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A Deformation and a Break of Hanging Thin Film under Microgravity
Conditions

A. Ovcharova1 and N.Stankous2

Abstract: We consider a deformation of a thin
film which is hanging between two solid flat walls
under thermal load action. A two-dimensional
model is applied to describe the motion of thin
layers of viscous nonisothermal liquid under mi-
crogravity conditions. The model is based on the
Navier-Stokes equations. A numerical analysis of
the influence of thermal loads on the deformation
and break of freely hanging thin films has been
carried out. The mutual influence of capillary and
thermo-capillary forces on thin film free surface
position has been shown. The results of model
problem solutions are presented.

Keyword: thin film, viscous non-isothermal
liquid, free surface, capillary effect, Marangoni
effect.

1 Introduction

Because of a large increase of industrial applica-
tion of film coating, investigations of processes
related to thin layers of viscous liquid are ex-
tremely important. There are an enormous num-
ber of recent publications from around the world
devoted to this problem. In accordance with
their purpose, these authors exploit different ap-
proaches to describe the processes occurring in
thin layer of viscous liquid, and to solve the re-
lated problems. We focus our attention on the
analysis of the mutual influence of capillary and
thermo-capillary forces on the deformation and
rupture of a freely hanging film under a thermal
load applied to its free surface. Although we re-
search the process under a micro-gravity effect,
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the same method can be used to solve similar
problems with the effect of earth gravity.

Mathematical model. Consider a plane thin
film with the density ρ , kinematical viscosity ν
and coefficient of surface tension σ(T ) limited
by two solid planes x = 0;x = L (fig.1). Here,
y = 0 is the plane of symmetry, and f = f (t,x) is
the free surface.

Figure 1:

The liquid film motion and heat transfer are de-
scribed by Navier-Stokes equations which are
written in terms of ψ , ω , and θ .
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The scales of the length, velocity and pressure are:
h0, ν/h0, ρ0v2

0 respectively, so that the Reynolds
number is Re = 1. Pr is the Prandtl number; θ =
(T −T0)/ΔT (T0 is the characteristic temperature,
and ΔT is a temperature drop).
The stream function is defined by the relations:

u =
∂ψ
∂y

, v = −∂ψ
∂x

.

We assume that initial conditions reflect the fact
that the film is plane and does not move.
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For x = 0; x = L the boundary conditions are
non-slip ones:

ψ = 0,
∂ψ
∂n

= 0.

On the symmetry plane,

ψ = 0, ω = 0.

Boundary condition for temperature (if necessary)
can be given uniformly by the equation

αθ +β
∂θ
∂n

= γ(t)

Then, for the plane of symmetry (for example)
α = γ = 0; β = 1.

On the free surface f (x, t), the following condi-
tions are set.

Determine normal and tangent vectors to the free
surface f (x, t) in any its point as
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and assume that the coefficient of surface tension
σ(T ) is a linear function of temperature:

σ(T ) = σ0(1−σT (T −T0)), σ0 = σ(T0),

σT =
1

σ0

dσ
dT

|T=T0, σ0,σT > 0.

To determine the free surface, the kinematical
condition is utilized:
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The boundary conditions for ψ and ω we can
write now in explicit form:

∂ψ
∂n

= vs, (5)
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where vs is the solution to the equation
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Here, vs and vn are the tangent and normal ve-
locities of the free surface points; R is the ra-
dius of curvature of the surface f (x, t); 1/R =
fxx/

√
(1+ f 2

x )3 ; Ca = ρ0v0ν/σ0 is the capillary
number; Mn = σT ΔT/(ρ0v0ν) is the Marangoni
number.

Note. In fact, σT ΔT θ/σ0 � 1 for real liquids,
and practically does not effect the position of the
free surface, and will be omitted in further con-
sideration.

We combine in D all the major and minor terms
together. Two major terms show us which
forces deform the film free surface. The first
term ∂ω/∂n presents the thermo-capillary forces,
the second one Ca−1∂ (1/R)/∂ s is the capillary
forces. The last three items are minor terms. Even
more, if we are looking for a steady-state solution
we can put the minor terms equal to zero.

To derive the formula (6) we utilized the expres-
sion for the continuity of the tangent stresses on
the free surface. The equation (7) has been ob-
tained as follows. The scalar product of the vec-
tor �s(t,x) and the Navier-Stokes vector equation
written in the natural variables (�v,P) gives us a
scalar equation for vs. The derivative ∂P/∂ s on
the right-hand side of the resulting equation can
be eliminated if to differentiate the equation for
continuity of normal stresses on the surface with
respect to s . Equation (7) plays a very important
role. It helps to derive boundary conditions for
the desired functions ψ and ω in explicit form,
and in addition , as it will be shown below, this
equation is an important tool for an investigation
of the considered processes. Generally speaking,
the equation (7) realizes the interchange of infor-
mation between the flow inside the domain and its
free surface. For the stationary case, a derivation
of the equation (7) has been described in details
by Ovcharova (1998).
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2 Computation Method

Under such decoupled boundary conditions on the
free surface, the problem (1) - (8) can be solved by
any method used for heat and mass transfer prob-
lems in terms of the variables ψ ,ω ,θ in closed
domains. Note that in the frame work of the
model, equations (1) - (3) are of the same type
, and therefore the same computational procedure
can be applied to solve them. In the present pa-
per, we utilized the method of solution for regu-
lar domain. The domain occupied by the liquid
is mapped onto rectangular with sides 0 ≤ ξ ≤
L, 0 ≤ η ≤ 1 by using transformation

x = ξ , y = η( f (x, t)).

In this case, all boundaries of the domain includ-
ing the free surface lie on the coordinate lines. Ev-
ery equation (1)-(3) can be written in the form
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Here

B11 = f (ξ ), B12 = − fξ η, B22 =
1+B12

2

f (ξ )
(10)

For Φ = ω :

B = 1, A = 1, R1 =
ft
f

η, R2 = 0,

For Φ = θ :

B = Pr, A = Pr, R1 =
ft
f

η, R2 = 0,

For Φ = ψ :

B =
1
λ

, A = 0, R1 = 0, R2 = λ ω ,

where λ is the iteration parameter to solve Puas-
son’s equation for ψ .

If we take new designations:

U(Φ) = B11
∂Φ
∂ξ

+B12
∂Φ
∂η

−AΦ
∂ψ
∂η

,

V(Φ) = B12
∂Φ
∂ξ

+B22
∂Φ
∂η

+AΦ
∂ψ
∂ξ

.

then equation (9) will be
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The set of boundary conditions on the free surface
(η = 1) can be written as:
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where vs is the solution to the equation
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Note that equation (11) is presented in the diver-
gent form, and the kinematical condition (12) ex-
presses the mass conservation law.

Equation (11) for θ (temperature), ω (vortex)
and ψ (stream function) has been solved by
the stabilizing-correction finite-difference scheme
(see Jim Douglas, jr. and H.H.Rachford, jr.
(1956) and N.N. Yanenko (1967,1971)) written in
the form

Φk+1/2−Φk

τ
=

1
B f

[
Uk

ξ (Φ)+V k+1/2
η (Φ)

]

+ R1Φk+1/2
η + R2
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Φk+1−Φk+1/2

τ
=

1
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[
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]
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V k+1/2(Φ) = B12Φk
ξ +B22Φk+1/2

η +AΦk+1/2 ∂ψ
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Uk+1(Φ) = B11Φk+1
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η −AΦk+1 ∂ψ
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This scheme is one of the efficient finite-
difference schemes using fractional steps. The
first fractional step gives the full approximation of
the equation, and the second step is a correctional
one and serves the purpose of stability improve-
ment.

For implementing the scheme (17), (18) within
the rectangle reflecting the transformed domain
the calculational grid is built using the standard
procedure:

ξn = (n−1)Δξ , Δξ = L/NB,

n = 1, . . .,NN, NN = NB+1,

ηm = (m−1)Δη, Δη = 1/MB,

m = 1, . . .,MM, MM = MB+1.

For differential expressions like (a11Φξ )ξ ,
(a22Φη)η , (a1Φ)ξ , (a2Φ)η , (a12Φξ )η ,
(a12Φη)ξ , we use approximations of the second
order accuracy by finite-difference analogs
Λ11, Λ22, Λ1, Λ2, Λ12, Λ21, that have tradi-
tional representations. After replacement the
derivatives in (17) by corresponding finite dif-
ferences and substitution Vη(Φ) and Uξ (Φ)
by finite-difference analogs from (18) for ev-
ery half-step in time for all interior points
((n = 2, . . . ,NB; m = 2, . . .,MB)) we will get
the system of linear finite-difference equations
for the function Φ(ξn,ηm). The system has
three-diagonal structure with prevailing diagonal
elements of the matrix, and can be solved effec-
tively by the double-sweep method with specific
boundary conditions.

The equation (15) is the Burgers-Hopf type equa-
tion with a right-hand side, and it requires the
high accuracy for its solution because the bound-
ary conditions for the functions ψ and ω de-
pend on the solution. To get the solution, the

high accuracy conservative scheme has been uti-
lized. The high order of accuracy is required for
the reason that numerical viscosity typical for the
first order approximation schemes would not sup-
press the viscosity of the equation. Thus, the
implicit scheme of the second order accuracy in
time and space has been used to approach left-
hand parte of the equation (15). However, in
this case, steep gradients occur, and the solution
is close-to-discontinuous. As Ostapenko (1987,
2000) had shown, that more accurate flow param-
eters in steep-gradient regions are produces by
conservative schemes, i.e. flux terms must be ap-
proximated in divergent form. For that reason, we
rewrite the equation (15)
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Then, we approximate the first term in the right-
hand side by the finite-difference operator Λ11 on
the upper time step (k+1), and the rest of the dif-
ferential operators have traditional presentations.
For the derivative ∂ω/∂η on the free surface, we
use one-side approximation of the second order,
and the value ∂ω/∂n is taken from the previ-
ous time step. In this case, we will get a system
of finite-difference equations with three-diagonal
structure, which has been solved by the double-
sweep method. Boundary conditions for the equa-
tion (15) can be found from the boundary condi-
tions for ψ given on the side sites of the domain as
well as from the physical conditions of the prob-
lem.

A general algorithm for solving the problem is
the following. Let’s say that at a time moment
tk = kτ position of the free surface f (x, tk), dis-
tribution of temperature θ , vortex ω and stream
function ψ are known for the whole domain. Us-
ing (12), we will find a new position of the free
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surface f (x, tk+1) , and using (10), we determine
the coefficient matrix B11, B12, B22 for the equa-
tion (11). Finally, if we solve that equation with
new coefficients for temperature θ , vortex ω and
stream function ψ respectively, we will get a new
distribution of those functions for the next time
moment tk+1 = (k+1)τ and for the iteration s = 0.
Iterations for every time step keep going until the
condition

max
n

|(Φ(ξn))s+1|− |(Φ(ξn))s|
|(Φ(ξn))s+1| < ε

has been met for all the functions ω , θ , ψ . Here,
s is a number of iterations, and ε is the required
accuracy. This is a pattern for one step in time.
The rest of the steps are similar. If we seek a
steady-state solution of the problem the following
condition should be met

max
n

|( f (ξn))k+K|− |( f (ξn))k|
|( f (ξn))k+K| < ε

where k is the number of the time step, K is
some given number of steps, and ε is the required
accuracy.

As one can see from the description above, the
calculation process at first, does not break the
conservation laws, and at the second, the approx-
imation operator saves its elliptic type for every
time step and every iteration. All those properties
provide the convergence of the iteration process
in total.

3 Numerical results and discussion

We consider the deformation and the rupture of
a freely hanging film under the action of ther-
mal load. V.V. Pukhnachev and S.B. Dubinkina
(2006) investigated a model of the deformation
of a free weightless liquid film with rims fixed
at a plane contour to the action of thermocapil-
lary forces within the framework of long-wave ap-
proximation. The plane and axisymmetric cases
were studied in detail. The equilibrium forms of
a freely hanging non-isothermal film were calcu-
lated. From our point of view, the most interesting
case is when capillary number Ca and Maragoni
number Mn are small, but the thermal load is not

yet great enough to break the film. Numerical re-
sults for Ca−1 = 1500, Mn = 0,5, Pr = 1 are pre-
sented on fig. 2. In this calculation the ratio of the
film length to its half-thickness equal to 100. The
dimensionless half-thickness of the film equal to
1. At the initial moment of time, the thin film is
in the state of rest and the temperature θ (x,y, t) of
the film is equal 0.

Figure 2: A position of the free surface for dif-
ferent time moments: t0 < t1 < t2 < tend; t0 = 0
corresponds to initial position of the free sur-
face; t1 = 16,875 is the half-time of vibrations;
t2 = 33,75 is the time of one period of the oscilla-
tions. That process repeats again, and oscillation
amplitude is decreasing slowly, but oscillation fre-
quency keeps to be constant; f (x, tend) is the result
of steady-state solution; tend = 437,5. Calculation
was prepared for the parameters: Pr = 1; Ca−1 =
1500; Mn = 0,5.

Let’s put the thermal load on the free surface of
the film

θ (x, t) = Asin(πx/L), 0 ≤ x ≤ L, A = 10.

where L is the length of the film. For x = 0 and
x = L, θ = 0; on the symmetry plane ∂θ/∂n = 0.

Under the action of the thermal load, the free sur-
face of the film starts oscillations in relation to
some equilibrium position. The oscillation ampli-
tude is decreasing slowly, but the oscillation fre-
quency is constant. We can explain that fact using
the equation (7). When the film is in the state of
rest the right-hand side of the equation (7) is equal
to 0. As soon as the thermal load starts acting the
right-hand side of the equation (7) is changing be-
cause of the term ∂ω/∂n, where ω is defined by
(6). The derivative ∂ω/∂n has different signs on
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two sides from the middle of the film because the
temperature gradients have opposite directions in
those areas. For that reason, tangent velocity also
has opposite signs and directions from the mid-
dle of the film to its ends. It looks like thermo-
capillary forces stretch the film into opposite di-
rections. At the same time, capillary forces are
increasing because the curvature of the film is in-
creasing. Capillary forces try to level the film and
come back it to initial position. This process is
lasting until capillary and thermo-capillary forces
make some compromise. The compromise is the
steady-state solution. Solid line on fig. 2 shows
the position of the free surface corresponding to
the steady-state solution. Note that there are two
node points in the position where the thin film has
constant thickness equal to 1. Oscillations of the
free surface are similar to the oscillations of the
thin membrane held on the distance of L/4 from
film ends.

Let’s increase the thermal load and consider three
different boundary conditions for the temperature
on the free surface.

Case (a): the same as above, only A=15.

θ (x, t) = Asin(πx/L), 0 ≤ x ≤ L, A = 15.

Case (b):

θ (x, t) = A, L/2−h0 ≤ x ≤ L/2+h0,

at the rest of the film surface ∂θ/∂n = 0; h0 is
the half of film thickness.
Case (c):

θ (x, t) = A, L/2−h0 ≤ x ≤ L/2+h0,

at the rest of the film surface θ = 0; h0 is the half
of film thickness.

The position of the film free surface for all three
cases (a),(b) and (c) for the same moment of the
time t* is shown on fig.3. As we can see, the film
has the smallest thickness in the case (a). Now,
if we continue our calculations, then, in the case
(b), the thickness of the film will be decreasing
until the film is broken. For the cases (a) and (c),
the film free surface will be making oscillations.
The solid line on the fig.3 presents the steady
state solution for these cases. The isolines of the

stream function and the temperature are presented
on fig.4 and fig.5. If we will increase the ther-
mal load some more, then in the case (a) the thin
film will be broken without oscillations, and in
the case (c) the film thickness will decrease very
slightly. M.El-Gammal and J.M. Floryan (2006)
considered interface deformation and thermocap-
illary rupture in a cavity with free upper surface
to concentrated heating. The results determined
for large Biot and zero Marangoni numbers show
the existence of limit points beyond which steady,
continuous interface cannot exist and processes
leading to the interface rupture develop.

Figure 3: The position of free surface for different
cases of thermal load (a-c) on free surface. Stroke
lines show the position of free surface for all 3
cases (a-c) in the same time moment t∗ = 17,75.
This time is the half-time of vibrations for case a).
Solid lines show the result steady- state solution
for cases a) and c). Calculations are prepared for
parameters: Pr = 1; Ca−1 = 1500; Mn = 0,5.

Now, let’s consider the case (c) for different pa-
rameters. We increase the Marangoni number in
three times, capillary number in thirty times, and
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Figure 4: The distribution of stream function for
all cases 3a-3c in the same time moment t∗ =
17,75. This time is the half-time of the vibrations
for case a). Calculations are prepared for the pa-
rameters: Pr = 1; Ca−1 = 1500; Mn = 0,5.

we decrease the thermo-load in three times. An
example of numerical calculation for Ca−1 = 50,
Mn = 1,5, Pr = 1, θ = 5 is given on fig.6. In this
case, the film thickness is vanishing very fast, and
the break of the film happens so fast that distur-
bances of the free surface won’t reach the solid
walls.

4 Conclusions

The processes occurring in freely hanging film
under a thermal load influence have been inves-
tigated. A mathematical model describing a mo-
tion of the viscous non-isothermal liquid thin lay-
ers under micro-gravity has been developed. The
model is based on Navier-Stokes equations. The
numerical analysis of the deformation and the
break of freely hanging film under effect of a
thermal load has been carried out. In the equa-
tion for the tangent velocity on the free surface
points, the terms responsible for the deformation
and break of the film under the thermal load have

Figure 5: The isotherms for all cases 3a-3c in the
same time moment t∗ = 17,75. This time is the
half-time of vibrations for case a). Calculations
are prepared for the parameters: Pr = 1; Ca−1 =
1500; Mn = 0,5.

0

0.4

0.8

1.2

Figure 6: A deformation of the free surface and
quick rupture of the thin film. Parameters of the
problem are:Pr = 1;Ca−1 = 50;Mn = 1,5. The
thermal load on the free surface is θ = 5 if L/2−
h0 ≤ x≤ L/2+h0, at the rest of film surface θ = 0.
At the solid walls θ = 0.

been found. Mutual influence of capillary and
thermo-capillary forces on the free surface posi-
tion has been shown. Note: strengthen the effect
of the thermo-capillary forces in test problems the
thermal load has been chosen in the form of tem-
perature on the film free surface.
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