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On the Application of Wavelets to One Dimensional Flame
Simulations with Non-Unit Lewis Numbers

R. Prosser1

Abstract: A novel wavelet-based method for the simulation of reacting flows
on adaptive meshes is presented. The method is based on a subtraction algorithm,
wherein the wavelet coefficients are calculated from the low resolution up (as op-
posed to the standard top-down approach). The advantage of this new method
is that it allows the calculation of wavelet coefficients on sparse grids, and thus
lends itself more readily to adaptive computational meshes than does the traditional
wavelet algorithm. The approach is used to simulate a one-dimensional laminar
pre-mixed flame with different Lewis numbers. The computational grid is adapted
via the removal of grid points whose wavelet coefficients are small with reference
to some user-specified threshold. To circumvent the difficulties associated with
the strongly nonlinear reaction rate terms, the scheme simulates flow behaviour
in the physical (i.e. not transformed) domain, and the wavelets thus provide the
method by which the derivatives appearing in the transport equations are calcu-
lated. A number of simulations are presented which demonstrate the efficiency of
the method.

Keywords: Wavelets, partial differential equations, turbulent combustion

1 Introduction

For most flows of industrial relevance, there typically exists a wide spectrum of
length and time scales in the evolving physical processes. This is particularly true
of premixed combustion, where the flame structure can typically occupy O(1)mm,
while the burner geometry in which it sits can be tens or even hundreds of times
larger. This scale separation presents a challenge to traditional numerical methods,
but is well suited to discretizations based on wavelets. Wavelets characterize a
function in terms of its (appropriately defined) gradients [Daubechies (1992)]; as
such, they automatically track regions of rapid change in the flow structure, such as
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might be found in a flame. Wavelets thus provide an elegant framework in which
to develop an adaptive meshing strategy.

The use of wavelets as a tool for the numerical simulation of fluid flow can be
traced back to Liandrat and Tchamitchian [Liandrat and Tchamitchian (ICASE
Report, December 1990)], and to Bacry, Mallat and Papanicolou [Bacry, Mallat,
and Papanicolaou (1992)]. These authors used orthogonal wavelets and developed
schemes that could exploit the asynchronous evolution of the solution in time and
space. This line of development can be seen in recent methods proposed by—for
example—Domingues et al [Domingues, Gomes, Roussel, and Schneider (2008)].
The approach has led to methods both for non reactive flows (such as those found
in the works of Vasilyev et al [Vasilyev, Paolucci, and Sen (1995); Vasilyev and
Paolucci (1997)], and others [Bacry, Mallat, and Papanicolaou (1992); Fröhlich and
Schneider (1995)]) and for reactive flows (i.e. Fröhlich et al. [Fröhlich and Schnei-
der (1997, 1996)], Singh et al [Singh, Rastigejev, Paolucci, and Powers (2001)],
Prosser [Prosser (1997)] and more recently, the work of Roussel et al [Roussel
and Schneider (2006b,a)]). Many of the early methods developed were applicable
only to periodic domains, which presents a problem to combustion simulations—
the reactants flowing into a domain have significantly different properties to the
products flowing out. Wavelets defined on non-periodic intervals are much more
difficult to construct using the classical (i.e. Fourier based) methods of derivation,
and it is here that the so-called second generation approach developed predomi-
nantly by Sweldens et al [Sweldens (1996, 1997); Schröder and Sweldens (2000)]
makes a major contribution. In the second generation approach, there is no need
for a projection quadrature and the dependent variables themselves can be used
directly as the scaling function coefficients. Fast wavelet transforms exist for the
evaluation of the wavelet coefficients, and constructions for bounded intervals are
straightforward to implement. The original contribution made by this paper lies in
the development of an alternative strategy for the calculation of second generation
wavelet coefficients—we have termed it a subtraction strategy. We use biorthogo-
nal interpolating wavelets proposed by Donoho [Donoho (1992)] with N = 4 (i.e.
the scaling functions span up to cubic polynomials), and which can be shown to be
fourth order accurate [Prosser (2007a)]. The approach will work with interpolating
wavelets of any order, and thus even higher order accuracy adaptive methods can
be obtained if required.

In the following paper, section 2 briefly reviews the technical aspects of the sub-
traction strategy. The laminar flame problem is described in section 3, and section
4 provides the results obtained using the discretization method. Section 5 ends the
paper with a discussion of some of the problems facing the existing discretization
method.
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2 Subtraction strategy

For reacting flow systems, solving the governing equations in the physical domain
(as opposed to the transform domain) is more appealing, as the reaction rates can
be calculated directly; wavelet methods are then used purely to calculate the deriva-
tives appearing in the transport equations [Singh, Rastigejev, Paolucci, and Powers
(2001)]. The sparsity of the wavelet representation provides a particularly ele-
gant framework for adaptive calculations, but the main difficulty in this approach
lies in calculating the wavelet coefficients in the first place. Each pass of a stan-
dard wavelet transform is akin to a finite difference operation, and works from the
finest resolution down to the coarsest [Daubechies (1992)]. Consequently, in dis-
cretizing a dependent variable adaptively using a traditional approach, we are faced
with the hanging node problem (i.e. internal nodes in the discretisation may not
have all the neighbour points required to derive their wavelet coefficients). To cir-
cumvent this problem, we have developed a subtraction based wavelet transform
[Prosser (2007a)]. Using the traditional nomenclature of wavelet methods [Co-
hen, Daubechies, and Feauveau (1992)], the projection of some function f onto a
scaling function space Vi is denoted asPi ( f ) . The corresponding projection onto a
wavelet space Wi is denoted Qi ( f ) . The subtraction transform can then be written
as [Prosser (2007a)]

QJ−m ( f (x)) = PJ−m+1 [PJ−PJ−m] ( f (x)) , (1)

for the coarsest resolution, and

QJ−m+1 ( f (x)) = PJ−m+2 ((PJ−PJ−m)−QJ−m)( f (x)) (2)

for the next resolution; a similar expression exists for each successive resolution,
and J−m < J specifies a minimal coarse resolution for the discretisation. We note
that this approach also differs from standard wavelet transforms in that we keep a
low resolution scaling function space (denoted VJ−m). The coefficients belonging
to VJ−m will always be retained, regardless of adaption strategy. Their regular
structure forms the foundations on top of which the adaptive points are added. The
wavelet coefficients are denoted by di,k for J−m≤ i≤ J−1, and 0≤ k≤ 2i−1. An
adaptive grid will emerge during the computation only if those points associated
with ‘large’ wavelet coefficients are retained. In practice, we retain di,k (and its
associated grid point) if |di,k|> ε , where ε is some user specified threshold.

The advantage of using equations 1, 2 and their successors lies in the fact that
by construction, the hanging nodes in the original adaptive discretization are sur-
rounded by zeros in the representation of (PJ−PJ−m)( f ) ; consequently, storage
of the surrounding nodes is no longer required [Prosser (2007a)]. Each pass of the
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subtraction step maps features of a given length scale (denoted by J−m, J−m +
1, . . . ,J− 1) to zero, and the wavelet coefficients are the remainder from this sub-
traction at the next finest length scale. This approach has a more involved structure
than the traditional method, but its principal advantage is that the forward transform
can be obtained regardless of the fine scale grid structure: we do not require a full,
structured grid to calculate the wavelet coefficients. If, during the calculation of a
particular wavelet coefficient, a neighbouring point does not exist, then this implies
that the neighbour’s wavelet coefficient is less than the specified threshold. Con-
sequently, the contribution of the neighbouring point—had it existed—would have
been mapped essentially to zero (i.e. to within ε) by the action of the preceding
subtraction steps. The practical implementation of this algorithm is quite involved,
and we refer to [Prosser (2007a)] for a fuller description.

3 Implementation

3.1 Problem background

The equations governing a gaseous reacting system consisting of Ns species may
be written as [Williams (1985)]
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)
l = 1,2, . . . ,Ns. (3)

This coupled set of partial differential equations is not limited to low Mach number
flows and consequently, acoustic phenomena—particularly those arising from ini-
tial condition transients—will be resolved. We choose to retain the full complexity
of the compressible flow equations because these reflect our interest in thermoa-
coustic instabilities.

In equation 3(b) and (c), τxx is the viscous stress. The heat flux vector q is defined
as

q =−λ
∂T
∂x

+
Ns

∑
l=1

hlρD
∂Yl

∂x
. (4)

The thermal conductivity is given by a modified form of the equation proposed by



On the Application of Wavelets to One Dimensional Flame Simulations 415

Echekki et al [Echekki and Chen (1996)]:

λ = λ0cp

(
T
T0

)
,

where λ0 = 2.58×10−5kg/(ms). The temperature dependence of the conductivity
is set such that an analytic benchmark solution can be derived via asymptotic meth-
ods [Williams (1985); Bush and Fendell (1970)]. The benchmark solution will be
used later in the paper. The viscosity and mass diffusivity appearing in the transport
equations are derived via the assumptions of constant Prandtl number and constant
Lewis number, where

Pr =
µcp

λ
, Le =

λ

ρDcp
.

For this study, the Prandtl number is assumed to be given by Pr = 0.75, the specific
heats and the molecular weights of the components are assumed to be constant,
with cp = 1005J/kgK, γ = 1.4 and W = 28.96kg/kmol.

The stagnation internal energy is obtained using

E = eNs +
Ns−1

∑
l=1

(el− eNs)Yl +
u2

2
, (5)

where el is the species internal energy, comprising the internal energy of formation
e0

l , and a sensible component:

el = e0
l +

∫ T

T0

cv
(
T ′
)

dT ′.

Equation 5 has been written such that the constraint

Ns

∑
l=1

Yl = 1

is automatically satisfied, and where YNs is usually treated in combustion problems
as the mass fraction of the diluent (typically nitrogen for reacting hydrocarbon-air
simulations). The pressure is calculated from the thermal equation of state

p = ρRlT
Ns−1

∑
l=1

(Rl−RNs)Yl, (6)

where Rl is the characteristic gas constant for species Yl .



416 Copyright © 2009 Tech Science Press FDMP, vol.5, no.4, pp.411-424, 2009

For the single step chemical reaction mechanism considered here

Reactants→ Products,

Ns = 2 and the thermochemical state of the gas is characterized by a progress vari-
able. The progress variable takes a value of 0 in the reactants and 1 in the products.
For consistency with other combustion studies, we define the progress variable as
c≡ Y1 in our simulations, and the reaction rate is assumed as [Williams (1985)]

ω = ρB∗ (1− c)exp

 −β

(
1− T̂

)
1−α

(
1− T̂

)
 . (7)

with ω1 =−ω2. B∗ is the frequency factor (= 285.1×10−3s−1 in this study), β (=
6) is the Zeldovich number, T̂ is the reduced temperature;

T̂ =
T −T0

Tad−T0

with T0 and Tad being the unburned reactant and adiabatic product temperature,
respectively. α is related to the heat release of the fuel, and is set to 0.8 here. This
corresponds to an adiabatic flame temperature of 1500K for an inlet temperature of
300K.

We define the laminar flame speed as the rate at which an unperturbed flame prop-
agates into a quiescent reactant. To derive an expression for this quantity, we re-
examine equation 3(d) in the light of a unidimensional, single step reaction prob-
lem;

∂ρc
∂ t

+
∂

∂x
(ρuc) = ω +

∂

∂x

(
ρD

∂c
∂x

)
. (8)

We assume a domain whose length is sufficient to encompass the flame structure
entirely, and integrate equation 8 over this domain to obtain∫

∂ρc
∂ t

dx+ ρuc|RL =
∫

ωdx+
(

ρD
∂c
∂x

)∣∣∣∣R
L
. (9)

where L and R are the left and right hand ends of the domain, respectively. The
boundary conditions for the progress variable are

cl ' 0'
(
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)∣∣∣∣
L
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)∣∣∣∣
R

= 0
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The approximate values for the left hand of the domain arise from the cold bound-
ary problem—the chemical reaction term is non-zero even in reactants at ambient
temperature [Bush and Fendell (1970)]. These approximate conditions notwith-
standing, the boundary conditions on the progress variable allow equation 9 to be
written as∫

∂ρc
∂ t

dx+ρu =
∫

ωdx

Now, we set u = s0
l , the laminar flame speed , with

s0
l = ρ

−1
∫

ωdx,

thereby ensuring that∫
∂ρc
∂ t

dx = 0.

By setting the inlet velocity for our simulations equal to the laminar flame speed,
a stationary flame profile is obtained. This specification gives a simulation Mach
number of O

(
10−3

)
based on the laminar flame speed.

3.2 Simulation code details

A wavelet based code has been developed at the University of Manchester for the
simulation of compressible laminar flames. The code solves the transport equa-
tions given in the previous section, and can apply the subtraction algorithm to the
flow field via any family of basis functions. N = 4 interpolating wavelets have been
used here and separate convergence tests have confirmed that the scheme has 4th or-
der accuracy when applied to a regular (full) discretization [Prosser (2007b)]. The
governing equations are integrated in time using the minimal storage fourth order
Runge-Kutta method proposed by Wray [Wray (1990)]. The maximum resolution
allowed in the simulation was set at 512 grid points. The simulation set-up is com-
pleted via the specification of non-reflecting (time-dependent) boundary conditions
[Poinsot and Lele (1992); Prosser (2005)]

4 Results

Figure 1 depicts the laminar flame profiles for pressure, density, velocity and reac-
tion rate based on a unit Lewis number flame. An asymptotic solution of Williams
[Williams (1985)]—based on high activation energies—has been used to provide
a benchmark for assessing the accuracy of the approach. A previous study for the
case of unit Lewis number has found excellent agreement between the numerical
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and analytically predicted profiles, with a maximum error of around 5% [Prosser
(2007a)]. The disparity between the two appears to be due to the comparatively
low Zeldovitch number (β = 6) used in the asymptotic analysis.
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Figure 1: Benchmark solution for unit Lewis number flame

A global measure of the scheme’s accuracy is provided by a comparison with
asymptotic estimates for the laminar flame speed eigenvalue [Williams (1985)].
Expressions for this quantity have been derived by Bush and Fendell [Bush and
Fendell (1970)], and have served as the principal performance measure for the com-
putational studies reported by Peters and Warnatz [Peters and Warnatz (1982)]. For
the planar flame configuration studied here, the second order estimate of the flame
speed is given by [Peters and Warnatz (1982)]

ρB∗λ
m2cp

=
β 2

2Le

(
1+

2
β

(2α−2.344+Le)+O
(
β
−2)) , (10)

where m = ρ0s0
l and all other quantities are evaluated in the reactant stream. For

the wavelet scheme with ε = 0, table 1 provides the numerically evaluated laminar
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flame speeds for the three different Lewis numbers. In each case the agreement is
excellent, with errors in the flame speed estimates no greater than about 2%.

Having established the parity between the ε = 0 (full) solution and the asymptotic
solution, we use the former as the benchmark —additional results for non-unit
Lewis number flames can be more easily obtained than via the asymptotic analysis.

Figure 2 shows the reaction rate profiles obtained for the three flames with ε =
10−6. The reaction rates exhibit a systematic trend toward lower flame speeds as
the Lewis number decrease; Using the Le = 1 case as baseline, the Le = 0.9 case
provides a flame with a 3.3% decrease in flame speed, while the Le = 1.1 flame has
a 3.6% higher flame speed. This result is consistent with equation 10.
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Figure 2: Reaction rates for flames with different Lewis numbers

Table 2 shows the dependence of the laminar flame speeds with threshold. The
dependence of the flame speed with wavelet threshold is found to be very weak.
Using two threshold levels separated by two orders of magnitude (ε = 10−4 and
ε = 10−6), we found that the change in flame speed was of the order of 0.1%. The



420 Copyright © 2009 Tech Science Press FDMP, vol.5, no.4, pp.411-424, 2009

Table 1: Comparison of laminar flame speed eigenvalues for different Lewis num-
bers

Le
(
s0

l

)
asy (m/s)

(
s0

l

)
num (m/s)

0.9 0.486 0.4997
1.0 0.506 0.5166
1.1 0.524 0.5354

Table 2: Sensitivity of flame speed to choice of threshold. ∆s0
l is evaluated as the

difference in the flame speeds obtained with ε = 10−6 and ε = 10−4

Le s0
l (m/s)

∣∣∆s0
l

∣∣(%)
0.9 0.486 0.0747
1.0 0.506 0.1161
1.1 0.524 0.0600

reason for this lies in the fact that the wavelet coefficients are at their largest in the
region of sharpest curvature—these regions are themselves strongly correlated with
the reaction rate [Williams (1985)]. Consequently, thresholding acts preferentially
in areas furthest from the reaction zone, and migrates toward the flame structure
itself only as the threshold becomes significant.

Figure 3 shows part of the flame structure defined on the adapted component of the
grid for ε = 10−4 and unit Lewis number. Similar results have been obtained for
the other Lewis numbers under study. The number of retained grid points for this
simulation was typically 136; this represents a reduction of 73% over the original
full discretisation of 513 grid points. The figure clearly shows how the wavelets
have ‘attached’ themselves to the regions of the flow where the curvature is largest.
Here, the solution was adapted to the density and momentum equations; if we were
to adapt on the reaction rate, then we would expect a clustering of nodes in and
around the regions of maximum reaction rate; this would yield a different points
distribution. It is as yet unclear which family of dependent variables forms an
optimal set on which to threshold; this remains as ongoing work.

5 Conclusions and future work

In this paper, we have applied interpolating biorthogonal wavelets to laminar pre-
mixed flames with Lewis numbers of 0.9, 1 and 1.1. The wavelet coefficients are
calculated by a novel subtraction based strategy that requires only a very coarse
regular grid. Results for a non-zero wavelet threshold show that the wavelet coef-
ficients cluster around the reaction zone in the flame; the quality of the solution is
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Figure 3: Density profile for unit Lewis number flame, showing adaptive grid points
for threshold set at ε = 10−4

excellent—this is despite the fact that the adapted mesh contains only∼ 25% of the
elements in the original full discretization.

The principal future development of this method lies in the reworking of the cur-
rent transform algorithm to make it yet faster; this is particularly important in two
and three dimensional discretizations, where the initial subtraction steps embed-
ded in terms like

(
P(2)

J −P(2)
J−m

)
f (two-dimensional) and

(
P(3)

J −P(3)
J−m

)
f (three

dimensional) are currently comparatively expensive to evaluate. Also, for reacting
flow systems with multiple coupled variables, the systematic selection of an appro-
priate threshold—and its subsequent effects on the hydrodynamic field or reaction
chemistry—is as yet unclear. In a future work, we will seek to develop a more sys-
tematic method of selecting thresholds that are appropriate for coupled variables
that may differ by many orders of magnitude.
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