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Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows
in a Rectangular Channel Heated from Below
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Abstract: In the literature, only few references
have dealt with mixed-convection flows in the low
Mach number approximation. For this reason, in
the present study we propose to extend the stan-
dard 3D benchmark for mixed convection in a
rectangular channel heated from below (Medale
and Nicolas, 2005) to the case of large tempera-
ture variations (for which the Boussinesq approx-
imation is no longer valid). The Navier-Stokes
equations, obtained under the assumption of a low
Mach number flow, are solved using a finite vol-
ume method. The results, corresponding to the
steady-state case of the benchmark, lead to the
idea of launching a call for contribution (whose
outlines still need to be defined) in order to set up
a reference solution essential for the validation of
future numerical codes.
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ber, 3D benchmark, direct numerical simulation.

Nomenclature

g Earth gravity, m.s−2

H Height of the channel, m
n Mesh size
Pth Thermodynamic pressure, Pa
R Perfect gas constant, J.Kg−1.K−1

T Temperature, K
Um Mean velocity at the inlet, m.s−1

U,V,W Non-dimensional velocity components
x,y, z Coordinates, m
X ,Y,Z Non-dimensional coordinates

Greek Symbols

ε Heating parameter, (Th−T0)/T0

1 USEK, Jounieh, Lebanon
2 MSNM-GP, UMR 6181 CNRS, Marseille, France

θ Reduced temperature, (T −T0)/(Th−T0)
κ Thermal diffusivity, m2.s−1

μ Dynamic viscosity, Pa.s
ρ Density, kg.m−3

Subscripts

0 Reference value
h Hot boundary (the bottom one)

Non-dimensional Numbers

Nu Nusselt number, [−H(∂T/∂ z)/(Th−T0)]
Pr Prandtl number, [μ0/κ0ρ0]
Re Reynolds number, [ρ0UmH/μ0]
Ra Rayleigh number, [PrgH3ρ2

0 ε/μ2
0 ]

1 Introduction

In the prospective of developing computa-
tion codes allowing the prediction of mixed-
convection flows, one cannot rely on experimental
data only (for checking the predicted result). Of-
ten it is necessary to model with a sufficient accu-
racy experimental conditions that are not always
easy to control. This is why, in accordance with
the approach used in Medale and Nicolas (2005)
and in Le Quéré, Weisman, Paillère, Vierendeels,
Dick, Becker, and Braack (2005), the validation
of numerical codes requires setting up a well-
defined benchmark, especially in the case of 3D
mixed-convection.

Fluid flows in horizontal rectangular channels
heated from below, also known as Poiseuille-
Rayleigh-Bénard flows, are known to undergo a
thermoconvective instability. This instability re-
sults in a mixed convection state whose complex-
ity (as witnessed by the numerous control param-
eters and the related spatio-temporal structures),
makes it very attractive for investigation (Nicolas,
1997; Nicolas, Luijkx, and Platten, 2000).
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The aforementioned complexity and variety of
possible flow regimes make the Poiseuille-
Rayleigh-Bénard configuration an interesting test
case for checking the ability of numerical codes
to predict mixed-convection flows.

Along these lines, the present study further refines
and improves the benchmark previously defined
in Medale and Nicolas (2005) for small tempera-
ture variations (Boussinesq assumption). Only the
first part of the benchmark is treated here, that is
to say the steady-state case. This case is extended
to large temperature variations under the assump-
tion of a low Mach number (Ma<0.3) for which,
to our knowledge, no database for comparison ex-
ists yet.

2 Configuration

The proposed flow is a Poiseuille-Rayleigh-
Bénard flow taking place in a horizontal channel
heated from below of height H, width 10H, and
length 50H, as shown in Fig. 1. The lateral verti-
cal walls are insulated, while the horizontal ones
are insulated over a length of 2H from the inlet
section. Beyond this insulated zone, the horizon-
tal top wall is maintained at a uniform tempera-
ture T0 while the bottom one is maintained at a
uniform temperature Th > T0. The space origin
is placed at the distance of 2H from the inlet sec-
tion, thus marking the transition between the insu-
lated part of the horizontal walls and the isother-
mal part.

3 Modeling

We consider a Newtonian fluid whose flow is gov-
erned by the Navier-Stokes and energy equations
obtained under the assumption of low Mach num-
bers (acoustic filtering, Paolucci (1982)) with the
equation of state of a perfect gas. The acoustic
filtering results in neglecting the viscous dissipa-
tion in the energy equation and in splitting the
pressure in two independent parts: the dynamic
pressure involved through its gradient in the mo-
mentum equations and the thermodynamic pres-
sure (homogeneous in space) involved in the en-
ergy equation and in the equation of state. The
transport equations, solved in their conservative

form are not recalled here because the mathemati-
cal model is entirely described in Le Quéré, Weis-
man, Paillère, Vierendeels, Dick, Becker, and
Braack (2005) or in Becker and Braack (2002). H,
T0, the mean value of the inlet velocity profile Um,
and H/Um are chosen respectively as reference
values for space, temperature, velocity, and time.
This choice results in the non-dimensional num-
bers of Reynolds, Rayleigh, and Prandtl, given by:

Re =
ρ0UmH

μ0
, Ra =

PrgH3ρ2
0 ε

μ2
0

Pr =
μ0

κ0ρ0
,

where ε = (Th −T0)/T0 is the heating parameter,
i.e. Th = (1+ε)T0, g=9.8 m.s−2 is the intensity of
Earth gravity, κ0 is the thermal diffusivity, μ0 is
the dynamic viscosity, ρ0 = Pth0/RT0 is the mean
density, Pth0 being the reference thermodynamic
pressure. We also define a reduced temperature
θ = (T −T0)/(Th−T0).

As it will be shown later on, the density at the inlet
section of the solution obtained in the low Mach
number approximation is larger than ρ0, unlike
the Boussinesq assumption where density is sup-
posed constant everywhere in the transport equa-
tions except for the buoyancy term. Consequently,
the Reynolds number measured at the inlet will
not be conserved if the value of Um is kept con-
stant.

Thus, two versions of the low Mach number ap-
proximation were considered in the present study.
In the first version (case 1), we conserve the
Reynolds number obtained from the reference pa-
rameters by adapting the value of Um. In the sec-
ond version (case 2), we maintain the inlet veloc-
ity profile but the Reynolds number will not be
conserved. In both cases, the total mass of the
fluid system (500×ρ0H3) is conserved (confined
flow) and the mean density in the domain is equal
to ρ0.

In accordance with the benchmark of Medale and
Nicolas (2005), we consider air as working fluid
(R=287 J.Kg−1.K−1, μ0 = 1.68×10−5 Pa.s, Pr =
0.71). The height of the channel H was taken
equal to 1 cm, the reference temperature T0 =
600 K, and the thermodynamic pressure of ref-
erence Pth0 = 1.013× 105 Pa. At the inlet, we
apply a uniform temperature T0 and a Poiseuille-
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Figure 1: The configuration and the boundary conditions on the horizontal walls (the vertical lateral walls
are insulated).

Figure 2: Slices of the reduced temperature field in the vertical plan (X = 30) and in the horizontal plan
(Z = 0.5), obtained in the Boussinesq approximation.

type U-profile whose analytical expression can be
found in Nicolas, Luijkx, and Platten (2000) and
whose mean value Um is determined through the
Reynolds number. Finally, the parameter ε al-
lows the choice of the Rayleigh number. The
steady-state case of the benchmark of Medale and
Nicolas (2005) (considered here) is characterized
by Re = 50 and Ra = 5000; given the parame-
ters mentioned above, this corresponds to Um =
0.1427 m/s and ε=0.585 (large temperature varia-
tions).

4 Numerical aspects

The transport equations are solved by a fully-
implicit finite volume method in a segregated for-
mulation on a structured but non-uniform stag-
gered mesh. The time discretization relies on a
third order Euler scheme with variable time step.
The space discretization is based on high order
schemes with flux limiters: QUICK scheme (third
order scheme) is used for convection terms while
diffusion terms are approached by central differ-

ence approximation (second order).

The velocity pressure coupling is treated using
SIMPLER algorithm and the linearization of the
equations relies on the Picard procedure. The lin-
ear systems obtained from the discretised trans-
port equations are solved using BiCGStab itera-
tive method, while the linear system of the pres-
sure equation (symmetric equation) is solved by
the Conjugate Gradient (CG) method.

Since a steady state solution is sought, the tran-
sient term is dropped in all transport equations and
the use of under-relaxation techniques allowed a
faster convergence and better stability of the so-
lution. A steady-state solution is supposed to be
obtained when the residuals of all transport equa-
tions reach 10−10 in non-dimensional form.

The computations were carried out on an Ita-
nium2 processor (1.5 GHz, 4 Mb of L3 cache
memory). An OpenMP parallel version of the
code is also available and is running on a SGI AL-
TIX cluster consisting in 20 Itanium2 processors
and 40 GB of shared memory.
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Initially, we apply uniform conditions: the
Poiseuille velocity profile considered at the in-
let boundary is applied everywhere in the com-
putational domain, the fluid temperature is uni-
form and equal to T0 and its density is equal to
ρ0 = Pth0/RT0. All walls are solid boundaries,
i.e. no slip conditions are applied to the dynamic
field. For the temperature field, on the isother-
mal part of the horizontal walls (X > 2), uniform
temperatures T0 and Th = T0(1 + ε) are applied
respectively on the top wall (Z = 1) and the bot-
tom one (Z = 0). At the outlet (X = 48), a stan-
dard outflow condition is considered for all the
primary variables, that is to say a Neumann con-
dition (∂Φ/∂X = 0, where Φ ≡ U,V,W, and T ).

In the staggered-mesh formulation, no pressure
boundary condition is needed. For the U-
component of the velocity, an additional treatment
has been performed at the outlet together with the
Neumann condition; at each iteration, the com-
puted field of the U-component is corrected at
the outlet boundary (multiplied by a constant) in
order to retrieve the mass flow at the inlet. At
convergence, both the mass conservation and the
Neumann condition at the outlet are satisfied.

5 Validation

The numerical code described in section 4 was
checked in the Boussinesq approximation by
comparing the obtained results to those of the
steady-state case of the benchmark (Medale and
Nicolas (2005)). A quantitative agreement of the
results was observed; this agreement required a
non uniform mesh of (nx = 228, ny = 182 et nz =
80), the mesh was refined near the solid walls and
at the transition between the insulated zone and
the isothermal one (at X = 0).

Convergence was reach after about 100 hours of
CPU time. Since the purpose of the present study
is not to answer, in details, to the call for contribu-
tion made in Medale and Nicolas (2005), we only
present here a selection of the obtained results.
Thus, we present in Fig. 2 the field of the reduced
temperature θ in the vertical plan (X = 30) and
the horizontal plan (Z = 0.5).

Figure 3 shows the profiles of the non-

dimensional velocity components and of the re-
duced temperature along the axis (Y = 5, Z =
0.5). Figure 4 shows profiles of the Nusselt num-
ber, given by Nu = −H(∂T/∂ z)/(Th−T0), along
the axis indicated on the figure itself. Figure
5 shows the mesh dependency of the solution;
along the axis (Y = 5, Z = 0.5) and among all
the primary variables, the U-component of the ve-
locity presents the most important mesh depen-
dency. For the two finest meshes (nz = 60 and
nz = 80), the largest difference between the U-
profiles shown in Fig. 5 is about 3%.

6 Comparison between formulations

As mentioned above, under the assumption of low
Mach numbers, the selected test-case has two ver-
sions, the first one (case 1) consists in conserv-
ing the mass flow obtained from the reference
values by adapting Um, while in the second one
(case 2) the inlet velocity profile is maintained.
This leads, respectively, to the conservation of the
Reynolds number (case 1) or to the conservation
of the mean velocity at the inlet (case 2). As in
the case of small temperature variations (Boussi-
nesq), steady-state solutions were obtained for
both versions of the low Mach number approx-
imation and a converged solution (with a stop-
ping criterion of 10−10) was reach after about 250
hours of CPU time.

Figure 6 shows the evolution of the component U
of the velocity along the axis (Y = 5, Z = 0.5)
in the low Mach number approximation, com-
pared to the solution obtained for small temper-
ature variations (Boussinesq).

Because of the fluid system confinement, the to-
tal mass of the system is conserved and the mean
density in the computational domain is equal to
its reference value ρ0. Now because of the heat-
ing applied to the bottom wall, the mean tempera-
ture in the channel increases. With the constraint
of total mass conservation, the thermodynamic
pressure increases of about 23% (here) for both
versions of the low Mach number approximation
(more precisely, Pth/Pth0 = 1.2368 for case 1 and
1.2319 for case 2). At the inlet section of the do-
main (isothermal boundary), this results in an in-
crease of the density according to the perfect gas
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Figure 3: Profiles of the primary variables
U,V,W , and θ along the axis (Y = 5, Z = 0.5)
obtained in the Boussinesq approximation.

Figure 4: Evolution of the Nusselt number, ob-
tained in the Boussinesq approximation, along
different axis in the X direction.

equation of state (ρ = Pth/RT ). Consequently, in
case 1, we notice in Fig. 5 (a) that the mean veloc-
ity at the inlet is smaller than that of the Boussi-
nesq approximation. In case 2, we notice a global
increase in the inertial effects, which is directly
related to the increase of the Reynolds number.

Important differences were observed between the

Figure 5: Profiles of the U-component of the ve-
locity along the axis (Y = 5, Z = 0.5), obtained
in the Boussinesq approximation using different
meshes.

Boussinesq assumption and the low Mach number
approximation on the dynamic field; however, at
this stage of the investigations, it seems that the
thermal field is less influenced by the choice of
the formulation, as shown by Fig. 6 (b) present-
ing the profile of the reduced temperature. This
can also be seen in Figs. 7 where the distribu-
tions of the Nusselt number on the bottom wall
(Z = 0) and the top one (Z = 1) are presented
along the median axis (Y=5). We notice also
that in the low Mach number approximation, the
choice of case 1 or case 2 does not have much im-
pact on the temperature field at the outlet of the
domain where the flow is practically established.
Of course, further investigations still need to be
carried out in order to confirm the well-founded
choices made in this section (especially as far as
the outflow condition is concerned). Finally, even
though the convergence and the mesh dependence
of the solution were carefully checked, the com-
parison with other solutions predicted by different
methods, following the approach used in Medale
and Nicolas (2005), is necessary.
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         (a) 

         (b) 

Figure 6: Profiles of the X-component of the ve-
locity (a) and of the reduced temperature (b) along
the axis (Y = 5, Z = 0.5) under the Boussinesq as-
sumption and for the two considered cases of the
low Mach number approximation (case 1: Re is
conserved, case 2: Um is conserved).

7 Conclusion

Steady-state reference solutions were obtained for
the Poiseuille-Rayleigh-Bénard problem in the
case of large temperature variations (ε = 0.585)
for Re = 50, Ra = 5000, and Pr = 0.7.

The authors are conscious of being at an embry-

                                           (a) 

                                           (b) 

Figure 7: Distribution of the Nusselt number on
the bottom wall (a) and on the top wall (b) along
the median axis (Y = 5) in the Boussinesq as-
sumption and for the two considered cases of the
low Mach number approximation (case 1: Re is
conserved, case 2: Um is conserved).

onic stage of the procedure turning the present
configuration into a benchmark. However, the im-
portant differences observed with respect to the
solution obtained in the framework of the Boussi-
nesq approximation justifies launching a call for
contribution. This will be used to define the out-
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lines of the work to be done and, subsequently,
to obtain a reference solution for the validation of
numerical codes developed under the assumption
of a low Mach number, which must be regarded as
an essential step before tackling complex physical
configurations.
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