
Copyright © 2009 Tech Science Press FDMP, vol.5, no.2, pp.137-147, 2009

Heat and Mass Transfer Along of a Vertical Wall by
Natural convection in Porous Media

Aouachria Z 1

Abstract: This work treats heat and mass transfer by natural convection along
a vertical wall in porous media imbibed by fluid, using an integral method. The
problem governing parameters are the buoyancy ratio, N, and the Lewis number,
Le. The results for the local Nusselt and Sherwood numbers are presented for a
large range of these parameters. The concentration and thermal boundary layer
thickness are also determined. We observe that our results are in good agreement
with those obtained by Bejan and Khair (1985).
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1 Introduction

In several fields such as drying processes, agriculture and building energy analysis,
it is important to know the dynamics of temperature and moisture content distri-
butions and how they relate to each other to evaluate heat flux and mass transfer
through porous media depending on applications on a variety of geophysical and
technological problems.

Free convection flows arising as a consequence of combined thermal and solutal
buoyancy effects in porous media are of importance because of the fundamental
nature of the problem and broad range of applications (relating to the manufacture
and industrial process such as geothermal systems, fibro, stock age of the nuclear
products, the dispersion of chemical contaminate ...). In particular, free convection
about a vertical impermeable surface embedded in a porous medium, belongs to
a family of heat transfer phenomena which have a wide range of applications in
many geophysical and industrial fields. These problems have been treated by Ene
and Poliševski,(1987), Kays and Crawford (1993), and a great deal of effort has
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been devoted during the past decades to the understanding of the convective heat
transfer in a fluid-saturated porous medium subject to various additional effects.

An exhaustive review of the topic of convective flow in porous media can be found
in the books of Nield and Bejan (1999), Ingham and Pop (1998, 2002), Vafai
(2000), Pop and Ingham (2001).

Hydrodynamic instability due to density differences was analyzed in the works of
Wooding (1962), Bachmat et al. (1970), Bejan (1980), Bues et al. (1991).

The dependence of dispersion on density and viscosity contrast of the miscible
fluids was discussed by Bouhroum (1985) and Moser (1995).

Bejan and Khair (1985) used the Darcy low to study the flow characteristics in
the boundary layer, caused by thermal and concentration gradients. Lai and Pu-
laski (1991) reexamined this type of convection (along a vertical wall) with a wall
injection effect.

The heat and mass transfer caused by natural convection near vertical wall in porous
media was investigated by Nakajima and Hessian (1995), by Singh and Queenly
(1997) using the boundary layer approximation. It is also worth mentioning Nield
and Bejan (1999) and Singh (2006).

Other investigations developed models for moisture transport in porous materials.
Cunningham (1988) developed a mathematical model for hygroscopic materials in
flat structures that uses an electrical analogy with resistance for the vapor flow and
an exponential approximation function with constant mass transport coefficients.
Kerestecioglo and Gu (1989) investigated the phenomenon using evaporation con-
densation theory in the pendulum state. The application of this theory is limited
to low moisture content. The Darcy model, with the Boussinesq approximation,
was used by Mamou et al. (1995) to study double-diffusive natural convection in
an inclined porous layer subject to transverse gradients of heat and solute. A wide
range of controlling parameters was investigated in this study. A good agreement
was observed between the analytical predictions and the numerical simulations.
Khanafer and Vafai (2000) are focused their study on the analysis of heat and mass
transfer in a square enclosure using the generalized model of the momentum equa-
tion. Khanafer and Chamkha (1978) investigated laminar, mixed-convection flow
in an enclosure filled with a Darcian fluid-saturated uniform porous medium in
the presence of internal heat generation. All these authors are neglected the Du-
four and Soret effects on the basis that they are of a smaller order than the effects
described by Fourier’s and Fick’s laws. Ranganathan and Viskanta (1988) inves-
tigated both analytically and numerically natural convection in a two-dimensional
square cavity filled with a binary gas due to combined temperature and concen-
tration gradients. The analysis indicated that the velocities at the vertical walls
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were inversely proportional to the concentration parameter. Goyeau, Songbe, and
Gobin, (1996) performed a numerical study on double-diffusive natural convection
in a porous cavity using the Darcy-Brinkman formulation. Their numerical results
for mass transfer were in excellent agreement with the scaling analysis over a wide
range of the controlling parameters, while their heat transfer results showed that
the boundary-layer analysis was not a suitable method to predict the correct scales
for heat transfer in the same domain. Chen and Chen (1996) considered double-
diffusive fingering convection in a porous medium. The Darcy equation including
Brinkman and Forchheimer terms to account for viscous and inertia effects was
used for the momentum equation. Only recently flow control problems have been
addressed in systematic, rigorous manner by scientists and engineers as Hou and
Svobodny (1991), Abergel and Ternam (1990) and Fattorini and Sritharan (1992).
But these recent analyses, which combine modern computational fluid dynamics
and rigorous optimization methods, are usually very complicated mathematically
and there are still many technical difficulties to be overcome before they become
practical design tools. An intention of this work is to analyse this problem by an
integral method. The results are compared with those obtained by Bejan and Khair
(1985), for several buoyancy ratio values and give good agreements.

2 Mathematical formulation

We consider a slow two-dimensional laminar flow on a vertical wall in a porous
environment imbibed by a Darcy fluid. The physical model of this problem is
shown in fig. 1.

For modeling this problem we assume the following assumptions:

• The physical properties are considered constant, except for the density term
that is associated with the body force.

• The flow is sufficiently slow so that the convecting fluid and the porous media
matrix are in local equilibrium

• Darcy’s low the Boussinesq and boundary layer approximations hold.

With these assumptions, the governing equations of this problem are given by:

∂u
∂x

+
∂v
∂y

= 0 (1)

u =
gK
ν

(βT (T −T∞)+βC(C−C∞)) (2)
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Figure 1: Physical model

u
∂T
∂x

+v
∂T
∂y

= α ∂ 2T
∂y2 (3)

u
∂C
∂x

+v
∂C
∂y

= α ∂ 2C
∂y2 (4)

The boundary conditions at the wall are

y = 0, v = 0, T = Tw, C = Cw, (5)

and at infinity are:

y → ∞, u = 0, T → T ∞, C →C∞. (6)

3 Integral method

The equations (2), (3), (4) with the boundary conditions have been solved by an
integral method. The partial derivative equations have been converted into ordinary
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ones by making use the following transformations:

η =
y
x
(Rax)

1
2 ,

ψ = α(Rax)
1
2 f (η)

θ =
(T −Tw

(Tw −T∞)
,

φ =
(C−Cw

(Cw −C∞)

(7)

Where Rax = gβT Kx(Tw−T∞)
αν is the modified local Raleigh number, Ψ is the stream

function. These new variables transform the above equations in the form:

f ′(η)−θ ′(η)−Nφ ′(η) = 0

θ ′′(η)+
1
2

f (η)φ ′(η) = 0 (8)

φ ′′(η)+
1
2

Le f (η) ·φ ′(η) = 0

With boundary conditions:

f (0) = 0,θ (0) = φ (0) = 1

f ′(∞) = θ (∞) = φ (∞) = 0 (9)

Here, f ′ represent the non-dimensional velocity related to the stream function Ψ(x,y).

In the above equations (8), N and Le are the buoyancy ratio and Lewis number,
respectively, they read:

N =
βC(Cw −C∞

βT (Tw −T∞)
; Le =

α
D

(10)

From equations (8) we obtain the following relations

−θ ′(0) =
1
2

∞∫
0

f ′φdη

−φ ′(0) =
Le
2

∞∫
0

f ′φdη (11)

Now, we introduce exponential temperature and concentration profiles as follows:

θ (η) = exp(−η/δT )
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φ (η) = exp(−ξη/δT ) (12)

Where δT is an arbitrary scale of the thermal boundary layer thickness whereas,
ξ is its ratio to the concentration boundary layer thickness δC. By using the first
equation of the system (8) and first equation of the system (10), we obtain two
distinct expressions

δ 2
T =

4(ξ +1)
1+2N +ξ

δ 2
T =

4ξ 2(ξ +1)
(N(ξ +1)+2ξ )Le

(13)

From the two last equations of system (8) we also obtain the following cubic equa-
tion for determining the boundary layer thickness ratio ξ as:

ξ 3 +(1+2N)ξ 2 − [(2+N)Le]ξ −NLe = 0 (14)

Equation (14) permits to compute the local Nusselt and Sherwood numbers,

Nu

(Rax)1/2
= 0.5

[
ξ +1+2N

1+ξ

]1/2

Sh

(Rax)1/2
= 0.5ξ

[
ξ +1+2N

1+ξ

]1/2

The results acquired in the framework of the above approach may be critically
examined by comparing them against those obtained by Bejan and Khair (1985).
We show a small error of 5%, which depends on the assumed profile. This situation
can be corrected by an adjustment of the multiplicative constant (replacing 1/2 by
0.444). Thus we propose the following approximate formula as:

Nu

(Rax)1/2
= 0.444

[
ξ +1+2N

1+ξ

]1/2

Sh

(Rax)1/2
= 0.444ξ

[
ξ +1+2N

1+ξ

]1/2

4 Results and discussions

Equations (15) give the local Nusselt and Sherwood number values as 0.444 for
N = 0 and Le = 1. In order to show clearly the influence of the governing problem
parameters on the combined heat and mass transfer along vertical wall due to nat-
ural convection, we have done calculations for a large range of these parameters.
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Figure 2: Heat transfer coefficient as a
function of buoyancy
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Figure 3: Heat transfer coefficient as a
function of buoyancy
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Figure 4: Thermal transfer results
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Figure 5: Mass transfer results
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Figure 6: Thermal boundary layer
thickness
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Figure 7: Concentration boundary
layer thickness

Fig.2 presents the local Nusselt number as a function of the buoyancy ratio, N, for
various values of the Lewis number, Le. We observe that the rate of heat transfer
increases with increasing Lewis number.

In fig.3, the same influence on the local Sherwood number is noticed for all N > 0.
The local Nusselt number is also plotted in fig.4 as a function of Lewis number, Le,
for various values of the buoyancy ratio, N. This graph shows that local Nusselt
number decreases with increasing Lewis number for all the considered values of N.

In fig, 5 we remark the same result for the local Sherwood number.

Fig.4 and fig.5 show that the local Nusselt and Sherwood numbers are in good
agreement with those obtained by Bejan and Kheir (1985).

We can observe, in fig. 6, that thermal boundary layer thickness δT presents an
increasing trend for N = 1 and 4 for increasing values of Lewis number. Whereas,
fig.7, shows that concentration boundary layer thickness, decreases for N= 0, 2,
4, with increasing Lewis number values. From fig. 6 and 7, it is evident that
the Lewis number has a more pronounced effect on the concentration than on the
thermal field.

Nomenclature

u Darcy velocity in the direction x, [m/s].
v Darcy velocity in the direction y, [m/s].
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D Massy diffusivity of porous media, [m2/s]
f Non dimensional stream function
h Local heat transfer coefficient [w/m2 K]
N Buoyancy of porous media
k Thermal conductibility [w/m2°K]
T Temperature [°K]
C Concentration
g Gravity acceleration [m/s2]
K Permeability

Greek symbols

βC Concentration expansion coefficient
βT Thermal diffusivity of porous media, m2/s]
ψ Stream function
ξ Ratio between δT and δC

ν Viscosite cinematic, [m2/s]
δT Thermal boundary layer thickness [m]
δC Concentration boundary layer thickness [m]
Φ Non dimensional concentration
α Thermal diffusivity m2/s

Indexes

∞ Condition at infinity
w Condition at wall
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