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On the Behavior of an Interface under Molecular
Diffusion: A Theoretical Prediction and Experimental

Study

R. Abdeljabar1

Abstract: A theoretical model has been developed to predict the expansion of a
salty gradient (i.e. the interface) layer under natural diffusion. The salty gradient
layer is initially sandwiched between two homogeneous miscible layers of varying
salinity, which may or may not have the same thickness. The model describes the
concentration profile of the salty gradient layer (expressed by analytical solutions
of the diffusion equation) as the boundaries of this interfacial layer move into the
adjacent (hitherto homogeneous) regions. The lifetime of the adjacent layers is also
predicted. An experimental study for a configuration with salty water below and
distilled water above (of the same thicknesses) is carried out to verify the theoretical
predictions of the model.

Keywords: Stratified miscible layers; interface; moving boundaries; lifetime of
the stratification.

1 Introduction

Recently, there has been growing interest in the development of renewable energy
in general and solar energy in particular. The solar pond is an engineering process
for the storage of solar energy [Tabor (1981)]. It consists of three layers: (1) a
lower homogeneous layer which has high concentration of salt, (2) an upper ho-
mogeneous layer that is composed of distilled water and (3) an intermediate layer
which is called the salty gradient layer (or interface). The efficiency of the solar
pond depends on the effect of double-diffusive convection on the salty gradient
layer; consequently, double-diffusion in the gradient layer has been extensively
studied in the laboratory in order to understand the mechanisms of the growth of
disruptive instabilities [Bergman et al. (1985); Bergman et al. (1987); Linden and
Shirtcliffe (1978); Gau et al. (1992)]. Also, some experimental studies have shown
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that the formation of mixed zones separated by thin interfaces [Turner (1968)] en-
hance the growth of this instability. However, other noteworthy observations in
solar ponds have shown that if the salt gradient layer of a solar pond is locally
disturbed, the gradient layer reconstructs under salt diffusion. From these observa-
tions arises a question: How is the salty gradient reconstructed? Indeed, it is even
worthwhile to identify the initial condition of a salty gradient layer if the results of
experimental studies and solar-pond observations are to be understood. Such ques-
tions/discrepancies lead us to think that more investigations need to be done in this
field. Therefore, this paper is aimed at giving some answers to the above issues.

Construction of a salty gradient layer. A salty gradient layer in laboratories or in
solar ponds is built using various techniques. The Oster method [Oster (1965)] is
one of these techniques. It consists of two communicating vessels containing the
same depths of distilled water and salty water. The solution in the vessel initially
containing distilled water is vigorously stirred while it is gradually drained into the
bottom of an experimental tank. Another method similar to Oster’s technique was
used by Menzkirch [Merzkirch and Peters (1992)], however these techniques are
not practical if the required volume is immense, for example in solar ponds. Thus,
another more practical and effective technique is used. It consists of creating a se-
ries of homogeneous layers [Poplowsky et al. (1981)] of salty solutions of varying
concentrations. This technique of stratification produces thin gradient layers (i.e.
interfaces) between each of the homogeneous layers. The interfaces are the main
elements that control the evolution of the overall stratification. While the salt profile
of the stratification is non-linear, the thicknesses of the salty gradient layers expand
under salt diffusion phenomenon and eventually merge to form a single salty gra-
dient layer throughout the whole stratification, which subsequently evolves in time
and space until it reaches a homogeneous state. This implies that the evolution of
the overall salt profile has two typical steps: the first one is achieved when a linear
salty profile takes place in the whole stratification and the second one is achieved
when the salt gradient layer reaches a homogeneous state.

Although, there are many mathematical books dealing with the problem of isother-
mal diffusion [Crank (1975); Bejan (1987); Carslaw and Jaeger (1960); Fourrier
(1978)], there is no mathematical model describing the evolution of the salty strat-
ified layers; i.e. the moving boundaries of a linear salty gradient layer expanding
into isothermal stratified layers have not been clearly modeled. Therefore, in view
of the importance of the phenomenon, we felt that a closer look is necessary in or-
der to predict mathematically this evolution and the lifetime of the stratified layers.
Moreover, an experimental study has been performed to verify the predictions of
the model.
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2 Analytical investigation

In the following, we present some classical solutions of the diffusion equation that
will be used in the theoretical predictions. The system under study is a set of hori-
zontal homogeneous, vertically stratified liquid layers of varying salinity. Between
each layer is a salty gradient layer (i.e. the interface), as sketched in Fig. 1. The
initial conditions are: ho is the thickness of the interface and has a salt concentra-
tion profile indicated by the diagonal lines. z is the vertical coordinate varying from
z = h0

2 to z = h0
2 .
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Figure 1: schematic of layer considered

Owning to the system studied, it has been assumed that the liquid layers are isother-
mal, the diffusion coefficient Dm is constant and the salt diffusion has one dimen-
sion (z). With these assumptions, the dimensionless salt diffusion equation into the
layer is defined by:

∂N∗(z∗, t∗)
∂ t∗

=
∂ 2N∗(z∗, t∗)

∂ z∗2 (1)

−1
2

< z∗ <
1
2
, t∗ > 0 (2)

Where t∗ = Dm
h0′ t, N∗ = N

N1 , z∗ = z
h0 .

The technique of separation of variables has been used to solve Eqs.1 and 2, and we
now consider four particular solutions that will be utilized later in the theoretical
predictions.
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2.1 Both boundaries impermeable

The initial condition:

N∗(z∗, t = 0) =
1
2
− z∗ − 1

2
≤ z∗ ≤ 1

2
(3)

is associated to the following boundary conditions:

lim
z∗→± 1

2

∂N∗(z∗, t)
∂ z∗

= 0 (t > 0) (4)

The solution, satisfying the differential Eq.1 and the initial value-boundary value
problem Eqs.3 and 4, has the following form:

N∗(z∗, t) =
1
2

+
k=+∞

∑
k=0

4(−1)k+1

(2k +1)2π2 sin((2k +1)πz∗)exp

(
− t

θk

)
(5)

Where

Θ =
h2

0

(2k +1)2π2Dm
(6)

is the relaxation time.

2.2 Both boundaries permeable

The initial condition is still the same:

N∗(z∗, t = 0) =
1
2
− z∗ − 1

2
≤ z∗ ≤ 1

2
(7)

The boundary conditions are now:(
∂N∗(z∗, t)

∂ z∗

)
z∗=− 1

2

=
(

∂N∗(z∗, t)
∂ z∗

)
z∗= 1

2

(t > 0) (8)

Therefore, the solution that satisfies the differential Eq.1 and the initial value-
boundary value problem Eqs.7 and 8, has the following form:

N∗(z∗, t) =
1
2
−

k=+∞

∑
k=0

2
√

2
(2k +1)π{

4
(2k +1)π

(
cos

(
k

π
2

)
+ sin

(
k

π
2

))2
−

(
cos

(
k

π
2

)2
− sin

(
k

π
2

)2
)}

× sin
(
(2k +1)

π
2

z∗
)

exp

(
− t

θ ′
k

)
(9)
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Where

Θ′
k = 4Θk =

4h2
0

(2k +1)2π2Dm
(10)

is the relaxation.

2.3 Constant concentration at the upper boundary and lower boundary imper-
meable

Once again, the initial condition remains the same, but the boundary conditions are:

lim
z∗→− 1

2

∂N∗(z∗, t)
∂ z∗

= 0 (t > 0) (11)

N∗
(

z∗ =
1
2
, t

)
= 0 (t > 0) (12)

and the solution of the differential Eq.1 that satisfied the Eqs. 11 and 12 is:

N∗(z∗, t) =
k=+∞

∑
k=0

2(−1)k
√

2
(1+4k)π

(
1+

4
(1+4k)2π2

)

×
(

cos
(
(1+2k)

π
2

z∗
)
− sin

(
(1+2k)

π
2

z∗
))

exp

(
− t

θ ′
k

)
(13)

Where

Θ′
k = 4Θk =

4h2
0

(2k +1)2π2Dm
(14)

2.4 Impermeable upper boundary and constant concentration at the lower bound-
ary

We now take for the boundary conditions:

N∗(z∗ = −1
2
, t) = 1 (t > 0) (15)

lim
z∗→ 1

2

∂N∗(z∗, t)
∂ z∗

= 0 (t > 0) (16)

And find:

N∗(z∗, t) =

1−
k=+∞

∑
k=0

2(−1)k
√

2
(1+4k)π

(
1− 2

(1+4k)π

)

×
(

cos
(
(1+2k)

π
2

z∗
)

+ sin
(
(1+2k)

π
2

z∗
))

exp

(
t

θ ′
k

)
(17)
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For which

Θ′
k = 4Θk =

4h2
0

(2k +1)π2Dm
(18)

is the relaxation time.

3 Theoretical prediction of the expansion rate of an interface’s thickness

Experimental observations reveal that three kinds of stratification can occur, and all
others are a combination thereof. The three basic forms are: (1) A salty gradient
layer in which the profile of salt concentration is linear in z; (2) Two homoge-
nous miscible layers (i.e. salty water below and distilled water above) of the same
thicknesses and between them a salty gradient layer (i.e. an interface), and (3) two
homogeneous miscible layers (i.e. salty water below and distilled water above),
which have different thicknesses, and between them a salty gradient layer (i.e. an
interface). We now consider each form in turn.

Case 1. For the first stratification, the salt concentration profile evolves until a
homogeneous state is achieved, and is described by the classical problem of diffu-
sion. Equation 5 describes the evolution of concentration profile and Eq.6 gives the
theoretical lifetime of such stratification.

Case 2. For the second stratification, the thickness of the interface expands in a
symmetric way until the salt concentration profile is linear within the stratification.
Then, it evolves just as in the first case.

Case 3. For the third stratification, the thickness of the interface expands in a
symmetry way until one of two new forms of stratification appears: a gradient
layer either beneath or above a homogeneous layer. In both cases, the gradient
layer subsequently expands from the side adjacent to the homogeneous layer until a
linear salt concentration profile appears within the stratification. Finally, it evolves
as in the first case.

Following these basic ideas we now deduce, from a more geometric point of view,
a mathematical model, which predicts the rate of expansion of the interface’s thick-
ness and the lifetime of the overall stratification.

3.1 The interface sandwiched between two homogeneous layers with the same
thicknesses

3.1.1 Time-dependent interface thickness

Obviously, the thickness of the salty gradient layer increases as the interface ex-
pands under the diffusion phenomenon in a symmetric manner and replaces the
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adjacent homogeneous layers with a gradient layer. Subsequently the linear salt
profile of the gradient layer continues evolving under the diffusion phenomenon
until the salt concentration profile becomes homogeneous.

The physics of the mechanisms of diffusion across the interface is well known. At
the upper edge of the interface (z = +h/2), a thin boundary layers appears due to the
salt diffusion into the overlaying fresh water layer. Also, at the lower edge of the
interface (z = - h/2), a thin boundary layer appears due to the diffusion of salt into
the gradient layer from the underlying high salinity layer. As these two thin layers
appear, they increase the thickness of the interface.

The salt concentration profile of the expanding interface layer can be reconstruct
from the evolution of the salt concentration profile of a gradient layer bounded
by rigid and impermeable layers (see section 2-4). This assumption is reasonable
because the salt fluxes at the edges of the interface fulfill the conservation law.
Thus, the expansion of the interface is symmetric.

Thus, it appears that the boundaries of the interface are moving and the thickness of
interface is expanding. This phenomenon continues while it is sandwiched between
two homogeneous layers. After the two homogeneous layers are eroded away, the
profile is a linear throughout the stratification, and it subsequently evolves under the
diffusion phenomenon until the salt concentration profile becomes homogeneous.

We use the salt profile given in section 2-4, to deduce the profile of an expanding
interface. When we considered a fixed thickness of an interface then the salt flux
diffused from the edges is the same quantity of salt required to create the rate of the
expanding interface. Therefore, when we superimposed the two cases, it seems that
profile of the interface of moving boundaries is nothing else than the extrapolation
of the profile given in section 2-4. Visualization of this process by a shadowgraph
system (see section 4) has been performed to prove the manner of the expansion
of the gradient layer. Additionally, the thickness of the gradient layer has been
measured by this same system. The gray levels of the stratification given by shad-
owgraph system (see Fig.2-a) were analyzed. It reveals that the interface expands
in front of its two edges in a symmetry way (see Fig.2-b).

Figure 3 shows a sketch of the evolution of the thickness of the interface. It evolves
in a symmetric way due to the diffusion phenomenon in the two sides. It is worth-
while to note that the concentrations at the moving boundaries of the gradient layer
remain unchanged while the homogeneous layers exist. If we consider a fixed zone
from the expanding salty gradient layer as for example the initial thickness of the
gradient layer, then the evolution of the salt concentration profile through the fixed
zone of interface is also described by Eq.9. It is a worthwhile to note that this obser-
vation allows us to deduce the new concentration profile from a geometrical point
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Figure 2: Shadowgraph visualisation and evolution of grey level across the interface

of view. If we extrapolate linearly at any time the salt profile of the fixed zone (i.e.
the initial thickness of gradient layer) up to the concentrations of the homogeneous
layers, then we obtain the salt profile of the expanding gradient at the same time.
Hence, we can conclude that from a geometric point of view and Eq.9, the position
of moving boundaries at any time is as follows. The concentration at point A1 (see
Fig.3) remains unchanged at any time. At time t, the concentration on point A at
the edge of fixed zone is given by Eq.9. The salt concentration across the interface
is assumed linear. Then, at a time t, the salt concentration profile of the expanding
interface (see Fig. 3) is described by the segment AA1, where: A(N∗(z∗ = 1

2 , t),
z∗ = 1

2 ) and A1(N∗(z∗ = 0, t), z∗ = 0) from which N∗(z∗ = 1
2 , t) and N∗(z∗ = 0, t)

are given by Eq.9. Then the slope of the segment is given as follows:

tg(α) =
1

1−2N∗ (
z∗ = 1

2 , t
) (19)
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Figure 3: Sketch of expansion of the interface case, it is sandwiched between two
homogeneous layers of the same thicknesses

If we extend the segment (AA1), it intersects with the straight line N = 0; and defines
the salt concentration profile of the upper layer. Also, tg(α) can also be expressed
(see Fig. 3) by:

tg(α) = 1+2δ ∗(t) (20)

Where 2δ ∗(t) represents the dimensionless expansion rate of the interface thickness
(δ ∗(t) = δ(t)

h0
).

Combining the Eqs.19 and 20, we deduce that:

1+2δ ∗(t) =
1

1−2N∗ (
z∗ = 1

2 , t
) (21)

Equation 21 is reduced in dimensional form as:

h(t) = h0 −2δ (t) =
h0

1−2N∗ (
z∗ = 1

2 , t
) (22)

Where h(t) = h0 +2δ (t) is the expanding interface thickness. When we substitute
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the value of N∗ (
z = 1

2 , t
)

given by Eq.9 into Eq.22, we get:

h(t) = h0 ÷
[

2
k=+∞

∑
k=0

2
(2k +1)π

{
4

(2k +1)π

(
cos

(
k

π
2

)
+ sin

(
k

π
2

))2

−
(

cos
(

k
π
2

)2
− sin

(
k

π
2

)2
)}

exp

(
− t

θ ′
k

)]
(23)

As it can be seen from Fig.3, the expanding interface thickness phenomenon is
modeled by a mathematical formulation using geometrical concepts. It can be no-
ticed that essentially the same physical laws of the diffusion equation govern all
models and cases listed above.

3.1.2 The lifetime of the stratification

The lifetime of the stratified layers is the time necessary for the stratification to
vanish. The evolution of the stratified layers reveals that this time is the sum of two
times. The first one is the time required for the concentration profile of the initial
stratification layer to evolve until it reaches a linear concentration profile through-
out the whole stratification. The second one is the time required for the linear
profile to completely vanish. It is worthwhile to note that the relaxation time given
by Eq.6 has no physical meaning in general, but does represent one when k=0. This
occurs when Eq.5 is estimated by the first term alone, an approximation valid when
the time is large enough that exp(− t

θk
) is small and the other exponential functions

are even smaller. Thus the mass fraction N∗(z∗, t) may be well approximated by
the first order (or at most by the first few terms of the series). Finally, as t →∞, the
terms associated to exponential disappear completely. Therefore, for the following,
we assume that k=0. The use of only the first term is appropriate because this term
dominates the overall evolution of the system.

Eventually, the homogeneous upper and lower layers erode and a single gradient
layer is established (see Fig. 3). If we considered the thickness of the stratified
system (hmax), then from Eq.23 we have,

hmax

h0
=

π2

4(4−π)
exp

(
tin
Θ0

)
(24)

Therefore, the required time for the linear salt profile to be established within the
stratified layers is deduced from Eq.24, and we obtain:

tin =
h2

0

π2Dm
log

[
4
π

(
4
π
−1

)
hmax

h0

]
(25)



On the Behavior of an Interface under Molecular Diffusion 203

Thereafter, it requires a time (treal) for the gradient layer formed throughout the
whole stratification to become homogeneous. As ttheo is the theoretical relaxation
time, the treal can be taken five times the relaxation time (treal=5.ttheo); this is the
time required for the exponential function to reach a value of 0.01. Then, from the
Eq.6 we have Eq 26:

treal = 5ttheo =
5h2

max

π2Dm
(26)

Finally, from Eqs.25 and 26, the lifetime of the whole process is:

t = tin + treal =
h2

max

π2Dm

[
5+

h2
0

h2
max

log

(
4
π

(
4
π
−1

)
hmax

h 0

)]
(27)

3.2 The interface sandwiched between two homogeneous layers with different
thickness

In such state, the interface thickness expands under the diffusion phenomenon until
the thinner homogeneous layer is completely eroded away by the expanding inter-
face (i.e. by the gradient layer).

Based on Eq.25 above, we can deduce the time required for this thinner layer to be
eroded. At that time, a new kind of stratification appears. It consists of a linear salt
gradient layer beneath or above a homogeneous layer, depending on the initial rela-
tive thicknesses of the two homogeneous layers. In such stratification, the gradient
layer continues to expand into the remaining homogeneous layer. The diffusion of
salt carries on until a gradient layer is established within the remaining layer. Ulti-
mately, under the diffusion phenomenon the salt concentration distribution evolves
until it reaches a homogeneous state.

In such a system, the only issue is to predict the lifetime of a homogeneous layer,
which overlies a gradient layer, as the other kind of stratification is presented above.

3.2.1 Time-dependent interface thickness

Figure 4 sketches how to deduce from the theoretical and geometrical point of view
(see section 2-3) the expanding interface thickness after the less thickness homo-
geneous layer has disappeared. The basic idea used to solve this problem is to
consider that the salt flux transfer between the homogeneous layer and the gradi-
ent layer supports the increasing gradient layer thickness as the moving boundary
expands. According to section 2.3, the concentration has the same value for either
the moving or fixed boundary case (see point B in Figure 4). However, in case of
the moving boundary, the concentration at z∗ = 1

2 does not have the same value as
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Figure 4: Sketch of expansion of the interface case, it is sandwiched between two
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for a fixed boundary where it is zero at the point B1 (see Fig 4). From this figure
we have: x = 1−N∗(z∗ = −1

2 , t).

Then the salt concentration at point BB1 is: x = 1−N∗(z∗ = −1
2 , t) (see Fig.4).

If we assume that the salt concentration profile is linear, then the concentration
profile of the moving boundary is the segment B1 where B (N∗(z∗ = −1

2 , t),−1
2)

and B1(1−N∗(z∗ = −1
2 , t), 1

2 ) (see Fig. 4).

The segment (BB1) is extended from B1 until it intersects the horizontal line for
which N∗(z∗, t) = 0. The point of intersection represents the new edge of the gra-
dient layer. The extended segment is a salt concentration profile of the expanding
gradient layer. Then, the slope of the salt concentration profile is given by:

tg(α) =
1

2N∗(z∗ = −1
2 , t)−1

(28)

When we consider the expanding thickness of the interface (see Fig 4), the slope is
also given by:

tg(α) =
1+δ ∗

N∗ (z∗ = −1
2 , t

) (29)
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Combining Eqs.28 and 29, the rate of increase of the interface (1+δ ∗) becomes:

1+δ ∗

N∗ (
z∗ = −1

2 , t
) =

1

2N∗ (z∗ = −1
2 , t

)−1
(30)

When N∗ from Eq.1 is substituted into Eq.30, and reduced to dimensional form it
results in the following:

h(t) = h0

[ k=+∞

∑
k=0

2(−1)k
√

2
(4k−1)π

(
1+

4
(1+4k)2π2

)

(
cos

(
(1+2k)

π
4

)
− sin

(
(1+2k)

π
4

))
exp

(
− t

θ ′
k

)]

÷
[

2∑ 2(−1)k
√

2
(1+4k)π

(
1+

4
(1+4k)π

)

(
cos

(
(1+2k)

π
4

)
− sin

(
(1+2k)

π
4

))
exp

(
− t

θ ′
k

)
−1

]
(31)

3.2.2 The lifetime of the stratification

The time required for the thinner layer (hmin) to disappear is given by Eq.31 with
k=0, as follows:

tg =
h2

0

π2Dm
log

[
4
π

(
4
π
−1

)
2hmin +h0

h0

]
(32)

The time required for the remaining homogeneous layer to disappear is given by
Eq.3 with k = 0 as follows:

tin =
4(2hmin +h0)2

π2Dm
log

(
4
π

(
1+

4
π2

)
2hmax−1

hmax

)
(33)

The relaxation time of a gradient layer is given by Eq.26. Therefore, the lifetime
for the whole stratification is given by

t = tg + tin + treal

=
h2

0

π2Dm
log

[
4
π

(
4
π
−1

)
2hmin +h0

h0

]

+
4(2hmin +h0)2

π2Dm
log

[
4
π

(
1+

4
π2

)
2hmax−1

hmax

]
+

5h2
max

π2Dm
(34)
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4 Experimental methods

An experimental study was performed in a vessel of a dimension (135mm×40mm×50mm).
The stratification consisted of two homogeneous layers separated by a gradient
layer. The lower layer was a solution of sodium chloride of 5%wt mass fraction.
The upper one was distilled water. The gradient layer had a linear concentration
profile decreasing upwards from 5%wt to 0%wt. More details of the experimental
setup are cited in [Abdeljabar and Safi (2001)].

The measurements of concentration were done by a conductivity probe that traveled
the depth of the vessel at a sufficiently low speed that the stratification was not
disturbed.

The initial thicknesses of layers of the stratification were measured by a shadow-
graph system [Goldstein (1974); Merzkirch (1987)]. The shadowgraph visualiza-

tion is sensitive to the second derivative of the vertical density structure (∂2ρ
∂z2 �= 0);

therefore light rays passing along the two homogeneous layers are not deflected,
however. Light passes along the interface (i.e. the salty gradient layer) are de-
flected, so the interface thickness’s appears dark.

The visualization by the shadowgraph system showed that each homogeneous layer
of the stratification has a thickness of 15mm±1mm and the gradient layer (interface
layer) has a thickness of 4mm±1mm.

5 Experimental results

The shadowgraph system was used to measure the thickness of the layers. As
the visualization shows a shadow, it implies that the concentration profile is not
linear within the stratification. However, the time for the shadow to disappear is
the time required for a linear profile to become established within the stratification.
The visualization by shadowgraph system reveals a time t of 2h 46 min, in good
agreement with the real theoretical time predicted by Eq.25 (t=2h46min). In the
next phase of the experiment, the salt concentration was measured with a probe,
which traveled slowly through the depth of the vessel. The measurements were
begun at a time t=2h46min, the time at which the gradient layer was established
throughout the whole stratification. This time is considered as start time in the next
set of measurements. The other measurements of concentration are given in the
following table.1:

Table 1: Times of salt profile measurements

Measurement 1 2 3
Time (min) 2657 5710 6990
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The experimental measurements were reduced to dimensionless form to compare
with the theoretical results. The evolution of the experimental and the theoretical
salty profiles were plotted and shown in Figures 5 and 6. Figures 5 and 6 reveal that
the same plots in the two figures have some discrepancies; initially, the theoretical
profile evolves more quickly than experimental profile. This discrepancy can be
explained by the first order approximation in the theoretical model.
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Figure 5: Experimental profile of salt concentration
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Figure 6: Theoretical Profile of salt Concentration

To agree with each other, the time should be greater (i.e. time t is greater than θ , or
we consider more than one term).

For a giving thickness of h=34mm and diffusion coefficient Dm = 1.4.10−5cm2/s,
the theoretical lifetime deduced from Eq.26 is ttheo = Θ =23.24 hours and the real
lifetime calculated from Eq.26 is treal = 5Θ = 116.20 hours. Though, the exper-
imental measurement showed that the lifetime of the stratification is t = 116.30
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hours. A comparison between the experimental lifetime and that predicted by the
model reveals that both results agree within 0.9 %. Thus, the two results are in a
good agreement.

Although it seems to be a tendency for a theoretical lifetime to be a bit lower than
experimental results, theoretical prediction describes well the experimental results.

6 Conclusion

We present mathematical models to describe the evolution of isothermal, strati-
fied miscible layers under diffusion phenomena. The theoretical predictions of this
model were confirmed by experimental studies. These mathematical models al-
low defining with accuracy the initial conditions and evolution of stratifications.
These results are useful for experimental investigations in laboratories. Moreover
the model can predict the lifetime of some natural reserves of freshwater that lie on
seawater.

Nomenclature

Dm salt diffusivity
h the interface thickness in time
hmax the overall depth of the stratification
hmin the depth of the less thickened

homogeneous layer
h0 initial interface thickness
N salt mass fraction
N1 initial maximum salt mass fraction
t lifetime of the stratification
tg time required for which a less thickness

homogeneous layer disappears
tin time required for which the overall

thickness of the stratification converted
into a gradient layer

ttheo relaxation time of a gradient layer
treal life time of a gradient layer ( 5∗ t_theo)
%wt percent weight

Greek Symbols

Θ relaxation time
Θ′ = 4Θ relaxation time
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2.δ = h−h0 the rate growth of the interface
depth

Superscript

* dimensionless
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