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Coupling of Lattice Boltzmann Equation and Finite
Volume Method to Simulate Heat Transfer in a Square

Cavity

Ahmed Mezrhab1 and Hassan Naji2

Abstract: The objective of this paper is to assess the effectiveness of the cou-
pled Lattice Boltzmann Equation (LBE) and finite volume method strategy for the
simulation of the interaction between thermal radiation and laminar natural con-
vection in a differentially heated square cavity. The vertical walls of the cavity are
adiabatic, while its top and bottom walls are cold and hot, respectively. The air
velocity is determined by the lattice Boltzmann equation and the energy equation is
discretized by using a finite volume method. The resulting systems of discretized
equations have been solved by an iterative procedure based on a preconditioned
conjugate gradient method. Only the surface radiation is taken into account and the
walls of the enclosure are assumed to be diffuse-grey. The achieved simulations
have shown that the coupling between the lattice Boltzmann equation and the fi-
nite volume method gives excellent results. It was also observed that the surface
radiation standardizes the temperature inside the cavity and causes a considerable
increase of the heat transfer.

Keywords: Lattice Boltzmann Equation; Hybrid scheme; Finite volume; Natural
convection, Radiative transfer.

Nomenclature

Ai ith radiative surface
Fi j view factor between Ai and A j

g gravity acceleration, ms−2

k thermal conductivity, Wm−1K−1

L cavity length, m
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Nu Average Nusselt number
Nr radiation number, σT 4

h /(k∆T/L)
Pr Prandtl number, ν/α

qr net radiative flux density, Wm−2

Qr dimensionless net radiative flux density,
qr/σT 4

h
Ra Rayleigh number, gβ (Th−Tc)L3/να

Ri Radiosity of radiative surface Ai

T temperature, K
T0 Average temperature, (Th +Tc)/2, K
u,w velocity component along x, y, ms−1

U,W dimensionless velocity components
along x, y. U = uL/α , W = wL/α

x,y Cartesian coordinates, m
X ,Y dimensionless Cartesian coordinates,

X = x/L, Y = y/L

Greek symbol

εi emissivity of radiative surface Ai

α thermal diffusivity of the fluid, m2s−1

β volumetric expansion coefficient, K−1

∆T maximal difference temperature,
(Th−Tc), K

ν kinematic viscosity of the fluid, m2s−1

θ dimensionless temperature,
(T −T0)/(Th−Tc)

Θ dimensionless temperature, T/Th

σ Stefan-Boltzmann constant, Wm−2K−4

Subscripts

h hot
c cold

1 Introduction

Natural convection in two-dimensional vertical rectangular cavities is one of the
standard fluid flow and heat transfer cases used for the validation of computational
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fluid dynamics (CFD) codes and their development. This interest is due to their
industrial applications in a variety of engineering problems such as solar, thermal
habitat and the cooling of electronic components. Usually, the numerical methods
used for these simulations are based on the spatial and temporal discretization of
macroscopic evolution equations. However, their solutions can be very complex
when dealing with problems where the geometry is complex or in presence of sev-
eral phases of a fluid or more fluids. That is why a different approach called “Lat-
tice Cellular Gas Automata” has been developed (see Frisch et al (1986)). This
method is at the origin of the commonly known the Lattice Boltzmann Equation
(LBE) which has emerged as a powerful alternative tool for the solution of fluid
flows. Using velocity-space truncation of the Boltzmann equation from the kinetic
theory of gases, the LBE methods lead to linear, constant coefficient hyperbolic
systems with non-linear source terms. Its goal is to model the flow of a fluid at the
microscopic level in terms of local interactions between the particles. Unlike tradi-
tional numerical methods which solve the macroscopic variables such as velocity
and density directly, these variables are obtained in LBE by moment integrations
of the particle distribution function. This method has many advantages: it is eas-
ier and intuitive to treat particular conditions such as the presence of obstacles or
the multiphase flow. From a computational viewpoint, the notable advantages of
this approach are its intrinsic parallelism of algorithm, simplicity of programming,
and ease of incorporating microscopic interactions. It has been successfully used in
many kinds of complex flows such as single component hydrodynamics, multiphase
and multi-component fluids, magneto-hydrodynamics, reaction-diffusion systems,
flows through porous media, turbulent flow (Chen and Doolen (1998); Mezrhab
et al (2004, 2008); Semma et al (2007, 2008)). Detailed theoretical analysis has
placed this approach on a solid foundation, and a large number of numerical val-
idations have been carried out to assess its accuracy, especially in problems with
mass and momentum conservation.

The main objective of this work is to assess the efficiency of the numerical coupling
between the LBE in its refined multi-relaxation approach (d’Humières (1992)) and
finite volume method in order to obtain the velocity and temperature fields. This
approach is applied to investigate numerically the steady combined laminar natu-
ral convection and surface radiation heat transfer in a two-dimensional enclosure
heated from below for various Rayleigh numbers at a fixed ∆T or L using air as the
working fluid.

The remainder of this paper is organized as follows. In the next section, the math-
ematical and numerical formulations of the problem are described. The implemen-
tation details and the computed results are reported and discussed in Section 3.
Finally, the major conclusions based on our numerical study are drawn in Section
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4.

2 Mathematical formulation and numerical procedure

The geometry studied is presented in Figure 1. The sidewalls are adiabatic; the top
horizontal wall is maintained at a cold temperature Tc, while the bottom horizon-
tal wall is brought to a hot temperature Th. The flow is assumed incompressible,
laminar, steady and two-dimensional. The Boussinesq approximation is adopted in
order to simplify the analysis. The considered fluid is the air and its physical prop-
erties are supposed to be constant at the average temperature T0, except its density.
The air is assumed as perfectly transparent to thermal radiation and thus, only solid
surfaces contribute to the radiation exchange and are assumed to be diffuse-gray.
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Figure 1: Schematic view of the square cavity.

2.1 Multiple Relaxation Time Lattice Boltzmann Equation (MRT-LBE)

The Lattice Boltzmann Equation (LBE) is a numerical scheme evolved from the
Lattice Gas Model (LGM) in order to overcome the difficulties encountered with
the LGM (Frisch et al (1986)). In LBE, the fluid field is discretized by a group
of microscopic particles. The density distributions of these particles perform two
types of motions: collision and streaming. In what follows, we use the D2Q9 model
(see Figure 2) on a square lattice with lattice spacing δx = δy (where D refers to
space dimensions and Q to the number of particles at a computational node). Each
node comprises three kinds of particles, rest particles that reside in the nodes of the
lattice, particles that move along the coordinate directions and particles that move
along diagonal directions.

The simplest lattice Boltzmann equation (LBE) is the lattice Bhatnagar-Gross-
Krook (BGK) equation, based on a single-relaxation-time (SRT) approximation
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Figure 2: The structure of the lattice cell in D2Q9 model for LBE.

(see Bhatnagar (1954)). Due to its extreme simplicity, the lattice BGK equation
has become the most popular lattice Boltzmann model. However, this simplic-
ity comes at the expense of numerical instability (Lallemand and Luo (2000))
and inaccuracy in implementing boundary conditions (Ginzburg and d’Humières
(2003)). These deficiencies in the BGK models can be overcome with the use of
multiple relaxation-time (MRT) model introduced by d’Humières et al (2002). It
has been clearly demonstrated that the LBE models with MRT collision opera-
tors have inherent advantages over their BGK counterparts (see Bhatnagar (1954);
Lallemand and Luo (2000)). The MRT lattice Boltzmann equation (also referred
to as the generalized lattice Boltzmann equation (GLBE) or the moment method)
overcomes some obvious defects of the BGK model, such as fixed Prandtl number
(Pr = 1 for the BGK model) and fixed ratio between the kinematic and bulk vis-
cosities). The MRT-LBE models are much more stable than the BGK, since the
different relaxation times can be individually tuned to achieve “optimal” stability
(Lallemand and Luo (2000)).

For a MRT-LBE model with 9 velocities, a set of velocity distribution functions
fi(r j, tn), i ∈ {0, . . . ,8} is defined on each node r j of the lattice and for time tn.
The evolution equation for the MRT-LBE of 9 velocities on a 2-dimensional lattice
r j ∈ (δxZ)2 with discrete time tn ∈ δtN = δt {0,1,2, . . .} is:

f(r j + eiδt , tn +δt)− f(r j, tn) =−M−1S (m(r j, tn)−meq(r j, tn)) (1)

where f(r, t), m(r, t) and meq(r, t) are 9-dimensional vectors for the distribution
functions, the moments, and the equilibria of moments, respectively, e.g., f =
( f0, f1, ..., f8)T ∈ V

(
= R9

)
, and m = (m0,m1, ...,m8)T ∈ M

(
= R9

)
, T being the
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transport operator. M is the transformation matrix such that m = Mf and f = M−1m
and S is the relaxation matrix in the moment space M. Explicitly, matrices M and
S of the incompressible lattice Boltzmann model can be written as, respectively:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(2)

and

S = diag(0,s1,s2,0,s4,0,s6,s7,s8) (3)

In the D2Q9 model, the discrete velocity set is:

ei =


(0,0), i = 0(
cos
[
(i−1)π

2

]
,sin

[
(i−1)π

2

])
c, 1≤ i≤ 4√

2c
(
cos
[
(2i−9)π

4

]
,sin

[
(2i−9)π

4

])
, 5≤ i≤ 8

(4)

where c = δx/δt is the particle velocity and δx and δt are the lattice grid spacing
and time step, respectively. From here on, we shall use the units of δx = δt = 1 such
that all the relevant quantities correspond are dimensionless.

The nine components of the moment vector m are arranged in the following order:
m0 = ρ is the fluid density, m1 = e is related to the energy, m2 = ε is related to the
energy square, m3,5 = jx,y are components of the momentum J = ( jx, jy), m4,6 = qx,y

are related to components of the energy flux and m7,8 = pxx,xy are related to the com-
ponents of the symmetric and traceless strain rate tensor. These nine moments are
separated into two groups: (ρ,m3,m5) are the conserved moments which are locally
conserved in the collision process; (m1,m2,m4,m6,m7,m8) are the non-conserved
moments and they are calculated from the relaxation equations:

mac
j = mbc

j + s j(m
eq
j −mbc

j ) (5)

where mac
j is the moment after collision, mbc

j is the moment before collision (the
post-collision value), s j are the relaxation rates which are the diagonal elements of
the matrix S and meq

j are the corresponding equilibrium moments. Note that the
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collision rates s0,s3 and s5 are not relevant, since they are related to the conserved
moments. In order to obtain a consistant dynamics viscosity, relaxation rates s7 and
s8 have to be equal s7 = s8. The other relaxation rates have no physical meaning
for incompressible flows and for stability reasons, they can be freely chosen in the
range 0 < si < 2.

In the lattice units of δx = δt = 1, the speed of sound is cs = 1/
√

3 and the kinematic
viscosity ν is given by:

ν = c2
s δt

(
1
s7
− 1

2

)
= c2

s δt

(
1
s8
− 1

2

)
(6)

The equilibrium values of the non-conserved moments meq are chosen to be:

eeq =−2ρ +3( j2
x + j2

y)

ε
eq = ρ−3( j2

x + j2
y)/ρ0

qeq
x =− jx

qeq
y =− jy

peq
xx = ( j2

x − j2
y)/ρ0

peq
xy = jx jy/ρ0

(7)

The constant ρ0 is the mean density in the system and is usually set to be unity in
simulations.

The macroscopic fluid variables, density ρ and velocity u, are obtained from the
moments of the distribution functions as follows:

ρ =
8

∑
i=0

fi (8)

J( jx, jy) = ρu = ∑
i

fiei (9)

where u(u,w) is the air velocity vector.

It should be noted that the presence of the force density gβ∆T θ(r, t) modifies the
conservation of the vertical velocity in the stage of collision, which translates into:

wac = wbc +gβ∆T θ(r, t) (10)

where wac et wbc represent the vertical velocity respectively before and after the
collision.
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The dynamic boundary conditions on the walls of the cavity are imposed by the
so-called bounce-back rule, which makes it possible to obtain u = w = 0 at all walls
of the cavity (Mezrhab et al (2004)).

This method has been well explained in our previous works and for more details,
the reader can to refer to the papers (Mezrhab et al (2004, 2008)).

2.2 Fields temperature

The energy equation is given by:

U
∂θ

∂X
+W

∂θ

∂Y
=
(

∂ 2θ

∂X2 +
∂ 2θ

∂Y 2

)
(11)

The thermal boundary conditions used are:

θ = 0.5 for Y = 0 and 0≤ X ≤ 1

θ =−0.5 for Y = 1 and 0≤ X ≤ 1

At the adiabatic walls: X = 0 or 1 and 0≤ Y ≤ 1

∂θ

∂Y
−NrQr = 0 (12)

In order to ensure the grid-independence solutions, a series of trial calculation were
conducted for different grid distributions, and the optimal mesh that allows for a
good compromise (accuracy / computing time) is 101×101.

The energy equation (Eq. 11) was discretized by a finite volume method with
discretization scheme centred in terms of transport. The resulting systems of dis-
cretized equations were solved by means of an iterative procedure based on a pre-
conditioned conjugate gradient method

In order to discretize the equation (12), the surfaces of solid radiative forming the
cavity were discretized in a number N of radiative surfaces. N is the total number of
radiative surfaces, which is equal to the total number of volumes of interfaces be-
tween solid and fluid controls. Therefore, the dimensionless density of the radiative
flux Qr,i lost by the surface Ai is given by:

Qr,i = Ri−
N

∑
j=1

R jFi− j (13)

In addition, the dimensionless radiosity is obtained by solving the system:

N

∑
j=1

(δi j− (1− εi)Fi− j)R j = εiΘ4
i (14)
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where δi j is the Kronecker symbol.

For the combined radiation and convection problem, the surface temperatures on
the insulated wall were calculated from the non-linear heat balance (Eq. 12) by
using an inner iterative procedure at every time step for the energy equations. The
surface temperatures were updated from the solution of the energy equation by
under-relaxing the boundary evaluation of temperature. At each inner iteration, the
linear system of equations for the radiosities (Eq. 14) was solved by a direct method
(Gauss elimination). The grid was constructed such that the boundaries of physi-
cal domain coincide with the velocity grid lines. The points for temperature were
placed at the center of the scalar volumes. At the fluid-adiabatic wall interfaces, the
control volume faces were also arranged so that a control volume face coincided
with an interface. This grid distribution was chosen to ensure the interface energy
balance. To avoid a check-board pressure and velocity fields, staggered grids were
used for the U and W -velocity components in the X and Y -directions respectively.

Table 1: Average Nusselt-number comparisons for Pr = 0.71 and ε = 0

Ra 103 104 105 106 107

Present 1.118 2.242 4.524 8.824 16.490
De Vahl Davis (1983); Le
Quéré (1991)

1.118 2.243 4.523 8.826 16.510

Since the radiative properties of the solid surfaces of the plate and of the insulated
wall vary from point to point, each of the surfaces was divided into finite number
of zones on which the four basic assumptions of the simplified zone analysis was
assumed valid. The mesh used to solve the differential equations determined the
number of zones retained. Therefore, the zoning was not uniform and the area of
each zone varied according to the stretching function and number of grid points
used. For N control volume faces, this results in N(N− 1)/2 view factors to be
calculated and in a linear system of N equations for the radiosities. The view factors
were determined by using a boundary element approximation to fit the surfaces
and on a Monte Carlo method for the numerical integrations (Mezrhab and Bouzidi
(2005)).

To characterize heat transfers, the average Nusselt number at the hot wall is ex-
pressed as:

Nu =
∫ 1

0

(
− ∂θ

∂Y

∣∣∣∣
X ,Y=0

+NrQr (X ,Y = 0)

)
dX (15)
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Figure 3: Isotherms and streamlines in absence (ε = 0) and in presence (ε = 1) of
the radiation exchange for Ra = 104 and 105.

3 Examples of simulations

The code has been exercised intensively on benchmark problems to check its va-
lidity. We present in the table 1 the comparison between some results obtained in
natural convection using our house code with those reported in references [13-14].
The case considered is that of a square differentially heated. The horizontal end
walls are perfectly insulated whereas the two vertical walls are maintained at two
different temperatures Th and Tc respectively.

When the radiation exchange is taken into account, our code has been validated
with the numerical results published previously by different authors, and the agree-
ment between the present and previous results was very good in reference Mezrhab
et al (2007). For this reason and for brevity we do not repeat here. Based on
the above studies, it was concluded that the code could be correctly applied to the
problem under consideration.

In pure natural convection, each configuration depends at least two dimensionless
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parameters (Pr, Ra). Taking into account the surface radiation requires the knowl-
edge of four other parameters (T0, ∆T , L, ε). Pr and T0 are fixed to 0.71 and 300
K, respectively. The thermophysical properties of the air at 300 Kshows that the
term (gβ/να) is approximately equal to 9×107 m−3K−1; so the Rayleigh number
varying from 103 to 106, is only function of ∆T and L. The emissivity ε of radiative
surfaces is chosen equal to 0 in pure natural convection and equal to 1 in presence
of the radiation exchange. In this paper, two cases were considered: in the first
case, we have fixed ∆T to 20 K and we have calculated L for each value of Ra, and
in the second case, we have fixed L to 3×10−2m and ∆T was calculated for each
value of Ra. The radiation number Nr is determined as function of Ra, ∆T and L
according to its expression mentioned in nomenclature.

Figure 3 presents isotherms and streamlines either in presence or in absence of the
radiation exchange for two Rayleigh numbers 104 and 105. In the case of the cavity
heated by the bottom horizontal wall, it has been shown in the past, the presence
of multiple solutions in steady state (see Hasnaoui et al (1992)). The Rayleigh
numbers considered in this study produce mono cellular with possible rotations in
the clockwise and counter-clockwise directions.

In presence of the radiation exchange, (ε = 1), the temperature gradients near the
vertical walls give an indication of the importance of radiative flux. The stream-
lines show that the radiation exchange reduces considerably the circulation in the
cavity. In fact, the radiation exchange reduces the temperature difference between
the adiabatic walls and therefore decreases the air velocity near these walls.
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Figure 4: Variation of average Nusselt number as function of Ra.

The average Nusselt number is presented in figure 4. It is observed that the average
Nusselt number increases under the effect of the buoyancy force (increase of Ra)
and the surface radiation. This can be explained by the fact that the contribution of
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the radiative exchange to the average Nusselt is controlled by the productNrQr, as
indicated in Eq. 15. As can be seen, the average Nusselt number is proportional to
the product NrQr, which increases with increasing Ra, whatsoever when taking of
∆T or L.

4 Conclusion

Numerical resolution of natural convection coupled with radiative heat transfer is
carried out in a square cavity, whose the sidewalls are adiabatic, while the bottom
and the top horizontal walls are maintained at two different temperatures Th and
Tc, respectively. The methodology used is a hybrid numerical scheme based on the
lattice Boltzmann equation combined with the finite volume method. Within the
investigated parameters range, the following conclusions can be drawn:

1). The combination of lattice Boltzmann equation and the finite volume method
is very successful;

2). The surface radiation homogenized the temperature inside the cavity by reduc-
ing the difference in temperature between the adiabatic walls. It also reduces
the air circulation in the cavity;

3). The surface radiation increases the heat transfer in the cavity.
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