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A Deterministic Mechanism for Side-branching in Dendritic Growth
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Abstract: In this paper, we suggest a determin-
istic mechanism for the generation and develop-
ment of side-branches in dendritic growth. The
present authors investigated recently [Glicksman,
Lowengrub, and Li (2006)] the existence of such
a deterministic branching mechanism induced
through the Gibbs-Thomson-Herring (GTH [Her-
ring (1951)]) anisotropic capillary boundary con-
dition. In this paper, we focus our study on an
anisotropic kinetic boundary condition. We de-
velop and apply accurate boundary integral meth-
ods in 2D and 3D, in which a time and space
rescaling scheme is implemented, that are capa-
ble of separating the dynamics of growth from
those of morphology change. Numerical results
reveal that under anisotropic kinetic boundary
conditions a non-monotone temperature distribu-
tion forms on the interface near the tip that leads
to oscillations of the scaled tip velocity. This
dynamical process resembles a limit cycle that
generates a sequence of time-periodic protuber-
ances near the tip. These protuberances propagate
away from the tip and develop into side-branches
at later times. Unlike the conventional noise-
amplification theory [Pieters and Langer (1986)],
the generation and development of side-branches
is intrinsic, and occurs solely under the determin-
istic influence of the anisotropic kinetic boundary
condition.
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1 Introduction

Dendrites growing from supercooled melts or
supersaturated solutions are characterized by
smooth, parabolic-like tips with side-branches be-
hind them. Understanding the formation of den-
dritic structures has long been a challenging re-
search topic in materials science. Through a
combination of analysis, numerics and experi-
ments [e.g. LaCombe, Koss, Frei, Giummarra,
Lupulescu, and Glicksman (2002); Giummarra,
LaCombe, Koss, Frei, Lupulescu, and Glicks-
man (2005); Pieters and Langer (1986); Jacob
and Garik (1990); McFadden, Coriell, and Sek-
erka (2000a,b); Kim, Goldenfeld, and Dantzig
(2000); Jeong, Goldenfeld, and Dantzig (2001);
Glicksman, Schaefer, and Ayers (1976); Nash and
Glicksman (1974a,b); Ihle (2000); Dougherty,
Kaplan, and Gollub (1987); Karma and Rap-
pel (1999); Almgren, Dai, and Hakim (1993);
Martin and Goldenfeld (1987); Couder, Cardoso,
Dupuy, Tavernier, and Thom (1986); Couder,
Gerard, and Rabaud (1986); Hong, Zhu, and Lee
(2006); Narski and Picasso (2007); Borzsonyi,
Toth-Katona, Buka, and Granasy (2000)], it is
now recognized that anisotropies in surface ten-
sion and/or in the atomic attachment kinetics play
an important role to stabilize the advancing den-
dritic tip region against splitting. The physical
mechanism that determines the generation and de-
velopment of side-branches, however, remains a
subject of controversy.

The conventional theory for the formation of side-
branches, first proposed by Pieters and Langer
[Pieters and Langer (1986)], postulates that den-
dritic side-branches may be generated by selective
noise amplification near the tip, and, moreover,
the sources of noise are thermal fluctuations in the
system. Using a two dimensional boundary-layer
model with kinetic crystalline anisotropy, their
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numerical results and linear asymptotic analysis
suggest that a small random perturbation added
to the tip velocity can be amplified to form visi-
ble side-branches. Measurements of the dendritic
growth of NH4Br crystals from supersaturated so-
lution by Dougherty appear consistent with the
conventional noise amplification proposition in
that the observed side-branches on opposite sides
of the dendrite are imperfectly correlated with
variations appearing in both phase and amplitude
[Dougherty, Kaplan, and Gollub (1987)]. These
observations agree with the stochastic nature of
noise amplification theory, although the precise
origin of noise in Dougherty’s experiment is un-
known.

Martin and Goldenfeld, using a geometrical
model, investigated the existence of a determinis-
tic mechanism for the formation of side-branches
within the framework of an eigenmode analysis of
a linear stability operator [Martin and Goldenfeld
(1987)]. They presented several possible reasons
for the generation of side-branches in dendritic
growth, such as a limit cycle behavior due to a
Hopf bifurcation and a solvability-induced side-
branching [Martin and Goldenfeld (1987)]. Their
analysis emphasizes the importance of nonlinear
effects and suggests that the combination of both
nonlinear dynamics and the singular nature of
the steady state is responsible for side-branching
[Martin and Goldenfeld (1987)]. Experimen-
tal results [Couder, Cardoso, Dupuy, Tavernier,
and Thom (1986); Couder, Gerard, and Rabaud
(1986)] show that nonlinear effects play an im-
portant role in the generation of side-branches. In
these experiments, a small air bubble is placed at
the tip of a viscous finger developing in a Hele-
Shaw cell. The nonlinear interaction between
the small air bubble and the finger tip gives rise
to the generation of well-correlated side-branches
on either side of the finger. These observations
suggest that noise is not important here. Simi-
lar phenomena were also observed in liquid crys-
tals. Borzsonyi, Toth-Katona, Buka, and Granasy
(2000) demonstrated that by applying a nonlo-
cal periodic force (e.g. time-periodic pressure or
heating) in the vicinity of a liquid crystal den-
drite tip, the resulting tip velocity became oscilla-

tory and side-branches were regularized by these
forces, i.e., the side-branches became nearly peri-
odic, again indicating that noise amplification was
not important here either. Using non-Newtonian
fluids, Kondic, Palffy-Muhoray, Shelley and Fast
[Kondic, Palffy-Muhoray, and Shelley (1996,
1997); Fast, Kondic, Palffy-Muhoray, and Shel-
ley (2001)] found that a shear-rate dependent vis-
cosity of the driven fluid significantly influences
pattern formation in a Hele-Shaw cell. In par-
ticular, shear thinning suppresses tip-splitting and
produces fingers that grow in an oscillatory man-
ner, periodically developing side-branches behind
their tips. These results strongly suggest that
an oscillatory tip velocity might be important to
the generation and development of dendritic side-
branches, which although recognized previously
in Pieters and Langer’s work [Pieters and Langer
(1986)] was ascribed to a non-deterministic ori-
gin.

Noise amplification theory certainly seems to pro-
vide an explanation of side-branching in some
dendritic systems, but the experimental and the-
oretical results mentioned above suggest that de-
terministic mechanisms may also exist for side-
branching that warrant further examination. The
existence of such a mechanism for the Gibbs-
Thomson-Herring (GTH) anisotropic capillary
boundary condition was investigated recently by
the present authors [Glicksman, Lowengrub, and
Li (2006)]. In this paper, we focus our study on
an evolving crystal subject to an anisotropic ki-
netic boundary condition. We develop accurate
2D and 3D boundary integral methods in which a
time and space rescaling scheme is implemented
in a manner such that the area/volume of the crys-
tal appears unchanged. Specifically, we exposed
the detailed dynamics of the evolving dendrite tip
subject to anisotropic interface kinetics by scaling
out the overall growth of the crystal. Our numer-
ical results reveal that the interface can develop
periodic non-monotone temperature distributions
that lead to oscillations of the scaled tip velocity.
This dynamical process acts like a limit cycle and
generates a time-periodic sequence of protuber-
ances near the tip that propagate away from the tip
and form side-branches at later times. Unlike con-
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ventional noise-amplification theory [Pieters and
Langer (1986)], the formation of side-branches is
intrinsic and occurs solely under the influence of
the anisotropic kinetic boundary condition with-
out any significant noise present.

This paper is organized as follows: in section 2,
we review the governing equations; in section 3,
we present the rescaling scheme; in section 4, we
discuss the numerical results; and in section 5, we
provide conclusions.

2 Governing Equations

In this paper, we consider a crystal growing quasi-
statically in a supercooled pure melt. The inter-
face Σ separates the solid phase Ω1 from the melt
Ω2. We assume for simplicity that the surface ten-
sion γ along the interface is isotropic, and the in-
terfacial kinetic coefficient is 4-fold anisotropic,
i.e. ε(n)= ε0(1−β

(
3−4

(
n4

1 +n4
2 +n4

3

))
) where

ni denotes the components of the normal vec-
tor n. In 2D, this anisotropic form reduces to
ε(θ ) = ε0(1 + μ cos(4θ )), where θ is the angle
between the normal vector and a fixed axis, and μ
represents the strength of the kinetic anisotropy.
For simplicity, the thermal diffusivities of the two
phases are assumed to be identical. The length
scale is the equivalent radius of the crystal (R0, ra-
dius of a sphere/circle with the same volume/area)
at time t = 0, where the time scale is the charac-
teristic surface tension relaxation time scale [Li,
Lowengrub, Leo, and Cristini (2004, 2005); Li,
Lowengrub, and Leo (2005)]. The temperature

is non-dimensionalized by
Temp−Tph

ΔTγ
, where

Temp is the dimensional temperature in Ω1 and
Ω2; Tph is the phase change temperature for a flat
interface; ΔTγ = γTph/(L R0), where L is the la-
tent heat per unit volume and isotropic surface
tension γ = 1. The following non-dimensional
equations govern the growth of the crystal:

∇2Ti = 0 in Ωi i=1, 2, (1)

V = (∇T1 −∇T2) ·n on Σ, (2)

T1 = T2 = −κ −ε(n)V on Σ, (3)

J =
1

2(N −1)π

∫
Σ

VdΣ, (4)

where Ti is the temperature field, i = 1 for the
solid phase and i = 2 for the melt, κ is the
mean curvature, and J is the integral far-field heat
flux and specifies the time derivative of the vol-
ume/area of the solid phase. N = 2, 3 is the spatial
dimension. In this paper, J = C ·R(t)N−2 where
R is the equivalent radius at time t, and C is a
constant. This corresponds roughly to assuming
a constant temperature condition at the far-field.
The interface Σ evolves via

n · dx
dt

= V on Σ, (5)

where V is the normal velocity of the interface and
n is the unit normal directed towards Ω2.

Equation (3) implements the standard anisotropic
kinetic boundary condition. The kinetic coeffi-
cient reflects the underlying crystallographic ori-
entation (4-fold cubic symmetry) and represents
the free energy ‘cost’ for a finite rate of molecular
attachment from the melt to the crystalline phase.
A non-zero, anisotropic interfacial kinetic coeffi-
cient causes the moving interface to depart from
its local equilibrium temperature, consume free
energy, and follow preferred growth directions.

Since the temperature fields in both solid and liq-
uid phases are harmonic, the temperature may
be given as a single-layer potential. This yields
Fredholm integral equations of the second-kind
[Mikhlin (1957)] for V (x) and T∞(t), where the
latter is the far-field temperature. This procedure
yields,

−κ(x)−ε(n)V =
∫

Σ
G(x−x′)V(X′)dΣ(x′)+T∞,

(6)

and

J =
1

2(N −1)π

∫
Σ

V(x′)dΣ(x′), (7)

where G(x) = 1
2π log |x| in 2D and G(x)= 1

4π 1/|x|
in 3D are the appropriate Green’s functions.

3 Time and space rescaling scheme

In order to simulate accurately and efficiently
the nonlinear dynamics of the evolving crystal,
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we use 2D and 3D boundary integral methods
in which a time and space rescaling is imple-
mented. The methods are capable of separating
the dynamics of growth from those of morphol-
ogy change. This separation exposes more clearly
the processes underlying side-branching. We suc-
cessfully implemented this scheme to study the
long-time dynamics of a growing crystal [Cristini
and Lowengrub (2004); Li, Lowengrub, Leo, and
Cristini (2005); Li, Lowengrub, and Leo (2005)]
and viscous fingering in a Hele-Shaw cell [Li,
Lowengrub, and Leo (2007)]. The method is de-
scribed briefly below.

We introduce the following spatial and temporal
scaling

x = R(t)x(t,α), (8)

and

t =
∫ t

0

1
ρ(t ′)

dt ′, (9)

where R(t) = R(t(t)), and where x(t,α) is the po-
sition vector of the scaled interface, t represents
the new time variable and ρ defines the new time
scale. The scaling R is chosen such that the vol-
ume Vol in 3D and area A in 2D enclosed by the
scaled interface is constant in time. The scaling
R can be found by integrating the normal velocity
over the interface to get

dR(t)
dt

=
ρ(t)

R(t)N−1 ·Vol
· 2(N−1)π

N
· J(t), (10)

where ρ(t) = ρ(t(t)) and analogously J(t) =

J(t(t)). We choose ρ =
R

N
VolN

2(N −1)πJ
following

Eq. (10) to achieve exponential growth of R in
the scaled frame.

The normal velocity in the new frame is

V(t,α) =
dx(t,α)

dt
·n and satisfies

−κ
ρ
R

3 −
ε(n)

R
x ·n−G [x]

=
∫

Σ
G(|x−x′|)Vds′+

ε(n)
R

V +T ∞(t), (11)

and

0 =
∫

Σ
Vds, (12)

where κ = Rκ and the scaling factor R is

R(t) = exp(t). (13)

Further, in Eq. (11) we have taken T ∞(t) =
Vol log(R)

π
+

ρ
R

2 T∞(t(t)) in 2D and T ∞(t) =

ρT ∞/R
2

in 3D, and G (x) =
∫

Σ x′ · n(x′)G(x −
x′)ds′.
To evolve the interface numerically, Eqs. (11) and
(12) are discretized in space and solved efficiently
using GMRES [Saad and Schultz (1986)]. In 2D,
Eqs. (11) and (12) are discretized in space using
spectrally accurate discretizations [Hou, Lowen-
grub, and Shelley (1994); Almgren, Dai, and
Hakim (1993)]. The resulting discrete system is
solved efficiently using a diagonal preconditioner
in Fourier space [Hou, Lowengrub, and Shelley
(1994); Jou, Leo, and Lowengrub (1997)].

In 3D, the surface is discretized using an
adaptive surface triangulated mesh [Cristini,
Blawzdziewicz, and Loewenberg (2001)]. The
surface is then divided into three regions [Li,
Cristini, Nie, and Lowengrub (2007)]: (1) a sin-
gular region that contains all the triangles with the
evaluation point x as a vertex; (2) a quasi-singular
region that is the collection of triangles the center
of which is a distance d from x; and (3) a non-
singular region that contains all other triangles. In
the non-singular region, the Trapezoid rule is used
to perform the integration. In the quasi-singular
region, a seven-point Gaussian quadrature is used.
In the singular region, Duffy’s transformation is
used to map the triangle to a unit square which
removes the 1/r singularity and a seven-point
Gaussian quadrature is then used. The discretized
equations are solved using GMRES with a diago-
nal preconditioner. The curvature is approximated
using a least-squares parabolic fit of the surface
[Zinchenko, Rother, and Davis (1997)]. We note
that the efficacy of using adaptive mesh (grid) al-
gorithms to resolve moving interfaces have been
well validated, see [Cristini, Blawzdziewicz, and
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Loewenberg (2001); Sussman and Ohta (2007);
Gibou, Min, and Ceniceros (2007)] for example.

Once V is obtained, the interface is evolved by
using a second-order accurate non-stiff updating
scheme in time and the equal arclength parameter-
ization [Almgren, Dai, and Hakim (1993); Hou,
Lowengrub, and Shelley (1994); Jou, Leo, and
Lowengrub (1997)] in 2D and an explicit second-
order Runge-Kutta method in 3D [Cristini and
Lowengrub (2004); Li, Cristini, Nie, and Lowen-
grub (2007)].

4 Results

In order to isolate the effects of anisotropic kinet-
ics on the formation of dendrite primary arms and
side-branches, the initial crystal shape was chosen
to be a unit circle or sphere.

4.1 2D simulations

We consider a small anisotropy coefficient of
ε(θ ) = 0.16(1− 0.025cos(4θ )). The crystal is
grown under the driving force of a constant far-
field heat flux. Because of the symmetry of ini-
tial data, the interfacial contours of only one-half
of the interface are shown in the sequence of in-
terface morphologies in Figs. 1 and 2. The pat-
tern is clearly dendritic at later times. Because
the surface tension is isotropic, this pattern devel-
ops solely under the influence of the anisotropic
kinetics.

The details of how a side-branch is initiated and
grows can be seen in Figs. 1 and 2. In Fig.1, the
scaled tip velocity V of the x-primary arm in the
scaled frame is shown as a function of R(t); the
true tip velocity V is shown as an inset. In the
scaled frame, there are oscillations in tip velocity.
Details of temperature distribution are shown in
Fig. 2. It is seen that during the oscillation, the lo-
cal maxima in V correlate well with the develop-
ment of non-monotonic temperature distributions
near the tip and the initiation of side-branches.
Notice that these subtle oscillations are not ob-
servable in the true tip velocity as they are con-
cealed by the overall growth dynamics. Thus, an
accurate numerical method, capable of separat-
ing the dynamics of growth from those of shape

change, is essential in exposing this oscillatory
phenomena.

In Figs. 2[a]-[f], a sequence of interface mor-
phologies and associated interface temperature
distributions are shown, corresponding to the in-
dex marked along the V curve in Fig. 2. In
the absence of externally imposed noise or dis-
turbances, the interface develops negative curva-
ture in synchrony with the interfacial temperature
becoming non-monotone near the tip. The ob-
served non-monotonicity of the temperature near
the tip that stimulates the formation of dendritic
side-branching is time periodic, which suggests
the operation of a limit cycle rather than selec-
tive amplification of noise. The operation of the
dendritic limit cycle involves progressive shape
changes near the tip that eventually induce a non-
monotonic temperature distribution. This leads to
the development of a protuberance, changes in the
sign of the interface curvature, and the formation
of a side-branch as seen in Fig.2[a]-[f]. The cycle
then repeats to produce another side-branch.

The shape, Fig. 2[a], has a monotonic temper-
ature distribution as the tip is approached (α →
0±). In Fig. 2[b] the circular shape becomes
curved, and the interfacial temperature distribu-
tion changes correspondingly. In Fig. 2[c], a
pair of local temperature maxima develop near
α ≈ 0.1. The primary arm of the dendrite along
the x-axis is about to form. In Fig. 2[d], a primary
arm of the dendrite has already formed and neg-
ative curvature develops around α ≈ 0.05. The
temperature distribution is about to become non-
monotonic. In Fig. 2[e], although it is not appar-
ent yet from the interface at the resolution shown,
the interface curvature develops oscillations near
the local temperature maxima (around α ≈ 0.05)
that give rise to a small protuberance that will later
grow into a side-branch. In Fig. 2[f], the small
protuberance is now seen. The new local maxima
in the temperature near α ≈ 0.05 become more
apparent and the temperature around the tip (from
α = 0 to α ≈±0.05 becomes monotone again. As
can be inferred from Fig. 2[g], new local maxima
in the temperature occur and new protuberances
will be produced. In Fig. 2[h], a small protuber-
ance develops into a side-branch. This sequence
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Figure 1: Boundary integral simulation of the evolution of a circular interface with anisotropic kinetics
ε(θ ) = 0.16(1− 0.025cos(4θ )) and a constant far-field heat flux. The scaled velocity, V , at the tip and
the unscaled (true) tip velocity, V , are also shown. The evolution periodically generates side-branches when
the temperature distribution near the tip becomes non-monotonic. These are reflected in the oscillations of
V . The tip grows faster than the surrounding interface, and subsequent negative curvatures are initiated at
various locations along the interface where the temperature periodically becomes non-monotonic, suggestive
of a dynamic limit cycle.

completes a limit cycle. The dynamical cycle is
repeated indefinitely as suggested by the overall
solidification pattern.

We next perform a refinement study to confirm
that noise is not important here. Using the ini-
tial shape and ε(θ ) described above, we perform
two simulations: case one (with number of mesh
points on the interface N = 1,024, time step Δt =
2.5E − 4, tolerance for convergence of GMRES
tol = 1.0E − 6) and case two (with N = 4,096,
Δt = 1.0E − 4, tol = 1.0E − 12). Note that tol
is a crucial parameter in determining the accuracy
of the computed normal velocity in GMRES. The
smaller the tol, the more accurate the calculation
of normal velocity. Fig.3 shows the comparison
of the interface morphology at t = 0.39. As can
be seen from Fig.3, the dendritic shapes for these
two cases agree very well. The lack of significant

noise is due to the fact that this method is spec-
trally accurate and that the heat flux used is well
below that for which noise from discretization and
rounding errors could be significantly amplified
during the computation. The detailed validition of
the spectral accuracy of the numerical algorithm
can be found in [Li, Lowengrub, and Leo (2007);
Hou, Lowengrub, and Shelley (1994)].

4.2 3D simulations

In 3D, the results are qualitatively similar to those
obtained in 2D when the flux J = CR, where C
is a constant. The flux used here corresponds
roughly to assuming a constant far-field tempera-
ture boundary condition. In Figs. 4 and 5, results
are presented using an initially spherical crystal
with anisotropic kinetic coefficient, ε(n)= ε0(1−
β (3−4[n4

1 + n4
2 + n4

3])), ε0 = 0.1 and anisotropy
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Figure 2: Details of the development of side-branches during evolution of the initially circular interface,
suggestive of the operation of a limit cycle. [a] T1 = 0.012: Starting from a circle, with a monotone-down
interface temperature as the tip, α → 0± is approached. [b] T2 = 0.27: Shape becomes non-circular and
a primary arm starts to form. [c] T3 = 0.86: Maxima in the temperature develop near α = 0.1. Dendrite
tip forms. [d] T34 = 1.3: The temperature becomes non-monotone around α = 0.05. [e] T4 = 1.9 and [f]
T45 =2.6: Negative curvatures form ahead of the growing protuberances, and additional new temperature
maxima develops near α = 0.05. A pair of protuberance forms. [g] T=4.5: The protuberances develop into
side-branches. The temperature near the tip becomes monotonic. [h] T=14.2: Well developed side-branches.
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Figure 4: Three dimensional boundary integral simulation of the evolution of a spherical interface with a
far-field heat flux increasing linearly in R(t). The anisotropic kinetic coefficient, ε(n) = ε0(1−β (3−4[n4

1+
n4

2 + n4
3])), where n is the outwards normal of the interface with three components n1,n2 and n3, ε0 = 0.1

and anisotropy β = 0.1. The scaled velocity, V , at the tip and the unscaled (true) tip velocity, V , are also
shown. Similar to the two dimensional case, there are oscillations of V , which suggest a dynamic limit cycle
that gives rise to the formation of side-branches as shown in the following sequence of morphologies.
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β = 0.1. In Fig. 4, the scaled velocity, V , at
the tip and the unscaled (true) tip velocity, V , are
also shown. As in 2D, there are oscillations of V ,
which suggest the presence of a limit cycle that
gives rise to the formation of side-branches. In
Fig. 5, the crystal morphologies are shown dur-
ing the evolution (the last frame shows the adap-
tive mesh). As in 2D, the primary arms form fol-
lowed by a succession of side-branches the ori-
gin of which corresponds to the oscillations ob-
served in the normal velocity that arise through a
non-monotonic temperature distribution near the
tip (not shown).

5 Conclusion and discussion

In this paper, we investigated the existence of
a deterministic mechanism for side-branching in
dendritic growth under an anisotropic kinetic
boundary condition. We developed accurate 2D
and 3D boundary integral methods in which a
time and space rescaling scheme is implemented
in a manner such that the area/volume of the crys-
tal appears unchanged. By scaling out the over-
all growth of the evolving crystal, we were able
to track the detailed dynamics of dendrite tip.
The numerical results reveal that the interface can
develop a non-monotone temperature distribution
that leads to the oscillations of the scaled tip ve-
locity that behaves like a limit cycle and generates
a sequence of protuberances near the tip that prop-
agate away from the tip and form side-branches
at later times. The formation of side-branches
is intrinsic to the dynamics and occurs without
noise, solely under the deterministic influence of
the anisotropic kinetic boundary condition.

Similar phenomena were observed in our previous
work [Glicksman, Lowengrub, and Li (2006)], in
which the competing anisotropies of the shape
and of the surface energy were investigated with
regard to the development of side-branching. In
[Glicksman, Lowengrub, and Li (2006)], a careful
analysis of the Gibbs-Thomson-Herring (GTH)
boundary condition shows that the combination of
shape anisotropy, i.e., an elongated shape in one
spatial direction, with surface energy anisotropy
also leads to non-monotone equilibrium tempera-
ture distributions. As in the results presented here,

a sequence of non-monotonicities in temperature
occurs close to the tip, and the temperature field
interacts dynamically with the evolving shape. It
appears that each time local temperature maxima
occur, curvature oscillations develop slightly aft
of the tip. These curvature oscillations stimulate
the formation of a pair of protuberances, which in
most cases continue to grow and form opposing,
coherent side-branches.

Though the circular shape used in this paper is
not dendritic initially, the anisotropic interfacial
kinetics drives the interface to evolve along its
preferred direction, and the primary arms of the
dendrite form accordingly. A detailed analysis
of the coupling between temperature distribution
and interface morphologies shows that the mech-
anisms for side-branching are similar to what
we observed in [Glicksman, Lowengrub, and Li
(2006)]. The pattern formation mechanism un-
covered here and [Glicksman, Lowengrub, and
Li (2006)] rely solely on the interface boundary
condition. Other interesting morphological phe-
nomena concerning the directional solidification
of alloys, such as the cell-to-dendrite transition,
and the relationship of side-branch spacings to the
solidification parameters might also require re-
interpretation based on the non-monotonic behav-
ior of the interface boundary condition disclosed
herein.

Careful experimental observations, such as ac-
complished in the Isothermal Dendritic Growth
Experiment [LaCombe, Koss, Frei, Giummarra,
Lupulescu, and Glicksman (2002); Giummarra,
LaCombe, Koss, Frei, Lupulescu, and Glicksman
(2005)], seldom reveal coherent side-branching,
but this fact might simply be caused by the fact
that the thermal fields during dendritic growth are
never perfectly steady or symmetrical about the
growth axis. Also, what seems especially signif-
icant about the simulations of dendritic pattern
formation reported here is that perturbations to
the crystal-melt interface, and selective amplifica-
tion of noise, do not play a significant role in the
process. The interface boundary condition itself
seems to provide a deterministic dynamical con-
dition that, when combined with sufficient shape
and energy anisotropies, is fully capable of induc-
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[T5, R=16.07]

[T6, R=19.3]

[T6, R=19.3]
Figure 5: Details of the development of side-branches during evolution of a sphere interface with a far-field
heat flux increasing linearly in R(t). The number of points N = 362 initially and N = 29,280 at the final
image shown.
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ing a limit cycle behavior near the tip. The origin
of dendritic side-branching might be fundamen-
tally different from current conventional concepts.
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