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Effect of Large Eccentric Rotation on the Stability of Liquid Bridges
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Abstract: A cylindrical liquid bridge supported
between two circular-shaped disks in isorotation
is considered. The effect of an offset between
the rotation axis and the axis of the two support-
ing disks (eccentricity) on the stability of the liq-
uid bridge is investigated. In a previous work a
numerical method used to determine the stability
limit for different values of eccentricity was vali-
dated comparing these results with analytical and
experimental results for small eccentricity values,
recovering the same behavior. In this work we
use the numerical method to extend the analysis to
large values of the eccentricity, finding a change
in the bifurcation diagrams. The evolution of sta-
ble and unstable shapes for different bifurcation
curves is also compared.
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1 Introduction

The behavior of liquid bridges has been widely
studied, both theoretically and experimentally,
due to the use of this configuration in fabricat-
ing ultrapure semiconductor crystals. In this tech-
nique, known as the floating zone technique [Am-
berg G. and Shiomi J., (2005), Gelfgat A.Yu., Ru-
binov A., Bar-Yoseph P.Z. and Solan A. (2005),
Lan and Yeh B.C. (2005), Lappa (2005)], rotation
of the supports is used to achieve a uniform tem-
perature field. The first studies on static shapes
of liquid bridges held between two coaxial disks
dates back from the XIX century [Plateau (1863)].
The response of this configuration subjected to
various disturbances has been extensively stud-
ied including the calculation of the equilibrium
shapes and their stability limits.
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Liquid bridges can be also used either as ac-
celerometers for steady accelerations or as ten-
siometers. This can be done by fitting the the-
oretical predictions to the observed contours of
the liquid bridges [Cabezas, Montanero, Acero,
Jaramillo and Fernández (2002)].

In this paper a cylindrical liquid bridge supported
between two circular-shaped disks in isorotation
is considered. In the absence of gravity, two
types of instability, namely, C mode and amphora
mode, depending on the slenderness, can appear
[Vega and Perales (1983); Perales, Sanz and Ri-
vas (1990)].

In a previous work [Lapuerta, Laverón-Simavilla
and Rodríguez (2007)] the effect of an offset be-
tween the rotation axis and the axis of the two
supporting disks (eccentricity) on these stabili-
ties was investigated. The stability limits and
the equilibrium shapes of the configuration were
calculated using an extension of an already im-
plemented numerical method [Laverón-Simavilla
and Perales (1995); Laverón-Simavilla and Checa
(1997)].

The calculated stability limits were compared
with the analytical results of Perales, Sanz and Ri-
vas (1990) (only valid for small eccentricity val-
ues) recovering the same behavior for both am-
phora and C modes.

For the C mode, numerical results were also com-
pared with the results of an experiment aboard
TEXUS-23 (see Sanz, Perales and Rivas (1992))
recovering the stability limit and the equilibrium
shapes.

In this work we extend the analysis to large val-
ues of eccentricity. The numerical method is used
to find stable and unstable shapes and to deter-
mine the stability limit for different values of ec-
centricity, finding new behaviors of the stability
diagrams not detected previously.
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2 Problem Formulation

The fluid configuration consists of a liquid bridge
as sketched in Fig. 1. The liquid column is held
by surface tension forces between two disks of
radiusR0, placed a distance L apart.

Both disks are parallel and coaxial. The volume
of the bridge is that corresponding to a cylindri-
cal one, V = πR2

0L. The liquid and the disks are
solidly rotating at an angular speed Ω around an
axis which is parallel to the axis of the disks, and
is placed a small distance E (eccentricity) apart
from this line.

The equation governing the steady shape of the
liquid bridge is obtained by expressing the equi-
librium between the different forces at the inter-
face

σM̃(R)+ P̃+
1
2

ρΩ2D2 = 0 (1)

where R = R(Z,θ ) is the equation of the gas-
liquid interface, σ is the surface tension, M̃(R)
is twice the mean curvature of the interface, P̃ is
the pressure difference at the origin, ρ is the liq-
uid density and D is the distance between a point
of the free surface and the rotation axis (see Fig.
1) which, in terms of the shape of the surface and
the azimuthal angle θ , can be calculated as:

D =
(
R2 +2ERcosθ +E2)1/2

(2)

Equation (1) has to be integrated with the bound-
ary conditions

R(±L/2,θ ) = R0 (3)

R(Z,θ ) = R(Z,θ +2π) (4)

1
2

L/2∫

−L/2

dZ

2π∫
0

R2(Z,θ )dθ = πLR2
0 (5)

Eq. (3) indicates that the liquid column re-
mains anchored to the disk edges, Eq. (4) comes
from the azimuthal periodicity and Eq. (5) ex-
presses the conservation of the volume of the liq-
uid bridge.

Figure 1: Geometry and coordinate system for the
liquid bridge problem

Let us introduce the following dimensionless vari-
ables and parameters

Λ = L/2R0, e = E/R0, W = ρΩ2R3
0/σ ,

P = P̃R0/σ , z = Z/R0, F(z,θ ) = R(z,θ )/R0

(6)

where Λis the liquid bridge slenderness, e the di-
mensionless eccentricity, W the Weber number
and Pthe dimensionless reference pressure.

The formulation of the problem in dimensionless
variables becomes

M(F)+P +
1
2

W
(
F2 +2eF cosθ +e2) = 0 (7)

with

M(F) =
[
F(1+F2

z )(Fθθ −F)+FFzz(F2 +F2
θ )

−2Fθ (Fθ +FFzFθθ )
]/[(

F2(1+F2
z )+F2

θ
)3/2

]
(8)

The dimensionless boundary conditions for Eq.
(7) are

F(±Λ,θ ) = 1 (9)

F (z,θ ) = F (z,θ +2π) (10)

and
Λ∫

−Λ

dz

2π∫
0

F2(z,θ )dθ = 4πΛ (11)
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3 Numerical method

An algorithm, based on a continuation method
[Keller (1987)] capable of over-passing bifurca-
tion points and turning points (which appear for
the amphora mode and the C mode, respectively)
was developed using a finite-difference method
[Laverón-Simavilla and Perales (1995)] and was
used to obtain the bifurcation diagrams and equi-
librium shapes of liquid bridges subjected to lat-
eral acceleration and other effects. The stable or
unstable character of each of the shapes is cal-
culated to determine the position of the stability
limit.

In this paper the system of equations (7)-(11) is
solved by using an extension of that algorithm to
liquid bridges rotating around an eccentric axis to
study the effect of combined eccentricity and an-
gular speed.

The method is based on linearizing Eqs. (7)-(11)
around a known solution (F0(z,θ ),P0) by seeking
solutions of the form

F (z,θ ) = F0 (z,θ)+ f (z,θ)+o

(∣∣∣∣ f
F0

∣∣∣∣
)

P = P0 + p+o

(∣∣∣∣ p
P0

∣∣∣∣
)

where | f/F0| � 1 and |p/P0| � 1. The leading
terms obtained from Eq. (7) result in an equation
for f (z,θ )

Õ−3/2
{

Ã+
(

B̃− 3ÃQ̃

2Õ

)
f +

(
C̃− 3ÃS̃

2Õ

)
fz

+
(

D̃− 3ÃT̃

2Õ

)
fθ

}
+Ẽ fzz+G̃ fθθ +H̃ fzθ +P0 + p

+
1
2

W
(
e2 +F2

0 +2F0 f
)
+eW (F0 + f )cosθ

+
1
2

We2 = 0 (12)

whereÃ, B̃, C̃, D̃, Ẽ, G̃, H̃, Õ, Q̃, S̃ and T̃ are
known functions of F0(z,θ ) and P0 and conse-
quently of the considered point on the interface.
The leading terms obtained for the boundary con-
ditions are

f (z,θ ) = f (z,θ +2π) (13)

F0(±Λ,θ )+ f (±Λ,θ ) = 0 (14)

and
∫ Λ

−Λ
dz

∫ 2π

0
F0(z,θ )2dθ

+2
∫ Λ

−Λ
dz

∫ 2π

0
[F0(z,θ ) f (z,θ )]dθ = 4πΛ (15)

If (F0(z,θ ),P0) were an exact solution of the prob-
lem, Eqs. (12)-(15) could have been simpli-
fied, but all the terms have been retained because
(F0(z,θ ),P0) will only be an approximation to the
solution in the iterative scheme.

In order to develop a center finite difference
scheme the domain has been characterized by a
mesh, defined as the intersection of the free sur-
face with the following planes:

z = Λ
(

2 j
J
−1

)
, j = 0,1, . . .,J (16)

and

θ =
2π

I +1
i, i = 0,1, . . ., I (17)

By doing so, the system (12)-(15) yield a lin-
earized finite-difference equation system which
can be written as follows:

αi j f i
j +βi j f i

j−1 + γi j f i
j+1 +δi j f i−1

j +ϕi j f i+1
j

+φi j

(
f i+1

j+1 − f i−1
j+1 − f i+1

j−1 + f i−1
j−1

)
+ p = ψi j,

i = 0, . . . , I, j = 0, . . .,J (18)

f 0
j − f I+1

j = 0, j = 0, . . . ,J (19)

f i
J = 1−F i

0,J , i = 0, . . ., I (20)

f i
0 = 1−Fi

0,0, i = 0, . . . , I (21)

I

∑
i=0

J

∑
j=0

ai j f i
j = A (22)

where the coefficients αi j, βi j, γi j, δi j , ϕi j, φi j ,
ψi j , ai j and A are functions of the values Fi

0, j and
P0.

If no further modifications were made, the algo-
rithm would destabilize when crossing any critical
point. To stabilize the algorithm a new equation
defining the arc-length parameter needs to be in-
cluded. The details of the numerical method used
to locate bifurcation and limit points are identical
to those outlined elsewhere [Laverón-Simavilla
and Perales (1995)] and will not be repeated here.
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4 Results

First, let us summarize some analytical results ob-
tained by Vega and Perales (1983) later extended
by Perales, Sanz and Rivas. (1990) (the results are
only valid for small eccentricity). They looked for
a solution of Eqs. (7) to (11) for e=0 of the form:
F = 1 + ε f + o(ε), P = 1 −W/2 + ε p + o(ε),
ε � 1 (small departures from a cylindrical liquid
bridge), finding the non-zero solutions:

(i) Non axisymmetric shapes (C-mode)

W0 =
( π

2Λ

)2
, f = cosθ cos

( π
2Λ

z
)

, p = 0

(23)

(ii) Axisymmetric shapes (amphora mode)

W0 =
( π

Λ

)2
−1, f = sin

(π
Λ

z
)

, p = 0

(24)

The functions W0(Λ) represent in the Λ−W plane
the curves where the transition between stable and
unstable equilibrium shapes appears. These two
curves have been plotted in Fig. 2. The point
B, for which expressions (23) and (24) are equal
(Λ =

√
3π/2), marks the transition between the C

and the amphora mode breakage.

For e=0 the bifurcation diagrams for both C
and amphora mode are as the ones sketched in

Figure 2: Stability diagram for zero eccentricity
[Perales, Sanz and Rivas (1990)].

Figs. 3(a) and 3(b), that is, the bifurcation is sub-
critical. Thus, both equilibrium shapes (C-mode
shapes and amphora mode shapes) are always
unstable. If the value of the rotation speed is
slowly increased starting from zero, stable cylin-
drical shapes are obtained until W reaches W0, at
which point a breaking process appears. Thus,
for e=0 liquid bridges with Λ <

√
3π/2 loose sta-

bility with non-axisymmetric breakage and liquid
bridges with Λ >

√
3π/2 loose stability with ax-

isymmetric breakage.

In the following we describe the influence of com-
bined eccentricity and angular speed. For the C-
mode the bifurcation equation obtained from the
analytical model with e �1 takes the form

W = W0 +3φ 1/3
300 (Λ)

( π
2Λ2

)2/3
e2/3 + . . . , (25)

where W0(Λ) is given by Eq. (23) and φ300(Λ)< 0
is given in Perales, Sanz and Rivas (1990). This
relationship has been sketched in Fig. 3(a). Thus,
the effect of eccentricity for C-mode changes the
character of the destabilization, because it is due
to a turning point (for e �= 0) instead of to a sub-
critical bifurcation point (for e=0).

Figure 3: Bifurcation diagrams for (a) C-mode
and (b) amphora mode [Perales, Sanz and Rivas
(1990)]
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For the amphora mode the bifurcation equation
obtained from the analytical model with e �1
takes the form

W = W0 (Λ)− φ120

φ101
e2 + . . . , (26)

where W0 (Λ) is given by Eq. (24) and φ101 and
φ120 are given in Perales et al. (1990). This rela-
tionship has been sketched in Fig. 3(b). Thus, the
effect of the eccentricity for amphora mode does
not change the character of the destabilization, as
happens for the the C-mode, being always due to
a subcritical bifurcation point.

With the numerical method we recovered the sta-
bility threshold for e=0, and we analyzed the
dependency of this threshold on the eccentricity
and the angular speed for e ≤ O(1) [Lapuerta,
Laverón-Simavilla and Rodríguez] for both am-
phora and C-modes.

Here we extend the analysis to a wider range of
parameters. This analysis has shown a more com-
plex behaviour of the destabilization character for
liquid bridges with Λ <

√
3π/2. Thus for a given

liquid bridge, by increasing the eccentricity we
have:

(i) A subcritical bifurcation point (for e=0).

(ii) A turning point (for 0 < e < ec).

(iii) A subcritical bifurcation point (for ec < e).

Fig. 4 shows the critical value of the eccentricity
ec, for which the transition between cases (ii) and
(iii) is encountered, as a function of the slender-
ness of the liquid bridge. The region correspond-
ing to the turning point destabilization decreases
as Λ increases, disappearing for Λ =

√
3π/2, for

which the transition between C-mode to amphora
mode for e=0 happens. For e �1 the transition
curve could be obtained by equating Eqs. (25)
and (26).

Fig. 5 and 6 show the bifurcation diagrams ob-
tained by representing the area of the section at
z=0 and z=-Λ/2 respectively, as a function of W
for Λ=2.7 and two values of eccentricity: e=0.08,
which corresponds to the turning point character

Figure 4: Transition curve between the subcritical
bifurcation points and the turning points for the
C-mode.

and e=0.7, which correspond to the subcritical bi-
furcation character. In the last case the bifurca-
tion point appears for W=0.142070 and the turn-
ing point for W =0.143234. The stable part of the
branches is represented with solid line, and the
unstable part with dashed line.

Figure 5: Bifurcation diagram for Λ=2.7 and
e=0.08

Fig. 7 and 8 show the equilibrium shapes for the
cases indicated in Fig.5 and 6 respectively. In Fig-
ure 8 equilibrium shapes for both, the main branch
and the bifurcated one are represented.
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(a)

(b)

Figure 6: Bifurcation diagram for Λ=2.7 and
e=0.7. Graphic (b) is a zoom of graphic (a) near
de bifurcation point.

As Figs. 7 and 8 show the behaviour of the
equilibrium shapes for the bifurcation and turning
points with Λ <

√
3π/2 is:

(i) For both bifurcation point with e=0 and turn-
ing point with 0 < e < ec the associated
eigenfunction is symmetric about the z=0
plane (that is, a C-mode) so that the break-
ing process will probably lead to a symmet-
ric configuration.

(ii) For the subcritical bifurcation point with
ec < e the associated eigenfunction is anti-
symmetric about the z=0 plane (that is, an
amphora-mode) so that the breaking process
will probably lead to a nonsymmetric config-
uration.

For liquid bridges with Λ >
√

3π/2there is no
change in the character of the destabilization for
increasing eccentricity, being always a subcritical
bifurcation with an associated amphora mode.

Figure 7: Evolution of the equilibrium shapes of
a cylindrical liquid bridge with Λ=2.7 along the
main branch for e=0.08. Shapes I to IV are stable
and V and VI are unstable

Figure 9 shows the difference on the stability
threshold for different values of e. The dot line
marks the change of the destabilization charac-
ter from C-mode to amphora mode. The region
of the amphora mode destabilization increases for
increasing eccentricity.

Fig. 10 shows the variation of the stability thresh-
old as W (Λ,e) for both C and amphora modes.
The analysis shows that an increase of the eccen-
tricity or the slenderness decreases the stability re-
gion,

Fig. 11 compares the equilibrium shapes in the
critic points (turning or bifurcation point) for two
liquid bridges of slenderness Λ=2.0 and Λ=2.7 re-
spectively, for increasing values of the eccentric-
ity.

Liquid bridges with low slenderness withstand
more deformation before the breaking than those
with large slenderness. Equilibrium shapes (e)
and (f) are very similar being the eccentricity a lot
larger in (f). The reason why is because in both
cases the breaking is by an amphora mode, which
is not the case of (b) and (c).



Effect of Large Eccentric Rotation on the Stability of Liquid Bridges 345

Figure 8: Evolution of the equilibrium shapes of
a cylindrical liquid bridge with Λ=2.7 along the
main branch of solution and the bifurcated one for
e=0.7. Shapes I to III are stable and the rest are
unstable

Although the numerical method presented here
has been widely validated for other configura-
tions, and in this one for small values of the eccen-
tricity, with both theoretical and experimental re-
sults, a last validation has been done for large ec-
centricity, using the code Surface Evolver [Brakke
(1992)]. In this code the surface is discretized us-
ing triangular elements. The user defines an initial
surface and the Surface Evolver evolves it toward
minimal energy by a gradient descent method.
For the case presented here the energy is a combi-
nation of the surface tension and rotation energy..
The evolution of a liquid bridge with Λ=2 and
e=10 for increasing Weber values using the Sur-
face Evolver predicts the stability limit at W=0.21
and the numerical method used in this article at

Figure 9: Comparison of the stability threshold
for different values of e

Figure 10: Combined effect of the slenderness
and the eccentricity on the threshold stability

W=0.2. The agreement of the Weber value at the
stability threshold is good. It has to be pointed
out that only stable equilibrium shapes can be ob-
tained from the Surface Evolver, bridges above
the stability limit break and no equilibrium shapes
can be found; the energy has a cusp point in the
stability limit. The critical value of the parameter
is found where the Evolver iteration diverges.

5 Conclusions

The stability limits of liquid bridges rotating
around an eccentric axis are calculated numeri-
cally for large values of the eccentricity. The nu-
merical method is used to find stable and unstable
shapes and to determine the dependency of the
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Figure 11: Equilibrium shapes at the stability
threshold for Λ=2 and (a) e=0.1, (b) e=1, (c) e=10;
Λ = 2.7 and (d) e=0.1, (e) e=1, (f) e=10.

stability threshold on the slenderness and eccen-
tricity.

For both, amphora and C mode, the analysis
shows that the stability region decreases, that is,
the stability threshold occurs at lower values of
the angular speed, as slenderness or eccentricity
increase.

Liquid bridges with Λ <
√

3π/2 have a more
complex destabilization character than those with
Λ >

√
3π/2. Thus for a liquid bridge with Λ <√

3π/2, by increasing the eccentricity value there
is:

(i) A subcritical bifurcation point (for e=0)
whose associated eigenfunction is symmet-
ric about the z=0 plane (that is, a C-mode).

(ii) A turning point (for 0< e < ec) whose asso-
ciated eigenfunction is a C-mode.

(iii) A subcritical bifurcation point (for ec < e)
which associated eigenfunction is antisym-
metric about the z=0 plane (that is, an am-
phora mode).

For liquid bridges with Λ >
√

3π/2, there is no
change in the character of the destabilization for
increasing values of the eccentricity, being always

a subcritical bifurcation with an associated am-
phora mode.

The region of the amphora mode destabilization
increases for increasing values of the eccentricity.

Acknowledgement: This work has been spon-
sored by the Ministerio de Educación y Ciencia
(MEC) and is part of a more general endeavor
for the study of fluid physics in processing under
microgravity (Proyect No. ESP2006-13030-C06-
05)

References

Amberg G.; Shiomi J. (2005): Thermocapillary
flow and phase change in some widespread mate-
rials processes, FDMP: Fluid Dynamics and Ma-
terials Processing, Vol. 1, pp. 81-95.

Brakke, K. (1992): The surface evolver, Experi-
mental Math, Vol. 1, pp. 141.

Cabezas, G.; Montanero, J. M.; Acero, J.;
Jaramillo, M. A.; Fernández, J. A. (2002): De-
tection of liquid bridge contours and its applica-
tions, Measurement Science and Technology, Vol.
13, pp. 829-835.

Gelfgat A.Yu.; Rubinov A.; Bar-Yoseph P.Z.;
Solan A. (2005): On the Three-Dimensional In-
stability of Thermocapillary Convection in Arbi-
trarily Heated Floating Zones in Microgravity En-
vironment, FDMP: Fluid Dynamics and Materi-
als Processing, Vol. 1, pp. 21-32.

Keller, H. B. (1987): Lectures on Numeri-
cal Methods in Bifurcation Problems, Springer-
Verlag, Berlin.

Lan C. W.; Yeh B. C. (2005), Effects of rota-
tion on heat flow, segregation, and zone shape in a
small-scale floating-zone silicon growth under ax-
ial and transversal magnetic fields, FDMP: Fluid
Dynamics and Materials Processing, Vol. 1, pp.
33-44.

Lappa, M. (2005): Review: Possible strategies
for the control and stabilization of Marangoni
flow in laterally heated floating zones, FDMP:
Fluid Dynamics and Materials Processing, Vol.
1, pp. 171-187.

Lapuerta, V., Laverón-Simavilla; A.; Ro-



Effect of Large Eccentric Rotation on the Stability of Liquid Bridges 347

dríguez, J. (2007): Stability of liquid bridges
subject to an eccentric rotation, Advances in
Space Research (under review).

Laverón-Simavilla; A., Checa, E. (1997): Effect
of a lateral gravitational field on the non axisym-
metric equilibrium shapes of liquid bridges held
between eccentric disks and of volumes equal to
those of cylinders, Phys. Fluids, Vol. 9, pp. 817.

Laverón-Simavilla; A., Perales, J. M. (1995):
Equilibrium shapes of nonaxisymmetric liquid
bridges of arbitrary volume in gravitational fields
and their potential energy, Phys. Fluids, Vol. 7,
pp. 1204-1213.

Perales, J. M.; Sanz, A.; Rivas, D. (1990): Ec-
centric Rotation of a Liquid Bridge, Appl. Micro-
gravity Tech. II, Vol. 4, pp. 193-197.

Plateau, J. A. F. (1863): Experimental and theo-
retical researches on the figures of equilibrium of
a liquid mass withdrawn from the action of grav-
ity, translated in the Annual Report of the Smith-
sonian Institute, 1863-1866, pp. 207.

Sanz, A.; Perales, J.M.; Rivas, D. (1992): Rota-
tional Instability of a Long Liquid Column, ESA
SP-1132, Vol. 2, pp 8-21.

Vega, J. M.; Perales, J. M. (1983): Almost cylin-
drical isorotating liquid bridges for small bond
number, ESA SP-191, ESA, Paris, pp. 247-252.




