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Analytical Solution of the Thermal Behavior of a Circulating Porous Heat
Exchanger
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Abstract: The transient thermal behavior of a
two-dimensional circulating porous bed is analyt-
ically investigated. A one-energy equation model,
representing both the gas and solid phases via a
unified temperature, is employed to describe the
thermal behavior of the circulating bed. The latter
is essentially a tube and shell heat exchanger com-
monly used in technologically important applica-
tions. The model equation is transformed into a
simpler set of partial differential equations using
an analytical procedure. The analytical solution,
based on the method of separation of variables
and the principle of superposition, is formulated
for the calculation of the temperature distribution
in the radial and axial directions of the bed. The
temperature distribution can be determined under
different process parameters and conditions. Con-
vergence criteria of the solution are derived for
typical process conditions. The developed closed-
form solution of the transient one-equation energy
model provides a simple and convenient means
for estimating the thermal behavior of the circu-
lating bed.

Keyword: Circulating bed, Heat transfer, An-
alytical solution, Convergence criteria, One-
equation model.

1 Introduction

Circulating gas-solid heat exchangers are finding
use in many practical applications as a means for
the storage and transport of heat. The main advan-
tages of circulating heat exchangers are the rela-
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tively simple and inexpensive shell-and-tube de-
sign and the low maintenance costs, see Rauten-
bach and Katz (1996). Heat transfer in two-phase
systems is generally modeled using either the one-
equation model or the two-equation model. More
details are in Quintard and Whitaker (1993). The
one-equation model assumes local thermal equi-
librium (LTE) whereby the average temperatures
of the two phases are sufficiently close to each
other so that they can be represented by a single
spatial average temperature. This model is more
convenient to use provided that some conditions
are met as many studies have suggested (Vafai
and Sozen (1990), Whitaker (1991), Quintard and
Whitaker (1995)). For instance, the one-equation
model is no longer valid when the thermal prop-
erties of the two phases differ widely, or when
the solid particles are not small, or when convec-
tive transport is important, see Duval, Fichot and
Quintard (2004). Under these circumstances the
two-equation model, based on local thermal non-
equilibrium (LTNE), must be used to investigate
heat transfer in two-phase systems.

Early analytical solutions have been obtained
for simplified one- and two equation models
(Azelius (1926), Schumann (1929), Arpaci and
Clark (1962), Jang and Lee (1974), Burch, Allen
and Peavy (1976), Riaz (1977)). These studies
neglect the diffusive and/or convective terms in
the energy equations along the lines advanced by
Schumann (1929). Over the last two decades,
there has been a growing interest in analytical in-
vestigations of various aspects of two-phase sys-
tems. For instance, Vafai and Kim (1989) and
Lee and Vafai (1999) have analytically investi-
gated channeling effects in packed beds. Re-
cently, Kuznetsov (1994, 1997) developed an an-
alytical solution for the simplified LTNE in a par-
allel plate channel subject to constant heat flux
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boundary conditions. One of the major advan-
tages of analytical solutions is the way in which
they can provide insight into global and general
aspects of problems. It is not surprising that there
is today a renewal of interest in analytical meth-
ods, especially with the wide availability of sym-
bolic manipulation and computer algebra through
robust software packages, e.g., see Editorial Note
(2003). Ideally, the powerful combination of ad-
vanced analytical methods with efficient compu-
tational methods should be applied more widely.

This work is a continuation of our previous study
on heat transfer in a moving packed bed by
Henda and Falcioni (2006). The present study
has been undertaken to formulate a transient and
two-dimensional (2-D) model of a circulating gas-
solid heat exchanger under the condition of local
thermal equilibrium. The objective is to obtain an
analytical solution of the model using the method
of separation of variables (MSV) and the principle
of superposition.

2 Governing Equations

The physical system under consideration is illus-
trated in Figure 1. It consists of a cylindrical two-
phase (solid phase σ and stagnant gas phase γ)
circulating solid bed subjected to a hot gas out-
side the tube wall. Energy is transferred to the bed
via both conduction and convection heat transfer.
The governing energy balance equations for both
phases are given by
σ−phase:

(1−ε)ρsCps
∂T ∗

s

∂ t∗
+(1−ε)ρsCpsv

∂T ∗
s

∂x∗
= ∇.(ks∇T ∗

s )−hav(T∗
s −T ∗

f ) (1)

γ−phase:

ερ fCv
∂T ∗

f

∂ t∗
= ∇.(k f ∇T ∗

f )+hav(T∗
s −T ∗

f ) (2)

where T ∗
s , T ∗

f , are the solid- and fluid-phase tem-
peratures, respectively, and t, x, and r are time,
axial position, and radial position in the circulat-
ing bed, respectively. The properties h, av, ε , and
v are the interstitial heat transfer coefficient, sur-
face area per unit volume of solid, bed voidage,

and linear velocity, respectively. ρs and ρ f , Cps

and Cv ,and ks and k f are the solid- and fluid-
phase densities, specific heat capacities and ther-
mal conductivities, respectively.
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Figure 1: Schematics of the physical system

Under the assumption of LTE and constant physi-
cal properties, the one-equation energy model can
be obtained by letting the interstitial heat trans-
fer coefficient, h, tend to infinity in Equations 1
and 2. This assumption is valid under the current
conditions of the circulating bed and in line with
the findings of Henda and Falcioni (2006). The
bed voidage is assumed to be of constant value,
for the bed particles are randomly distributed as
they travel down the tube. The one-equation en-
ergy balance model reduces to the following par-
tial differential equation

∂T ∗

∂ t∗
+

(1−ε)ρsCpsυ
〈ρCp〉

∂T ∗

∂x∗
=

〈k〉
〈ρCp〉

[
∂ 2T ∗

∂x∗2 +
1
r∗

∂
∂ r∗

(
r∗

∂T ∗

∂ r∗

)]
(3)

The terms < ρCp > and 〈k〉 are the volume-
averaged heat capacity and conductivity of the
medium, respectively.

In order to make the model more tractable and in a
form that is compatible with the archival work of
Carslaw and Jaeger (1959), the following dimen-
sionless parameters and variables are defined

α =
(1−ε)ρsCpsv

〈ρCp〉 (4)

β =
〈k〉

〈ρCp〉 (5)
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and

T =
T ∗ −T ∗

in

T ∗
o −T ∗

in
(6)

t = t∗
α2

β
(7)

x = x∗
α
β

(8)

r = r∗
α
β

(9)

where T , t, x, and r are the dimensionless bed
temperature, time, axial distance, and radial po-
sition, respectively.

Equation (3) can be expressed as

∂T
∂ t

+
∂T
∂x

=
∂ 2T
∂x2 +

1
r

∂
∂ r

(
r

∂T
∂ r

)
(10)

The circulating bed is subjected to the following
initial and boundary conditions

IC: T = 1, t = 0 (11)

BCs:

T = 0, x = 0 (Dirichlet) (12)

∂T
∂x

= 0, x = xe (Danckwerts) (13)

∂T
∂ r

= 0, r = 0 (Symmetry) (14)

∂T
∂ r

= −ηT, r = rw (Cauchy) (15)

with

η =
hw

(1−ε)ρsCpsv
(16)

Equation 10, along with the set of initial and
boundary conditions, i.e., Eqs. 11-16, constitute
the complete one-equation energy balance model
describing the thermal behavior of the circulating
bed under investigation.

3 Analytic Solution

To solve the governing equation the method of
separation of variables has been used. The lat-
ter assumes the separation of solution function
T (x, r, t) into two partial solution functions: a di-
mensionless function in x and t, viz., T (x, t), and
a dimensionless function in r and t, viz., T (r, t),
in the product form

T (x, r, t) = T (x, t)×T (r, t) (17)

Using the principle of superposition it can be
shown that T (x, t) and T (r, t) are the solutions of
the following equations, respectively

∂T
∂ t

+
∂T
∂x

=
∂ 2T
∂x2 (18)

And

∂T
∂ t

=
∂ 2T
∂ r2 +

1
r

∂T
∂ r

(19)

Only the analytic solution of Eq. 19 along with
proper initial and boundary conditions, i.e., Eq.
11 and Eqs. 14-16, respectively, is documented in
Carslaw and Jaeger (1959) using MSV as follows

T (r, t) =
∞

∑
m=1

2η
rw

e−δ2
mt Jo(rδm)

(η2 +δ 2
m)Jo(rwδm)

(20)

where coefficients δm are the positive roots of the
transcendental equation, see Carslaw and Jaeger
(1959),

δmJ̇o(rwδm)+ηJo(rwδm) = 0 (21)

and where Jo and J̇o are Bessel function of zero
order and first kind and its first derivative, respec-
tively.

The analytic solution of the remaining
convection-diffusion type partial differential
equation, i.e., Eq. 18, and the corresponding
initial and boundary conditions, i.e., Eqs. 11-13,
can be obtained using MSV by assuming that
function T (x, t) can be separated into two eigen-
functions: a time-dependent function F(t) and a
space-dependent function G(x) in the form

T (x, t) = F(t)×G(x) (22)
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Substituting Eq. 22 into Eq. 18 yields

Ġ(x)− G̈(x)
G(x)

= − Ḟ(t)
F(t)

= λ (23)

where λ is a real number such that λ > 1/4.

Eigenfunctions G(x) and F(t) must satisfy the ini-
tial and boundary conditions of Eq. 18. After
some manipulations the resulting solution T (x, t)
can be shown to be

T (x, t) =
∞

∑
m=1

amex/2 sin(γmx)e−(γ2
m+1/4)t (24)

where coefficients γm are the positive roots of the
transcendental equation

2γm cos(γmxe)+ sin(γmxe) = 0 (25)

Coefficients am are obtained by considering the
initial condition, Eq. 11, and utilizing the orthog-
onality property of the sine function in the ex-
pression of the eigenfunction G(x). The resulting
equation is expanded in terms of an infinite series
of orthogonal functions leading to the following
expression

am =

xe∫
0

sin2(γmx)dx

xe∫
0

e(−x/2) sin(γmx)dx
(26)

The partial solutions T (x, t) and T (r, t) are com-
bined as per Eq. 17 to yield

T (x, r, t) =
∞

∑
m=1

amex/2 sin(γmx)e−(γ2
m+1/4)t

×
∞

∑
m=1

2η
rw

e−δ2
mt Jo(rδm)

(η2 +δ 2
m)Jo(rwδm)

(27)

Finally, Eq. 27 can be expressed in a simpler form
as

T (x, r, t) =
2η
rw

ex/2

∞

∑
n=1,m=1

[
an sin(γnx)

Jo(rδm)
(η2 +δ 2

m)Jo(rwδm)

× e−(γ2
n +δ2

m+1/4)t
]

(28)

where the inner loop is the sum over index m.

Equation 28 solves for the temperature distribu-
tion in the circulating bed as a function of time,
axial ordinate, and radial position. For conve-
nience, the dimensionless temperature of the bed
is defined by

Θ(x, r, t) = 1−T (x, r, t) (29)

4 Results and Discussion

The distribution of the temperature along the ra-
dial and axial coordinates of the circulating heat
exchanger has been obtained using the analytic
series approximation given by Eq. 28 and Eq.
29. Unless otherwise stated, the calculation re-
sults correspond to a physical system with dimen-
sions xe = 10 and rw =2/3, and to parameter η =
0.01.

Table 1: Effect of the number of terms in Eqs. 20
and 24 on the dimensionless temperature at x =
10, r = 0, and t = 1

m′ m′′ Θ
1 11 0.3592233830
2* 11 0.3592233828
3 11 0.3592233828
2 6 0.4333889448
2 9 0.3587187524
2 10 0.3592966753
2 11* 0.3592233828
2 12 0.3592233828
2 14 0.3592233828

4.1 Convergence and Accuracy

The analytic series solution given by Eq. 28 is
not unconditionally convergent. Convergence is
only attained after a number of terms in the se-
ries has been tallied, i.e., the solution must be in-
dependent of the number of terms, m and n. If
the partial solutions (Eqs. 20 and 24) are con-
vergent, then the analytic solution of the problem
at hand is convergent and constitutes a Cauchy
product. Under the prevailing conditions of this
study the value of the fractional term in the Bessel
function of Eq. 20 is smaller than unity. In
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this case the term 2η exp(−δ 2
mt)/rw must be very

small, say 10−6, to secure accuracy of Eq. 20.
The magnitudes of the term am and sine func-
tion in Eq. 24 are both less than one. The term
exp(x/2)exp(−[γ2

m + 0.25]t) must be very small,
say 10−6, to attain accuracy of Eq. 24. Two cri-
teria can be developed to evaluate the number of
sufficient terms m′ and m′′ to get accurate con-
vergence of Eqs. 20 and 24, respectively. These
criteria can be shown to be

m′ =
2

3π
√

(ln(2η/rw)+14)/t +1/2 (30)

and

m′′ =
10
π

√
(0.5x+14)/t−1/4+1/2 (31)

by noticing that the magnitude of coefficient δm is
within [(m−1)3π/2, 3mπ/2] and the magnitude
of coefficient γm is within [(m−1)π/10, mπ/10].
Accuracy of the calculated solutions depends on
many parameters as expressed in Eqs. 30 and
31. For instance, the sufficient number of terms
to be considered in Eq. 28 decreases as time, t,
increases. Table 1 illustrates the effect of the num-
ber of terms m′ and m′′, in the series solution, on
the estimated temperature, Θ, at position (x = 10,
r = 0), and at time t =1. The reported data in Table
1 have been calculated from Eq. 28. The magni-
tudes of m′ and m′′ have also been calculated from
criteria expressed by Eqs. 30 and 31, in order to
attain sufficient accuracy of the solution, and have
been found to be equal to 2 and 14, respectively.
The latter are in good accordance with the data (in
asterisk) reported in Tab. 1.

4.2 Temperature Distribution

Figure 2 depicts the space distribution of the tem-
perature of the circulating bed, denoted Theta, and
its evolution with time, t. As it can be noticed
from Figs. 2 (a-c), the temperature of the bed in-
creases with time from the inlet to the exit of the
bed in a wave-like form. The temperature of the
bed tends to steady-state for large values of time
as shown in Fig. 2 (c).

(a) 

(b)

(c) 

Figure 2: Space distribution of the circulating bed
temperature at different points in time: t = 1 (a), t
= 5 (b), and t = 10 (c)

5 Conclusions

The thermal behavior of a circulating heat ex-
changer has been considered. The analytic solu-
tion is obtained using the method of separation of
variables and the principle of superposition. The
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ranges of application of the analytic solution are
also determined through the derivation of conver-
gence criteria. The findings show that the temper-
ature propagates throughout the bed in a wave-
like form, and tends to steady state for large val-
ues of time. The closed form solution can serve as
a valuable benchmark for verifying the accuracy
of approximate algorithms and numerical meth-
ods for the solution of similar problems.
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Nomenclature

av Interfacial area per unit volume m−1

Cp Specific heat capacity at constant pressure
J/kg/K

Cv Specific heat capacity at constant volume
J/kg/K

h Interstitial heat transfer coefficient
W/m2/K

hw Bed-to-wall heat transfer coefficient
W/m2/K

Jo Zero order Bessel function of the first
kind

k Thermal conductivity W/m/K
r Radial position m
rw Radius of bed m
T ∗/T Absolute/dimensionless temperature of

bed K / -
t∗/t Absolute/dimensionless time s / -
v Linear velocity of bed m/s
x Axial position m
xe Length of bed m

Greek Symbols

α Convective coefficient m/s
β Diffusive coefficient m2/s
δ Coeff. of transcendental equation
γ Coeff. of transcendental equation; gas phase
η Dimensionless parameter
ε Bed voidage
Θ Dimensionless modified temperature of bed

ρ Density kg/m3

σ Solid phase
∇ Nabla operator

Subscripts

o Reference value (initial value for T )
f Fluid phase
in Inlet
m, n Indices
m′, m′′ Number of terms in series solution
s Solid phase

Exponents

* Absolute quantity
•/•• First / second derivative

Notations

F Time-dependent eigenfunction
G Space-dependent eigenfunction
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