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Nonlinear Development of Interfacial Instability in a Thin Two-Layer
Liquid Film in the Presence of Van-Der-Waals Interactions

A. A. Nepomnyashchy1,2 and I. B. Simanovskii1

Abstract: The development of instabilities un-
der the joint action of the van der Waals forces and
Marangoni stresses in a two-layer film on a heated
or cooled substrate is considered. It is found that
heating from below leads to the acceleration of
the decomposition, decrease of the characteristic
lateral size of structures, and the increase of the
droplets heights. Heating from above leads to
slowing down the instability rate and eventually
to a complete suppression of the instability.

1 Introduction

Two-layer fluid systems are widespread in nu-
merous branches of technology, including chemi-
cal engineering, space technologies, coating, etc.
When the thicknesses of layers are sufficiently
thin, the flows are strongly affected by interfacial
phenomena, specifically by the Marangoni effect
(13), (8).

In the past few decades, the development of mi-
crofluidics and nanotechnology led to a signifi-
cant progress in exploration of thin film flows.
Such kind of flows has numerous technological
applications (coating, flotation, biological mem-
branes, adhesives etc.). The instabilities in thin
films are of potential use in the formation of
regular nanostructures and ordered porous mem-
branes, in soft-lithographic techniques and in
other areas of nanotechnology.

The dynamics of ultra-thin (but still macroscopic)
films, with the thickness less than 100 nm, is of
a special interest. In the case of ultra-thin films,
it is necessary to take into account the long-range
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intermolecular forces (first of all, van der Waals
forces) acting between molecules of the liquid and
substrate (4). A theoretical description of two-
layer ultra-thin films has been developed in Refs.
(10)-(12).

The dynamics of ultra-thin films under the joint
action of the Marangoni effect and the van der
Waals forces has not yet been extensively ex-
plored. In (6), (11), a general structure of the evo-
lution equation has been considered. The case of a
temperature gradient directed along the interfaces
has been studied in (7).

In the present paper, we consider the development
of instabilities under the joint action of the van
der Waals forces and Marangoni stresses in a two-
layer film on a heated or cooled substrate. The
mathematical model is developed in Sec. 2. Sec.
3 is devoted to numerical simulations of the non-
linear problem. A summary of results is given in
Sec. 4.

2 Long-wave evolution equations

2.1 Thermocapillary flow

2.1.1 Formulation of the problem

Consider a system of two superposed layers of
immiscible liquids with different physical prop-
erties (see Fig. 1). The bottom layer rests on
a solid substrate, the top layer is in contact with
the adjacent gas phase. The temperature of the
solid substrate is Ts, the temperature of the gas
is Tg. All the variables referring to the bottom
layer are marked by subscript 1, and all the vari-
ables referring to the top layer are marked by sub-
script 2. The equilibrium thicknesses of the lay-
ers are H0

i , i = 1,2. The deformable interfaces
are described by equations z = H1(x,y, t) (liquid-
liquid interface) and z = H2(x,y, t) (liquid-gas in-
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terface). The ith fluid has density ρi, kinematic
viscosity νi, dynamic viscosity ηi = ρiνi, thermal
diffusivity χi and heat conductivity κi. The sur-
face tension coefficients on the lower and upper
interfaces, σ1 and σ2, are linear functions of tem-
perature T : σ1 = σ0

1 −α1T , σ2 = σ0
2 −α2T . The

effect of gravity is neglected. The intermolecular
forces are neglected in the present subsection.

Figure 1: Geometric configuration of the region
and coordinate axes.

The complete system of nonlinear equations gov-
erning Marangoni convection are written in the
following form (13):

∂vi

∂ t
+(vi∇)vi = − 1

ρi
∇Pi +νiΔvi, (1)

∂Ti

∂ t
+vi∇Ti =

1
χi

ΔTi, (2)

∇ ·vi = 0, i = 1,2. (3)

The boundary conditions on the rigid boundary
are:

v1 = 0, T1 = Ts; at z = 0. (4)

On the deformable interface z = H1, the following
boundary conditions hold: the balance of normal
stresses,

P2 −P1 +2σ1K1 =[
−η1

(
∂v1i

∂xk
+

∂v1k

∂xi

)
+η2

(
∂v2i

∂xk
+

∂v2k

∂xi

)]

· n1in1k; (5)

the balance of tangential stresses,[
−η1

(
∂v1i

∂xk
+

∂v1k

∂xi

)
+η2

(
∂v2i

∂xk
+

∂v2k

∂xi

)]

· τ (l)
1i n1k −α1τ (l)

1i
∂T1

∂xi
= 0, l = 1,2; (6)

the continuity of the velocity field,

v1 = v2; (7)

the kinematic equation for the interface motion,

∂H1

∂ t
+v1x

∂H1

∂x
+v1y

∂H1

∂y
= v1z; (8)

the continuity of the temperature field,

T1 = T2; (9)

and the balance of normal heat fluxes,
(

κ1
∂T1

∂xi
−κ2

∂T2

∂xi

)
n1i = 0. (10)

Similar boundary conditions are imposed on the
deformable interface z = H2:

−P2 +2σ2K2 = −η2

(
∂v2i

∂xk
+

∂v2k

∂xi

)
n2in2k, (11)

−η2

(
∂v2i

∂xk
+

∂v2k

∂xi

)
τ (l)

2i n2k −α2τ (l)
2i

∂T3

∂xi
= 0,

l = 1,2, (12)

∂H2

∂ t
+v2x

∂H2

∂x
+v2y

∂H2

∂y
= v2z, (13)

K1 and K2 are the mean curvatures, n1 and n2 are
the normal vectors and τ (l)

1 and τ(l)
2 are the tan-

gential vectors of the lower and upper interfaces;
Pi is the difference between the overall pressure
and the atmospheric pressure. For a heat flux on
the liquid-gas interface we use an empirical con-
dition,

κ2
∂T2

∂xi
n2i = −q(T −Tg), (14)

where q is the heat exchange coefficient which is
assumed to be constant.

2.1.2 Derivation of the longwave amplitude
equation

The system of equations and boundary conditions
(1)-(14) is rather complicated. However, in the
case of thin film flows, when the fluid system is
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thin in one direction and extended in other di-
rections, the nonlinear model governing three-
dimensional flows with a deformable interface
can be drastically simplified by means of a long-
wavelength expansion. The leading order of this
expansion is known as the lubrication approxima-
tion. The longwave approach is based on the as-
sumption that the characteristic spatial scales in
the directions x and y are much larger than that
in the direction z. It is assumed that the solution
of equations and boundary conditions (1)-(14) de-
pends on the scaled horizontal coordinates X = εx
and Y = εy, ε � 1, rather than on x and y. Also, it
is assumed that the solution depends on the scaled
time variable τ = εt. The details of the longwave
approach applied to thermocapillary flows can be
found in review papers (2), (9).

At the leading order, the evolution of the system is
governed by the following equations and bound-
ary conditions:

U1zz = 0; V1zz = 0; U1X +V1Y +W1z = 0;

T1zz = 0; 0 < z < H1;
(15)

U2zz = 0; V2zz = 0; U2X +V2Y +W2z = 0;

T2zz = 0; H1 < z < H2;
(16)

z = 0 : U1 = V1 = W1 = 0; T1 = Ts; (17)

z = H1 : U1 = U2; V1 = V2; W1 = W2; (18)

η2U2z−η1U1z−α1(T1X +H1X T1z) = 0; (19)

η2V2z−η1V1z−α1(T1Y +H1Y T1z) = 0; (20)

H1τ +U1H1X +V1H1Y = W1; (21)

T1 = T2; κ1T1z = κ2T2z; (22)

z = H2 : −η2U2z−α2(T2X +H2X T2) = 0; (23)

−η2V2z −α2(T2Y +H2Y T2z) = 0; (24)

H2τ +U2H2X +V2H2Y = W2; (25)

κ2T2z = −q(T −Tg), (26)

where subscripts z, X , Y and τ denote correspond-
ing partial derivatives, Uj, Vj and Wj, j = 1,2 are
the leading-order terms in the expansions in pow-
ers of ε :

ux j = Uj + . . . , uy j = Vj + . . . , uz j = εWj + . . . .

Solving the problem for the temperature fields, we
find:

T1 = Ts − (Ts −Tg)Dqκ2z; (27)

T2 = Ts − (Ts −Tg)Dq[(κ2−κ1)H1 +κ1z], (28)

where

D = [κ1κ2 +q(κ2−κ1)H1 +qκ1H2]−1. (29)

The x-components of the flow generated by the
thermocapillary stresses is determined by the fol-
lowing formulas:

U1 =
(Ts−Tg)κ2

η1
[D(α1qH1 −α2κ1)]Xz, (30)

U2 =
(Ts−Tg)κ2

η2
{−α2κ2DXz

+
H
η1

[D(α1η2qH1 −α2(η2 −η1)κ1)X ]X

}
.

(31)

The expressions for y-components of the flow, V1

and V2, can be obtained from U1 and U2 by replac-
ing X by Y . Solving the continuity equations with
respect to W1 and W2 with corresponding bound-
ary conditions, we find that

W1(X ,Y,H1) = −
∫ H1

0
(U1X +V1Y )dz, (32)

W2(X ,Y,H2) = −
∫ H1

0
(U1X +V1Y )dz

+
∫ H2

H1

(U2X +V2Y )dz. (33)

Using (32) and (33), we rewrite the kinematic
conditions (21) and (25) in the following form:

H1τ +
(∫ H1

0
U1dz

)
X

+
(∫ H1

0
V1dz

)
Y

= 0; (34)

H2τ +
(∫ H1

0
U1dz+

∫ H2

H1

U2dz

)
X

+
(∫ H1

0
V1dz+

∫ H2

H1

V2

)
Y

= 0. (35)
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Substituting expressions for flow velocities ob-
tained above into equations (34), (35), we arrive
to a closed system of equations that govern the
evolution of a heated two-layer film under the ac-
tion of the thermocapillary effect:

H1τ +∇ ·QT
1 = 0, H2τ +∇ ·QT

2 = 0, (36)

where

QT
1 =

(Ts−Tg)κ2

2η1
H2

1 ∇[D(qα1H1 −α1κ1)], (37)

QT
2 =

(Ts−Tg)
2η1η2

{
H2

2 ∇[(−α2κ1η1)D]+(2H2−H1)

·H1∇
{

D[qα1η2H1 −α2κ1(η2 −η1)]
}}

. (38)

2.2 Flows in the presence of van der Waals
forces

In the framework of the continuum approach, the
van der Waals forces manifest themselves as an
external normal stresses (“disjoining pressures")
imposed on each interface (4)-(12). The dis-
joining pressures modify the dependencies of the
pressures P1 and P2 in each layer on the layers
thicknesses H1 and H2 in the following way (3):

P1 = −σ1∇2H1−σ2∇2H2 +W1(H1,H2), (39)

P2 = −σ2∇2H2 +W2(H1,H2), (40)

where

W1(H1,H2) =
Asg −As2 −Ag1

6πH3
2

+
As2

6πH3
1

, (41)

W2(H1,H2) =
Asg −As2 −Ag1

6πH3
2

+
Ag1

6π(H2−H1)3 .

(42)

Here Asg, As2 and Ag1 are Hamaker constants
characterizing the interactions between the solid
substrate and the gas across the two layers, be-
tween the solid substrate and liquid 2 across liquid
1, and between the gas phase and liquid 1 across
liquid 2, correspondingly.

It was shown earlier (11), (7) that in the frame-
work of the lubrication approximation the influ-
ence of the surface tension and van der Waals

forces on the dynamics of a non-isothermic two-
layer thin film is described by additional flux
terms in evolution equations:

H1τ +∇ · (QT
1 +QvdW

1 ) = 0,

H2τ +∇ · (QT
2 +QvdW

2 ) = 0,
(43)

where

QvdW
1 = Q0

1 = F11∇P1 +F12∇P2,

QvdW
2 = F21∇P1 +F22∇P2.

(44)

The pressures P1 and P2 are determined by expres-
sions (39), (40), and the mobility functions are:

F11 = − 1
3η1

H3
1 ; F12 = − 1

2η1
H2

1 (H2−H1);

F21 =
1

6η1
H3

1 −
1

2η1
H2

1 H2;

F22 = (H2−H1)
[

H2
1

(
1

2η1
− 1

3η2

)

+H1H2

(
− 1

η1
+

2
3η2

)
− 1

3η2
H2

2

]
.

Following (3), we choose the initial thickness of
the lower layer, H0

1 , as the vertical length scale,

and the quantities λ ∗ = (H0
1 )2

√
6πσ0

1 /|Asg|, τ∗ =

36π2σ0
1 η1(H0

1 )5/A2
sg, and p∗ = |Asg|/6π(H0

1)3 as
the horizontal length scale, time scale, and pres-
sure scale, respectively. Equations (43) are writ-
ten in the dimensionless form,

h1τ +∇ ·q1 = 0, h2τ +∇ ·q2 = 0, (45)

q1 = f11∇p1 + f12∇p2 +qT
1 ,

q2 = f21∇p1 + f22∇p2 +qT
2 ;

(46)

where T = t/τ∗, h j = Hj/H0
1 , p j = Pj/p∗, j =

1,2,

f11 = −1
3

h3
1, f12 = −1

2
h2

1(h2−h1),

f21 =
1
6

h3
1 −

1
2

h2
1h2,

f22 = (h2 −h1)
[

h2
1

(
1
2
− η

3

)

+h1h2

(
−1+

2η
3

)
− η

3
h2

2

]
.
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Later on, we assume that the dependence of in-
terfacial tensions on the temperature is relatively
weak and can be neglected in the boundary con-
ditions for normal stresses (but not in those for
tangential stresses where it is the source of a ther-
mocapillary motion). The pressures include the
disjoining potentials:

p1 = −∇2h1−σ∇2h2 +w1(h1,h2), (47)

p2 = −σ∇2h2 +w2(h1,h2), (48)

w1 =
a0 −a1 −a2

h3
2

+
a1

h3
1

, (49)

w2 =
a0 −a1 −a2

h3
2

+
a2

(h2−h1)3 . (50)

The non-dimensional expressions for the fluxes
generated by the thermocapillary effect are:

qT
1 =

M
2

h2
1∇[d(Bih1−ακ)], (51)

qT
2 =

M
2

{−h2
2∇(dηακ)+(2h2−h1)h1

·∇{d[Bih1−ακ(1−η)]
}}. (52)

Here

M = α1(Ts−Tg)(H0
1)3

√
σ0

1 (6π/|Asg|)3/2 (53)

is the modified Marangoni number,

Bi =
qλ∗
κ2

(54)

is the Biot number (defined using the characteris-
tic horizontal scale), and

d = [κ +Bi(1−κ)h1 +Biκh2]−1, (55)

η = η1/η2, σ = σ0
2 /σ0

1 , a0 = sign(Asg), a1 =
As2/|Asg|, a2 = Ag1/|Asg|.
We will use the problem (45) for studying the
instabilities of plane ultra-thin films, H1 = H0

1 ,
H2 = H0

2 , and simulation of their nonlinear devel-
opment.

3 Numerical simulations

3.1 Choice of parameters and numerical
method

The system of equations (45) contains nine nondi-
mensional parameters: M, Bi, σ , α , η , κ , a0,
a1, and a2. The Marangoni number is determined
by the intensity of the external heating, the Biot
number characterizes the heat transfer at the free
boundary, while other six parameters are intrin-
sic characteristic of the multilayer system sub-
strate/liquid 1/liquid 2/gas. Parameters α ,η and
σ are just ratios of physical parameters of the liq-
uids, while a0, a1 and a2 depend on the values
of the Hamaker constants Asg, As2 and Ag1. The
latter constants are determined by the dielectric
permittivities of all the media as functions of the
frequency (5), (4), and they depend mainly on the
zero-frequency dielectric constants and high fre-
quency refractive indices of the media (4), (11).
It would be interesting to analyze the dependence
of the dynamics of the system on all the relevant
parameters. However, in the present paper we per-
form simulations only for the following set of pa-
rameters: a0 = 1, a1 = −0.4, a2 = −0.1, η = 1.2,
σ = 0.8, which corresponds to a model system
formerly considered in (3).

This choice of parameters is caused by the follow-
ing reasons. It is well known that in the case of a
one-layer film, the van der Waals interaction typ-
ically leads to the film rupture. In order to avoid
the film rupture, some regularizing modification
of the disjoining potential is usually needed. In
(3), it was found that for the set of parameters
given above, the rupture is avoided even for pure
van der Waals interactions. Instead of rupture,
one observed a certain kind of “spinodal decom-
position" of the film into localized droplets and a
thin “precursor" film. This phenomenon has been
established in (3) in the framework of the one-
dimensional problem. The goal of the present pa-
per is the investigation of this phenomenon in the
presence of the Marangoni effect by means of full
nonlinear simulations.

Evolution equations (45) have been discretized
by central differences for spatial derivatives and
solved using an explicit scheme. Periodic bound-
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ary conditions have been applied on the bound-
aries of the computational region. Initial condi-
tions for h j, j = 1,2 have been chosen in such a
way that the mean value of h1(X ,Y,0) was equal
to 1 and the mean value of h2(X ,Y,0) was equal
to h, where h > 1. Hence, our computations de-
pend on the additional geometric parameter, h =
H0

2 /H0
1 . Small random deviations of h j(X ,Y,0)

from their mean values were imposed using a
code creating pseudo-random numbers. We have
chosen two different values of h: (i) h = 1.2; (ii)
h = 2.5. The parameter α = 1.

3.2 The case h = 1.2

The simulations have been carried out in the re-
gion 120×120 on the mesh 240×240.

First, let us remind the main stages of the films
shape evolution observed in the absence of heat-
ing, M = 0 (see (7)). In the case h = 1.2, the
shapes of both interfaces are quite similar. There-
fore, it is sufficient to demonstrate only the evolu-
tion of the liquid-liquid interface, h1(X ,Y,T). The
main stages of the evolution are shown in Fig. 2.
During a rather short period of time, the film is
separated into two “phases", a “thick film" and a
“thin film". The “thick" phase forms a percolat-
ing “labyrinthine" structure (Fig. 2(a)) with an
approximately parabolic shape cross-section and
a characteristic width of “rivulets" corresponding
to the critical instability wavelength (see (3)). The
“thin" phase consists of holes with flat bottoms.
With the increase of time, the labyrinthine struc-
ture is destroyed into fragments and eventually
separate droplets are formed (Figs. 2(b), 2(c),
2(d)). After the formation of droplets, a slow
process of coarsening takes place. Two mecha-
nisms of coarsening are observed. Some neigh-
bor droplets coalesce (compare Fig. 2(c) with Fig.
2(d)). Also, small droplets dry out due to the Ost-
wald ripening.

Let us discuss now the influence of the Marangoni
effect (M > 0, which corresponds to the case of
heating from below for normal thermocapillary
effect). The computations have been done for
Bi = 0.1, κ = 1. The evolution of the system for
M = 1 is shown in Fig. 3. The comparison of
Fig. 2 and Fig. 3 reveals two effects. First, the

development of the instability obviously becomes
faster in the presence of heating (cf. Figs. 2(a) and
3(b)). Also, the characteristic spatial size of grow-
ing disturbances becomes smaller, and a number
of small droplets is developed (cf. Figs. 2(c) and
3(c)). The hight of big droplets is larger in the
presence of heating at the same instants of time.

The tendencies listed above become even more
clear at larger values of the Marangoni number
(see Fig. 4; M = 5). With the growth of M, the de-
velopment of instabilities becomes faster, the area
of droplets decreases, and their height grows.

3.3 The case h = 2.5

The simulations have been carried out in the re-
gion 240×240 on the mesh 400×400.

The typical shapes of droplets formed in the ab-

Figure 8: Shapes of the interfaces at T = 160000;
(a) h2(X ,Y,T); (b) h1(X ,Y,T); M = 1; h = 2.5.
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sence of heating (M = 0) are shown in Fig. 5. Let
us emphasize that the deformation of the upper in-
terface is much stronger than that of the lower in-
terface, and the shapes of the interfaces are com-
pletely different. The deflection of the upper in-
terface has a parabolic shape, while the deflection
of the lower interface has a flat “plateau". The
hight of the upper interface deformation is essen-
tially larger than that of the lower interface. The
structures are characterized by a larger character-
istic length scale than in the case h = 1.2, and they
develop slower.

In the case of heating (M �= 0), the computations
have been done for Bi = 0.1, κ = 1. The heat-

Figure 13: Shapes of the interfaces at T = 8000;
(a) h2(X ,Y,T); (b) h1(X ,Y,T); M = −0.1; h =
2.5.

ing from below (M > 0) leads to the same qual-
itative changes of the instability development as
in the case of h = 1.2: the instability is devel-
oped faster, the areas of droplets become smaller
and their heights become larger (see Figs. 6 and
7; M=1). Let us emphasize that the shape of the
liquid-liquid interface inside the droplet becomes
non-monotonic (see Figs. 7 and 8(b) ), so that this
interface resembles an “inkpot". It is interesting
to note that after the coalescence of droplets, the
restoration of the axisymmetric shape of the struc-
ture is rather fast for the upper interface, while the
axial asymmetry of the lower-interface structures
takes much more time, and some crescent-like de-
fects are clearly seen (see Fig. 7).

The growth of M leads to acceleration of the insta-
bility development and to the formation of small-
scale structures (see Figs. 9 and 10). The distribu-
tion of sizes and heights of droplets is essentially
polydisperse.

The heating from above (M < 0) leads to opposite
changes in the process of the droplets develop-
ment: the evolution becomes slower, and the char-
acteristic size of structures increases. The evolu-
tion of interfaces at M = −0.1 is shown in Figs.
11 and 12. For larger values of |M|, M < 0, the
instability is completely suppressed. The shape
of the liquid-liquid interface becomes more round
than in the absence of heating (see Fig. 13(b))

4 Conclusions

We have considered the decomposition of a two-
layer film caused by intermolecular forces in the
presence of the thermocapillary effect. We have
found that heating from below leads to the ac-
celeration of the decomposition, decrease of the
characteristic lateral size of structures, and the
increase of the droplets heights. Heating from
above leads to slowing down the instability rate
and eventually to a complete suppression of the
instability. This observation shows that the in-
stability threshold is achieved at a certain neg-
ative value of the Marangoni number, Mc < 0.
The larger is the difference M − Mc, the higher
is the characteristic growth rate of the instabil-
ity. As it has been shown in (3), the instability
generated by intermolecular forces takes place for
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long waves with the wavenumbers in the interval
0 < k < km. For longwave instabilities, the depen-
dence km ∼ (M−Mc)1/2 is typical. This circum-
stance explains the decrease of the characteristic
instability wavelength with the growth of M.

We have observed a nontrivial change of the
droplet shape in the presence of the Marangoni
effect, which manifests itself as the deformation
of a “plateau” into an “inkpot”.
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