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Numerical Simulation of Three Dimensional Low Prandtl
Liquid Flow in a Parallelepiped Cavity Under an external

Magnetic Field

F. Mechighel1,2, M. El Ganaoui1, M. Kadja2, B. Pateyron3 and S. Dost4

Abstract: A numerical study has been carried out to investigate the three-dimen-
sional buoyant flow in a parallelepiped box heated from below and partially from
the two sidewalls (a configuration commonly used for solidification problems and
crystal growth systems). Attention has been paid, in particular, to phenomena of
symmetry breaking and transition to unsteady non-symmetric convection for a low
Prandtl number fluid (Pr=0.01). The influence of an applied horizontal magnetic
field on the stability properties of the flow has been also considered. Results ob-
tained may be summarized as follows: In the absence of magnetic field and for
relatively small values of the Rayleigh number (Ra), a steady and symmetric flow
field is obtained with 3D effects limited to classical spiral flows in the third direc-
tion. When Ra is increased to its first critical value, the system bifurcates from
the steady symmetric flow to a non-symmetric flow. The break in symmetry occurs
with respect to the vertical mid-plane and the diagonal plane. The first critical value
for which symmetry is broken has been found to behave as an increasing function
of the magnetic field strength.

Keywords: Buoyant flow, break in symmetry, magnetic field.

1 Introduction

In most solidification and crystal growth processes such as the Bridgman, float-
zone, travelling heater method, etc., the growth interface advances in the direction
parallel to the gravity vector. Thus the density gradient in the melt/solution is par-
allel to gravity, and convection ensues when buoyancy overcomes viscous effects.
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The onset of convective instability, as in the case of Rayleigh-Bénard convection,
is characterized by the Rayleigh number. Fluids heated (from below and/or from
the side) exhibit a very complex, non-linear behaviour. At critical values of the
control parameters, the melt convective flow frequently becomes unstable and bi-
furcates from a stationary to steady or unsteady states. Critical values of this kind
are called bifurcations. Bifurcation is a structural change in the flow at critical
values of the control parameters and it plays an important role in the development
of deterministic chaos. Furthermore, bifurcation instabilities in melt flows lead to
the appearance of three-dimensional oscillatory effects (temperature oscillations)
and non-symmetric flow structures which in turn lead to inhomogeneities in the
structure of the growing crystals, affecting the crystal quality, see Müller and Os-
trogorsky (1994).

The problem of bifurcation in convective flows was pointed out in the experimental
works of Hurle (1966), and was shown that oscillations of convective flow cause
striations in crystals growing from melts. Thus, the problem of onset of oscillatory
instability of steady convective flows attracted great scientific interest, and has been
studied extensively. For instance, Impey, Riley, Wheeler and Winters (1991) used
the techniques of bifurcation theory to analyze the possible forms of steady, 2-D
flow induced by solutal buoyancy forces in a dilute binary mixture during its ver-
tical directional solidification. They focused on the role of lateral confinement in
determining the flow patterns that are realizable in the melt. Gelfgat, Bar-Yoseph
and Yarin (1999a) performed a parametric study of multiple steady states, their
stability, onset of oscillatory instability, and some supercritical unsteady regimes
of convective flow of a fluid with Pr=0.015 in laterally heated rectangular cavi-
ties. Also a study of the bifurcation of central symmetry breaking and stability of
non-symmetric states of convection in laterally heated cavities was also carried out
by Gelfgat, Bar-Yoseph and Yarin (1999b). Two and three-dimensional computa-
tions for different modes of Rayleigh-Bénard instability were performed by Gelfgat
(1999). In addition, the critical stability limit for the onset of the natural convection
in 2-D flows was investigated, and the threshold value for breaking symmetry and
unsteadiness were identified by El Ganaoui and Bontoux (1998).

A recent work of Bennacer, El Ganaoui and Leonardi (2006) presented three-
dimensional computations for an inverted Bridgman configuration and the fluid
flow instability and transition to unsteadiness were analyzed. It was shown that the
bifurcation type might change when a controlling parameter (Rayleigh number)
was varied. Sheu, Rani, Tan and Tsai (2007) considered the same configuration
and extended it to analyze the multiple states, topology and bifurcations of melt
flow.

Other relevant and recent studies are due to Sahu, Muralidhar and Panigrahi (2007),
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Prud’homme and El Ganaoui (2007), Achoubir, Bennacer, Cheddadi, El Ganaoui
and Semma (2008), Bucchignani (2009).

The present study analyses numerically the three-dimensional character of low
Prandtl number flows and focuses on the symmetry breaking phenomena which can
produce some unsteadiness in the flow and consequently perturb the solid/liquid in-
terface shape and dopant distribution.

In addition, the present work considers the possibility of stabilizing convective
flow by means of an applied horizontal magnetic field. The literature on the use
of magnetic fields in solidification, crystal growth, and flows (both experimental
and theoretical) is very rich. These studies have addressed various issues involv-
ing the application of magnetic fields flow stability, flow suppression, interface
stability, and growth rates. For instance, the effect of applied magnetic fields on
flow structures, growth interface shapes, and growth rates in solution/melt crys-
tal growth techniques can be found in works by: Kakimoto and Liu (2006), Dost
and Lent (2007), Dost and Okano (2007), Liu, Dost, Lent and Redden (2003),
Sheibani, Dost, Sakai, and Lent (2003), Liu, Dost and Sheibani (2004), Sohail
and Saghir (2006), Kumar, Dost, Durst (2007), Yildiz, Dost (2007), and Armour,
Yildiz, Yildiz and Dost (2008), and flow instability and electromagnetic damping
in various flows in works by: Hurle, Jakeman and Johnson (1974), Hof, Juel and
Mullin (2003), Okada and Ozoe (1992), Piazza and Ciofalo (2002), Gelfgat, Bar-
Yoseph and Solan (2001), Dennis and Dulikravich (2002), and Touihri, Ben Hadid
and Henry (1999). The electromagnetic damping of convective flows was exper-
imentally and numerically studied for flows in 2-D rectangular cavities (such as
in Hurle, Jakeman and Johnson (1974), Hof, Juel and Mullin (2003)), and in 3-D
configurations (as in Okada and Ozoe (1992), Piazza and Ciofalo (2002)).

The effect of the magnetic field on the 3-D symmetry-breaking bifurcation of ini-
tially symmetric steady convective flows was recently studied in Gelfgat, Bar-
Yoseph and Solan (2001), Dennis and Dulikravich (2002), and Touihri, Ben Ha-
did and Henry (1999). The geometry considered in these studies was cylindrical,
and the temperature boundary conditions considered corresponds to the Rayleigh-
Bénard problem.

Electromagnetic stabilization of symmetric convective flows in rectangular geome-
tries with more complicated thermal conditions, however, such as in the present
study, has not been widely studied. This was the motivation in carrying out the
present study.
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2 Mathematical formulation and numerical simulation of the problem

We consider the parallelepiped box (cavity) shown in Fig.1, which is filled with an
electrically conducting low Prandtl number liquid metal (Pr = 0.01). The height of
the cavity is denoted by Lx and is taken as the length scale of the problem. The
length and the width of the cavity are Lz and Ly respectively (with: Lx = Ly = Lz
= 100 mm).

The fluid in the cavity is heated from below (bottom) and cooled from top. The
left and right walls are heated up to a dimensionless height H (H = hh/Lx = 0.75)
and are adiabatic in the remaining part (1 - H). The front and the rear walls are
set to be adiabatic. The heated walls are maintained at a temperature (Th), which
corresponds to the temperature of the furnace in a crystal growth system. The top
cooled wall is maintained at a lower temperature (Tc), which corresponds to the
temperature at the solidification front. No heat flux is imposed. Thermo-physical
properties (the thermal conductivity k, the dynamic viscosity µ and the thermal
diffusivity α) of the fluid are taken as constants. The flow is assumed to be Newto-
nian, laminar, and incompressible with no viscous dissipation, and the Boussinesq
approximations holds.

2.1 The Governing Equations

Ω⊂ Rnsd represents the spatial domain (Fig.1) at the time t ∈ (0, tmax), where nsd is
the number of space dimensions, Γ is the boundary of Ω. The part of the boundary
at which the temperature is prescribed (essential condition) is denoted by Γg. The
Neumann (natural) boundary conditions are assumed to be imposed at the remain-
ing part of the boundary Γh.

The following dimensionless scales and variables are adopted (respectively for co-
ordinates, velocity components, pressure, time, temperature and electrical poten-
tial): X = x/Lx, Y = y/Lx; Z = z/Lx; U = uLx/α; V = vLx/α; W = wLx/α;
P = pL2

x/ρlα
2; τ = t α/L2

x ; θ = (T −Tc)/∆T and Φ = φ/αB0 where:, ρl is the
fluid density, (u, v, w) are the velocity components, B0 the constant magnitude
of the applied magnetic field and ∆T = Th− Tc is the characteristic temperature
difference.

With the above assumptions and using the dimensionless variables above, the di-
mensionless forms of the governing equations representing (mass, three-dimensional
Navier-Stokes, energy and electrical potential equations) in τstab can be written, re-
spectively, as:

∇ ·U = 0 (1)

∂U/∂τ +(U ·∇)U =−∇P+Pr∇
2U−PrRaθ eg +PrHa2 [−∇Φ+U× eB] × eB
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Figure 1: The model domain geometry and boundary conditions

which can expressed as:

∂U/∂τ +(U ·∇)U−∇σσσ =−PrRaθ eg +PrHa2 [−∇Φ+U× eB] × eB (2)

where: σσσ (P,U) =−PI+2Prεεε (U); and with: εεε (U) = 1
2

[
∇U+(∇U)T

]
,

∂θ/∂τ +(U ·∇)θ = ∇
2
θ (3)

∇
2
Φ = ∇ · (U×B) = Ha2 PreB · (∇×U) (4)

where U(X, τ) is the dimensionless vector velocity, Pr = ν/α the Prandtl num-
ber, ν kinematic viscosity, Ra = gβT ∆T Lx/να the thermal Rayleigh number, g the
gravity acceleration, βT the coefficient of thermal expansion, Ha = B0Lx

√
σe/νρl

the Hartmann number, σe the electrical conductivity of the liquid,eg is the unit vec-
tor in the direction of the gravity and eB is the vector unit in the direction of the
magnetic field.

We assume no-slip boundary condition for that the flow velocity on the entire
boundaries of the domain

U(X,τ) = 0 on Γ ∀τ ∈ (0, τmax) (5)

The dimensionless temperature boundary conditions are:

θ(0,Y,Z,τ) = 1, θ(1,Y,Z,τ) = 0, θ(X ,Y,0,τ) = θ(X ,Y,1,τ) = 1
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for 0 < X < H,

(∂θ/∂Z)(X ,Y,0,τ) = (∂θ/∂Z)(X ,Y,1,τ) = 0

for H < X < 1, and

(∂θ/∂Y )(X ,0,Z,τ) = (∂θ/∂Y )(X ,1,Z,τ) = 0

The dimensionless electric potential function conditions on the boundary

∇Φ(X, t) ·n = 0 on Γ× (0,τmax)

Initial conditions on Ω0 are taken as

U (X, 0) = 0, T (X, 0) = 0 and Φ (X, 0) = 0 (6)

2.2 Finite element Formulations

2.2.1 A stabilized Galerkin/Least Square FEM for Unsteady Incompressible Flow

Standard Galerkin finite element analysis of incompressible flows can introduce
two main sources of potential numerical instabilities. The first one is due to the
presence of advection terms in the governing equations, and can result in spurious
oscillations in the velocity field. The second is due to using inappropriate combi-
nations of interpolation functions to represent the velocity and pressure fields. The
Stabilized Galerkin/Least-Square (GLS) finite element formulation is used here in
order to prevent such numerical instabilities (details on this technique can be found
in works by Tezduyar, Mittal, Ray and Shih (1992) and Tezduyar (1992)).

In the present work, this method was extended for the simulation of incompressible
fluid flows to handle the 3-D flow driven by the combination of buoyancy and elec-
tromagnetic body forces. This stabilized finite element formulation was utilized
using equal-order interpolation velocity-pressure elements as proposed by Tezdu-
yar, Mittal, Ray and Shih (1992) and Tezduyar (1992).

2.2.2 The Space-Time Formulation and GLS Stabilization

In the space-time finite element formulation, the time interval (0, tmax) is partitioned
into subintervals In = (tn, tn+1), where tnand tn+1 belong to an ordered series of time
levels 0 = t0 < t1 < · · ·< tN = tmax. The space-time slab Qn is defined as the space-
time domain Ω× In. The lateral surface of Qn is denoted by Pn; this is the surface
described by the boundary Γ, as t traverses In.

Finite element discretization of a space-time slab Qn is achieved by dividing it into
elements Qe

n, e = 1, 2, · · · ,(nel)n, where (nel)n is the number of elements in the
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space-time slab Qn. Associated with this discretization, for each space-time slab
we define the following finite element interpolation function spaces for the velocity
and pressure(

Sh
u

)
n
=
{

uh
∣∣ uh ∈

[
H1h

0 (Qn)
]

nsd , uh = 0 on Pn

}
(

V h
u

)
n
=
{

wh
∣∣∣ wh ∈

[
H1h

0 (Qn)
]

nsd , wh = 0 on Pn

}
(

Sh
p

)
n
=
(

V h
p

)
n
=
{

qh
∣∣qh ∈ H1h

0 (Qn)
}

where wh represents the weighting functions and H1h
0 (Qn) the finite-dimensional

function space over the space-time slab Qn (with H1h
0 (Qn)⊂H1

0 (Q), where H1
0 (Q)

denotes the Sobolev space of square-integrable functions and square integrable first
derivatives and zero value on the boundary).

In weak form, the space-time formulation of equations (1, 2, 5 and 6) can be written
as follows (taking care of the above dimensionless form for the Navier – Stokes
equations):

Find Uh ∈
(
Sh

U
)

n and Ph ∈
(
Sh

P
)

n, such that: ∀Wh ∈
(
V h

U
)

n and ∀qh ∈
(
V h

P
)

n

∫
Qn

Wh ·
(

∂Uh

∂τ
+Uh ·∇Uh

)
dQ+

∫
Qn

εεε

(
Wh
)

: σσσ

(
Ph,Uh

)
dQ

+
∫
Qn

qh
∇ ·Uh dQ+RaPr

∫
Qn

Wh ·
(

θ
h
)

eg dQ

+PrHa2
∫
Qn

Wh ·
(

∇Φ
h−Uh× eB

)
× eB dQ

+
(nel)n

∑
e=1

∫
Qe

n

τstab

[ (
∂Wh

∂τ
+Uh ·∇wh

)
−∇ ·σσσ

(
qh,Wh

)
+PrRaθ heg +PrHa2

(
∇Φh−Uh× eB

)
× eB

]
·

·

[ (
∂Uh

∂ t +Uh ·∇Uh
)
−∇ ·σσσ

(
Ph,Uh

)
+PrRaθ heg +PrHa2

(
∇Φh−Uh× eB

)
× eB

]
dQ = 0 (7)

We note that if we were using a standard finite element formulation, rather than
this space-time technique, the Galerkin formulation of equations (1, 2, 5 and 6)
would have consisted of the first five integrals. The remaining series of integrals
are the least-squares terms added to the Galerkin variational formulation to assure
the numerical stability of the computations. The coefficient τstab determines the
weight of such added terms.
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2.2.3 Stabilized Streamline Upwind Petrov-Galerkin (SUPG) formulation for Convection-
Diffusion Equation

For the heat transfer equation we also adopt the SUPG stabilization in work by Ed
Akin and Tezduyar (2004); using suitably-defined finite-dimensional trial solution
and test function spaces

(
Sh

θ

)
n
={

θ
h
∣∣ θ

h ∈
[
H1h (Qn)

]
nsd , θ

h = θD on (Pn)g , n ·∇θ
h = h on (Pn)h

}(
V h

θ

)
n
={

wh
∣∣ wh ∈

[
H1h (Qn)

]
nsd , wh = 0 on (Pn)

}
The stabilized finite element formulation of the previously written energy equation
with boundary and initial conditions can be written as follows: find θ h ∈ Sh

θ
such

that ∀wh ∈V h
θ

:

∫
Qn

wh
(

∂θ h

∂τ
+Uh ·∇θ

h
)

dQ+
∫
Qn

∇wh ·Pr∇θ
hdQ−

∫
Ph

whhdP

+
(nel)n

∑
e=1

∫
Qe

n

τSUPGUh·∇wh
(

∂θ h

∂τ
+Uh ·∇θ

h−Pr∇
2
θ

h
)

dQ

Here τSUPG is the SUPG stabilization parameter.

2.2.4 Standard Galerkin FEM for Electrical Potential Equation

The classical Galerkin formulation is adopted for the electrical potential equation.

After spatial discretization of the weak forms of the governing equations, a system
of nonlinear ordinary differential equations is obtained for the solution of the ve-
locity U, the pressure P, the temperature θ , and the electric potential field Φ in the
domain.

For time integration an implicit method known as “Backward Differentiation For-
mulas (BDF)” is used. The matrix system obtained was numerically solved using
the geometric multigrid with SOR (Successive Over-Relaxation) as smoother. The
equations are solved by a two level fixed V-cycle procedure starting with the coars-
est grid level and progressing to the finer one (for details see Hackbusch (1985)).
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3 Results and Discussion

3.1 Model Validation

The simulation results obtained here are compared with those of Bennacer, El
Ganaoui and Leonardi (2006) and Sheu, Rani, Tan and Tsai (2007), who inves-
tigated a similar geometry for different Ra numbers. The results are presented in
terms of the averaged Nusselt number (Nuav) values at the bottom and the top sur-
faces, and tabulated in Tab. 1. The results are in good agreement (the maximum
relative error is found to be less than 4%).

3.2 Steady Symmetric Flow (at Low Ra)

The only control parameter in this part is the Rayleigh number Ra, which is a non-
dimensional measure of ∆T . For small (Ra), the buoyancy force arising from the
heated surfaces (bottom and two lateral ones) is balanced by the viscosity of the
fluid, and thus heat travels from the heated section towards the top surface mainly
by conduction.

Convective and conductive heat fluxes, along lines across the centre of the cavity
in the Zand Y -directions, are presented in Fig. 2. It is shown that for moderate
values of Ra (e.g. Ra = 100) the heat transfer is mainly conductive with a weak
contribution from convection (Figs. 2a), due to weakly convective flow resulted for
these values. For relatively height values of Ra (Ra = 2800) convective transport
is more important (Fig. 3b). Convection is due to the fluid motion induced by the
applied temperature gradient on the laterally heated surfaces. This is because the
fluid is heated from the side then the gravity is orthogonal to the density gradient,
and thus convection arises at any value of the Ra number.

The resulting flow structure for this range of Ra consists of two counter-rotating
main cells inside the cavity, as shown in Figs. 3 (a, b) by the velocity vectors in the
vertical mid-plane (Y=0.5). The hot fluid rises up along the heating lateral walls
and moves down in the lateral mid-plane (Z=0.5). This motion brings cold fluid
from the top to the bottom wall through the centre of the cavity. The resulting
flow for this Ra range exhibits a weak spiral flow structure, similar to a 2D flow
structure in a deep cavity see Bennacer, El Ganaoui and Leonardi (2006). In the
current geometry, the flow field is expected to be symmetric with respect to the
plane Z=0.5 and Y=0.5 (corresponding to symmetrical planes of the present cavity)
(see the velocity component in the X-direction U plotted in the plane X=0.5 in Fig.
4a) also it exhibits symmetry with respect to the diagonal plane joining the points
with coordinates (0, 0, 0), (1, 0, 0), (1, 1, 1) (Fig. 4b).
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Figure 2: Heat fluxes along the lines across the centre of the cavity in the Y, Z-
directions, respectively, for Ra=100 and Ra=2800

 
 

Figure 3: Velocity vectors in the vertical mid-plane (Y=0.5) for different Ra values,
(steady state), symmetry with respect (Z=0.5) for Ra=100 and Ra=2800
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Table 1: Comparaison of results.

Ra 1000 2000 3000 4000
Top Present

Bennacer
Sheu

-2.1593
-2.12
-2.1077

-2.1647
-2.13
-2.1134

-2.1717
-2.14
-2.1308

-2.1783
-2.15
–

Bottom Present
Bennacer
Sheu

0.2769
0.279
0.28061

0.30092
0.304
0.30438

0.32316
0.310
0.31148

0.3352
0.337
–

Approx.
Value of
Racr &
Method

Present
Bennacer
Sheu

≈ 2810,Stabilized FEM with
tetrahedral non-uniform mesh con-
sists of 62872 elements
<3000, Finite volume with non-
uniform mesh with 82 x 82 x 82
3040, Finite volume with uniform
mesh with 41 x 41 x 41

3.3 Central-Steady- Breaking and Transition

At the Ra value around (≈ 2810) a central symmetry breaking appears. A transition
from steady state symmetric flow to non-symmetric flow is observed. Indeed, when
Ra reaches its critical value the initially observed central symmetry of the steady
flow disappears, and the flow begins to become non-symmetric. This symmetry
breaking is a known feature of the present kind of the cavity geometry with rigid
boundaries. We think that, this symmetry breaking and the transition from steady
symmetric flow to non-symmetric flow results in due to the lateral temperature
gradient. Transition to steady or time dependency is a function of the geometry
and the type of boundary conditions used. The strong dependence of the critical
parameters on the geometry and on the boundary conditions of the cavity is reported
in Gelfgat, Bar-Yoseph and Yarin (1999). The flow remains symmetric with respect
to the plane of symmetry Z=0.5 (Fig. 5). A break in symmetry occurred vertically
(Y-direction) and in the diagonal plane joining points (0, 0, 0), (1, 0, 0), (1, 1, 1)
(Fig. 5b). The symmetry vanishes with respect to the vertical mid-plane (Y=0.5)
(Fig. 5c).

The break in symmetry in the thermal field may also be illustrated, as shown in
Fig. 6a, by the conductive and the convective heat fluxes distributions along line
across the centre of the cavity in Y-direction. It is observed that we have break in
symmetry with respect to the mid-plane (Y=0.5). However, the symmetry remains
with respect to the mid-plane (Z=0.5), as seen in Fig. 6b, by the conductive and
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(a) Ra=100  (a) Ra=2800 

 
(b) Ra=100  (b) Ra=2800 

 
Figure 4: Steady velocity component in the X-direction on plane (X=0.5) and on the
diagonal plane joining points with coordinates (0,0,0), (1,0,0), (1,1,1), for different
moderate Ra: (a) Symmetry with respect the vertical mid-plane (Y=0.5) as well as
the lateral mid-plane (Z=0.5); (b) Symmetry in this diagonal plane.

convective heat fluxes along line across the centre of the cavity in Z-direction.

3.4 Application of an external horizontal magnetic field

The flow under the effect an applied magnetic field is more stable than that of
the first case, (Ha = 0), because of the stabilizing effects of the magnetic body
force acting on the points of the fluid. For example, for the case where Ha = 2,
steady symmetric flows are obtained with Ra less than to 3 × 103. Transition
from steady symmetric to steady asymmetric flow develops for this case (Ha = 2)
when Ra is around (≈ 3 × 103). At this Ra value a break in symmetry occurs in
the mid-plane (Y = 0.5) and in the diagonal plane. Qualitatively, steady and time
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Figure 5: The distribution of U velocity in the plane X=0.5 and on the diagonal
plane and the distribution of Nu at the bottom X=0, for Ra=2850. The symmetry
remains with respect Z=0.5, symmetry vanishes in the plane Y=0.5 and the diagonal
plane.

 
 

Figure 6: Symmetry breaking illustration by the distribution of heat fluxes along
the line across the centre of the cavity in the Y-direction, for Ra=2850, (a) break in
symmetry with respect the mid-plane (Y=0.5), (b) symmetry remains in the plane
(Z=0.5)

dependent flow fields obtained for the present case (Ha = 2) are similar to steady
and time dependent flow fields of the previous case (Ha = 0). For this case (Ha
= 2), the computed maximal and minimal values of steady symmetric convective
flow velocity components are weak with respect to those of the first case (Ha = 0)
(Tab. 2).

Further increase in Ha leads to flows more stable and weak (Tab. 4 and Figs. 7).
Examination of Tab. 4 and Figs. 7 reveals that for each Ra value the flow becomes
weaker with increasing Ha. Thus, the magnetic field suppressing the flow field
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Ha = 0, Ra= 100 

 

Ha=2, Ra=100 

 

Ha=15, Ra=100 

 

Figure 7: Damping effects of the applied magnetic field (at Ra = 100): (a) Line
across the centre of the cavity in the Y-direction, (b) Line across the centre of the
cavity in the Z-direction, and (c) Line across the centre of the cavity in the X-
direction.

has a stabilizing effect, and retards the central-symmetry breaking bifurcation even
for higher Ha values (see Tab. 4). Indeed, the applied magnetic field damps and
makes uniform mainly the X-component velocity as it is seen in Figs. 7. The
velocity component in the Z-direction was also found to be reduced. For example,
the maximum averaged X- and Z- velocity component values (at Ha = 0) were
reduced approximately by 3 and 2 times, respectively, at Ha = 15 (Fig. 7).
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Table 2: Maximum and minimum steady dimensionless velocities in the cavity at
Ra= 100 and at different Ha (from 0 to 50) and correspending approximated critical
values.

Ha U
Max Min

V
Max Min

W
Max Min

Approx.
Racr

0 0.082083 -0.096614 0.003344 -0.00331 0.055022 -0.055121 2.81 x 103

1 0.081573 -0.095659 0.003189 -0.003159 0.054679 -0.054779 2.9 x 103

2 0.080097 -0.092908 0.002844 -0.00292 0.053678 -0.053779 3 x 103

4 0.074747 -0.083455 0.002215 -0.002196 0.050035 -0.050143 3.4 x 103

6 0.067355 -0.071524 0.00179 -0.001823 0.045012 -0.045131 4.2 x 103

8 0.059606 -0.059773 0.001725 -0.001631 0.039627 -0.03973 5.3 x 103

10 0.052409 -0.049599 0.001911 -0.001752 0.034612 -0.03476 6.7 x 103

15 0.03788 -0.031366 0.001889 -0.001714 0.024217 -0.024175 1.4 x 104

20 0.028139 -0.020972 0.001611 -0.001473 0.017497 -0.017518 2.5 x 104

30 0.017728 -0.011098 0.001123 -0.001016 0.010054 -0.010149 7.45 x 104

40 0.012093 -0.006838 0.000895 -0.000736 0.006496 -0.00652 1.6 x 105

50 0.008909 -0.004642 0.000673 -0.000572 0.004569 -0.004511 2.5 x 105

4 Conclusion

In this work three-dimensional simulations were presented for a simplified vertical
Bridgman configuration heated from below. An increase in the flow strength may
lead to non-symmetrical flow structures or unsteadiness for lower controlling pa-
rameters (Ra number). The effect of the Ra number on the flow structure and heat
transfer distribution is shown.

The simulations results are compared with those of the literature. The break in
symmetry occurred at relatively lower Ra numbers in comparison with the 2-D
models. The present analysis also illustrates the limitation of 2-D simulations in
identifying such transitions. The flow becomes three-dimensional at relative low
Ra numbers, and the preliminary results illustrate the effect of the depth of the
cavity on the mean flow and indicate the existence of a wavelength in the third
direction.

The application of an external magnetic field presents itself as a promising tool for
damping and stabilizing the flow structures.
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