophobic and hydrophilic spots (functional surfaces), one
can obtain stable regular liquid droplets as final dewetted morphology.
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1 Introduction

Spatio-temporal behavior of thin liquid layers on a solid support has widespread
technological applications like coating/wetting phenomena (Gennes 1985; Starov
et al. 2007, and references therein) and opens new strategies for designing smart
microfluidic devices (Alexeev and Balazs 2007).

If the free surface of the flat film is unstable to spatial disturbances, pattern for-
mation sets in and drops, holes and eventually film rupture may occur. In a thin
liquid layer one finds after a while the formation of larger and larger structures, a
phenomenon known as coarsening. The dynamics converges to a stationary state
which consists in a single elevation (drop) or suppression (hole) of the surface.
This development can be interrupted by rupture of the film. Rupture is obtained
if the surface touches the substrate and the thickness reaches zero in a certain do-
main. One can avoid rupture by introducing a repelling disjoning pressure (caused
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by van der Waals forces) acting in very thin liquid layers with heights in the range
of 1−100 nm. In this situation a completely dry region cannot exist. The substrate
is covered by a so-called precursor film. The precursor film is stabilized by the dis-
joining pressure in the evolution equation for the film thickness and is controlled
by the Hamaker constant. Including the repelling disjoining pressure at the solid
substrate, pattern formation in two and three dimensions was intensively studied in
the long-time limit using the long-wave-approach (see, e.g., Bestehorn and Neuffer
2001; Scheid et al. 2002; Bestehorn et al. 2003; Pototsky et al. 2004; Pismen and
Thiele 2006). Using a lubrication approximation, this approach is valid only for
small velocities and small contact angles (hydrophilic surfaces).

Our aim is to study the behavior of thin liquid films on both hydrophilic and hy-
drophobic surfaces using a phase field model. The phase field models introduce an
order parameter that thermodynamically describes the phases. For a liquid-vapor
system we chose the density ρ as order parameter. ρ = 1 denotes the liquid phase,
and ρ = 0 denotes the vapor phase. The wettability properties at the substrate as
well as the static contact angle θ and the thickness of the precursor film are con-
trolled by the density at the solid boundary ρS, a free parameter between 0 and 1
(see Pismen and Pomeau 2000; Borcia et al. 2008)

cos θ =−1+6 ρ2
S −4 ρ3

S .

ρS = 0 means that there is no-precursor film at the substrate (no-wetting case), and
ρS = 1 corresponds to the largest precursor film (complete wetting). Large values
for ρS (ρS > 0.5) correspond to small contact angles (θ < 90◦) and vice-versa. No
restrictions regarding small or large contact angles appear within the phase field
formalism.

The outline of the paper is as follows: The phase field formulation for a liquid-
vapor system is briefly depicted in Sec. 2. The stability of a thin liquid film on a
flat homogeneous solid substrate with variable wettability under gravity effects is
discussed in Sec. 3. Computer simulations in three spatial dimensions for dewetting
phenomena/drop formation and controlled pattern formation on functional surfaces
are presented in Sec. 4. We gather the conclusions in Sec. 5.

2 Phase field equations

In the phase field model the interface is introduced implicitly by gradients of the
phase field in the free-energy functional of the system (see, e.g., Pismen and Pomeau
2000; Bray 1994; Jasnow and Viñals 1996)

F [ρ] =
∫

V

[
f (ρ)+

K

2
(∇ρ)2

]
dV, (1)
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where the first term represents the free-energy density for the homogeneous phases.
For a system in equilibrium and without interfacial mass exchange the free-energy
density has the form of a double-well potential with two minima corresponding to
the two alternative phases: ρ = 1 (liquid) and ρ = 0 (vapor bulk). We take

f (ρ) =
C
2

ρ
2(ρ−1)2 (2)

with C being a characteristic value of the free-energy density f (ρ). The second
term in (1) is a ”gradient energy” which is a function of the local state.

The specific interfacial free-energy γ is, by definition, the difference per unit area of
interface between the actual free energy of the system and that which it would have
if the properties of the phases were continuous throughout. Hence the free-energy
excess of the interface takes the form (Cahn and Hilliard 1958)

γ =
∫ +∞

−∞

K

(
∂ρ

∂ z

)2

dz, (3)

which gives a direct connection between the surface tension coefficient γ and the
gradient energy term K (∂ρ/∂ z)2/2 (where K is the square gradient parameter).

The basic equations consist of the Navier-Stokes equations including phase field
gradient terms for assuring the shear stress balance at the interface

ρ
d~v
dt

= −∇p+ρ∇(∇ · (K ∇ρ))+∇ · (η∇~v)

+∇(
η

3
∇ ·~v)+ρ~g (4)

and the continuity equation

∂ρ

∂ t
+∇ · (ρ~v) = 0. (5)

In (4), d~v
dt represents the total derivative of the velocity field~v, p = ρ ∂ f (ρ)/∂ρ−

f (ρ) is the thermodynamical pressure, η is the dynamic viscosity, and g the gravi-
tational acceleration. The second term on the right-hand-side denotes the Korteweg
stress introduced first in Korteweg (1901) and studied latter in Borcia and Beste-
horn (2003); Bessonov et al. (2004); Borcia and Bestehorn (2005); Pojman et al.
(2006), and references therein. This term describes the contribution of capillary
forces and substitutes into the phase field model the classical boundary condition
for tangential stresses at the liquid-vapor interface (Borcia and Bestehorn 2003).

We scale the variables by using d, d2/νl , νl/d as units for the length, time and
velocity where d =

√
K /C represents the characteristic thickness of the diffuse
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interface and νl is the liquid kinematic viscosity. The following non-dimensional
parameters appear: Ca = K /ρlν

2
l − the capillary number and G = gd3/ν2

l − the
gravitation number (ρl−the liquid density). The surface tension coefficient can be
related to C and K as γ ≈

√
KC (see Pismen and Pomeau 2000). For the numerical

results presented in this paper, we have Ca = 5 and G = 10−4.

3 Chemical potential. Maxwell construction

The stability of a flat liquid film on a solid support can be understood in terms
of the dependence of the chemical potential on the film thickness. Pismen and
Pomeau (2000) formulated a continuum model describing the liquid layer behavior
in the vicinity of the three-phase contact line (solid-liquid-vapor). Starting from the
Euler-Lagrange formalism, they considered an expression for the chemical poten-
tial

µ =
∂ f
∂ρ
− ∂ 2ρ

∂ z2 +Gz. (6)

We solve (6) numerically under the boundary conditions ρ(z = 0) = ρs and ρ(z→
∞) = 0.

Figure 1-a,b illustrates the Maxwell construction for two different wettabilities of
the solid substrate. Details regarding the numerical (kink) solutions ρ(z) of Eq.
(6) are given in Borcia et al. (2008). From the ”equal area tie-line” representation
one computes the liquid thicknesses hmin, hmax (binodal points) that separate the
absolutely stable films (for h < hmin and h > hmax) from the unstable/metastable
films (hmin < h < hmax).

The liquid-solid interaction force depends on the thickness h. The stability in very
thin liquid films (h < 0.1 µm) is explained by the presence of the attractive molec-
ular component or/and the electrical component of the disjoning pressure, acting at
the solid boundary. In thick liquid layers (bigger than ∼= 0.1 µm), the influence of
van der Waals forces is negligible. In this case, for large enough liquid depths, the
gravitational force stabilizes the layer.

For a liquid thickness between hmin and hmax a small disturbance in the system is
enough to trigger pattern formation and droplet nucleation. Increasing ρs, the two
equal areas – above and below the Maxwell line – became smaller and, finally,
reduce to a single point for hydrophilic surfaces ρs → 1. Repeating the Maxwell
construction for different wettabilities at the solid substrate, one can display the
complete diagram of the liquid film stability (Figure 1-c). The binodal points hmin,
hmax depicted in Figure 1-c (as functions of ρs) separate the partial wetting area
characterized by dewetting phenomena/drop formation from the complete wetting
area where the films are absolutely stable.
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Figure 1, R. Borcia, M. Bestehorn, FDMP
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Figure 1: Chemical potential µ versus film thickness h for substrates with different
wettabilities: (a) ρs = 0.9, (b) ρs = 0.5. The unit d represents a characteristic
length of the diffuse interface. The Maxwell construction gives the binodal points
that separate the partial wetting area from the complete wetting area. (c) Binodals
hmin, hmax as function of ρs.
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4 Coarsening and controlled pattern formation

Now we investigate in three dimensions the breakup of a liquid film into drops for
homogeneous solid supports. Furthermore, we design liquid structures on hetero-
geneous solid supports adequately patterned chemically.

We solve (4) and (5) numerically using a code based on a finite-difference method
(Bestehorn 2006) with a mesh of 200× 200× 100 points. A similar code was
developed earlier for 2D phase field models describing floating liquid droplets with
an applied temperature gradient (Borcia and Bestehorn 2007). A good convergence
of the numerical code is achieved for meshes with more than 100 points in one
direction. In this way one assures more than 7− 10 lattice points in the diffuse
interface.

The system is bounded in the vertical direction and in the lateral direction periodic
boundary conditions are taken. At the top boundary we assume ρ = 0,~v = 0. The
solid boundary is placed on the bottom where ρ = ρS,~v = 0.

As initial condition we take a flat liquid layer of thickness h0 with density ρ = 1 in
a vapor atmosphere with ρ = 0. The whole system is at rest (~v = 0, everywhere).
The flat liquid film is destabilized adding to the density field a small disturbance
aξ , with noise amplitude a = 0.001 and a uniformly random distribution ξ (x,y,z)
between 0 and 1. For h0 = 13d and a homogeneous solid boundary with ρs = 0.3
the liquid layer is unstable (Figure 1-c). The thin film breaks up in small droplets
that nucleate until one drop remains. The transition from film to drop is illustrated
in Figure 2 through iso-density surface snapshots.

Very recent experiments show that coarsening can be avoided or controlled by pin-
ning effects on heterogeneous supports that are chemically patterned, see Mukher-
jee et al. (2008). A functional surface is numerically ”realized” by alternating
hydrophobic (ρs < 0.5) with hydrophilic (ρs > 0.5) spot in an adequate way. After
the film breakup, the dewetted droplets tend to occupy the substrate regions with
higher wettability. For thin liquid films (h0 < 20d) stable regular structures (for
example perfect squares in Figure 3-f) can be obtained as final dewetted morphol-
ogy on a functional surface. Increasing the film thickness or decreasing the scale
of the hydrophilic spots one losses the perfect ordering in the system because of
overflow, as illustrated in Figure 4 for a thick liquid film (h0 = 30d) on a functional
surface with square-shaped hydrophilic patterns (as in Figure 3). How one can ob-
serve from Figure 4, as well as in the experiments performed by Mukherjee et al.
(2008), in thicker liquid layers dewetting processes still appear, but there are un-
correlated to the substrate pattern. However, for a narrow range of the initial liquid
film thicknesses, by the appropriate design of chemically patterned substrates, one
can effectively ”program” microfluidic devices so that the system can perform a
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Figure 2, R. Borcia, M. Bestehorn, FDMP
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Figure 2: Transitions in a thin, unstable liquid film on a flat, homogeneous solid
substrate under gravity effects (h0 = 13d, ρs = 0.3): (a) t = 50; (b) t = 250; (c)
t = 500; (d) t = 1300; (e) t = 2400; (f) t = 6300. The scaled time is around 10−11 s
and the characteristic length d = 1 nm.
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Figure 3, R. Borcia, M. Bestehorn, FDMP
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Figure 3: Transitions in a thin unstable liquid layer lying on a hydrophobic substrate
(ρs1 = 0.2) chemically patterned with hydrophilic square spots (ρs2 = 0.9), h0 =
16d: (a) t = 50; (b) t = 150; (c) t = 450; (d) t = 1050; (e) t = 2200; (f) t = 5400.
The scaled time is around 10−11 s and the characteristic length d = 1 nm.
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Figure 4, R. Borcia, M. Bestehorn, FDMP
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Figure 4: The same as Fig. 3 but now for a thicker liquid layer (h0 = 30d): (a)
t = 50; (b) t = 200; (c) t = 2600; (d) t = 3900; (e) t = 8000; (f) t = 15000. The
scaled time is around 10−11 s and the characteristic length d = 1 nm.
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number of functions in an autonomous manner. The patterned surface constitutes a
”code”. The unstable fluid flowing over the surface can be used to decode this in-
formation. Once the surface has been patterned, no external controls (other than an
imposed flow) are needed to steer the system. This is an alternative to laboratory-
on-a-chip methods where liquid droplets are actively manipulated by an array of
electrodes in the substrate (Pollack et al. 2002; Schwartz et al. 2004).

5 Conclusions

Summarizing, we explained the formation of 3D drops near a three-phase contact
line (solid-liquid-vapor) using a phase field model. We investigated the stability
of a thin liquid film on a flat homogeneous solid support with variable wettability
under gravity effects. We determined the critical height, below which a flat film
becomes unstable on a hydrophobic/hydrophilic surface. Finally, for adequately
designed solid substrates our phase field simulations are able to model controlled
pattern formation of liquid structures.
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