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Axially Running Wave in Liquid Bridge

D.E. Melnikov1 and V.M. Shevtsova2

Abstract: Thermocapillary convection in a
long vertical liquid column (called liquid bridge)
subjected to heating from above is considered
for a three-dimensional Boussinesq fluid. The
problem is solved numerically via finite-volume
method. Full system of three dimensional Navier-
Stokes equations coupled with the energy equa-
tion is solved for an incompressible fluid. In-
stability sets in through a wave propagating in
axial direction with zero azimuthal wave num-
ber, which is a unique stable solution over a wide
range of supercritical heating. Further increasing
the applied temperature difference results in bi-
furcation of a second wave traveling azimuthally
with a slightly higher frequency. The two waves
co-exist within a certain range of the supercritical
parameter and finally the axially running one gets
suppressed while the azimuthal gets stronger.

Keyword: Thermocapillary convection, hy-
drothermal wave, liquid bridge, instability,
CFD.

1 Introduction

Study of thermocapillary convective flow in liquid
bridge has attracted much of attention due to its
relation to technological process of crystal growth
by floating zone method. Liquid bridge, a con-
figuration where liquid volume is held between
two differentially heated horizontal flat disks, is
a model representing a half of the floating zone.
With the aim of this simplified geometry, which
well incorporates some of the complexities of
full zone, one aims at understanding the trans-
port processes involved in the crystal growth by
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this method. Surface tension gradient along the
free surface drives the liquid from the hotter to-
ward the colder endwall resulting in a return flow.
This flow is two-dimensional at relatively small
imposed temperature differences ΔT . At a cer-
tain value of the temperature difference (criti-
cal value ΔTcr), the two-dimensional stationary
thermo convective flow undergoes transition to
a three-dimensional either stationary or oscilla-
tory regime along with pattern formation. Both
ΔTcr and type of the supercritical flow are de-
fined by parameters of the system (Prandtl num-
ber, temperature difference, gravity, liquid vol-
ume, ambient conditions etc.). In high Pr liq-
uid bridges (Pr larger than ≈ 0.02) hydrother-
mal instability is oscillatory and starts as a result
of a supercritical Hopf bifurcation as either trav-
eling or standing waves [Wanschura, Shevtsova,
Kuhlmann, and Rath (1995); Frank and Schwabe
(1997); Shevtsova, Melnikov, and Legros (2001)].

Study of the onset of the oscillatory convection
in liquid bridge was extensively carried out both
theoretically [see e.g. Lappa (2005); Gelfgat,
Rubinov, Bar-Yoseph, and Solan (2005); Lan
and Yeh (2005)] and experimentally [for exam-
ple, Shevtsova, Mojahed, and Legros (1999);
Schwabe (2005); Kamotani, Matsumoto, and
Yoda (2007)]. The attention was paid to both the
development of the oscillatory regime and spa-
tial organization of the thermocapillary flow. The
critical temperature difference, or suitably defined
critical thermocapillary Reynolds number Recr ∝
ΔTcr, was calculated and measured for different
liquids and geometries.

There are some correlations suggested for de-
scription of the spatial structure of the flow in the
bulk. To characterize the spatial symmetry of the
flow, a concept of azimuthal wave number m was
suggested. In the supercritical regime, the field
of temperature deviations from the azimuthally
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uniform field (disturbances) have a structure of a
set of hot and of the same number of cold pat-
terns. Consequently, the number of the hot (or
cold) patterns is equal to m. The wave number at
the threshold of instability is called critical mode.
The flow structure in liquid bridge in the super-
critical parameters’ region is very similar to that
observed for a flow in infinite high-Pr liquid col-
umn (m = 1 at Γ = ∞) [Xu and Davis (1984)].
However, the system’s spatial limitation changes
the critical mode (for instance at Γ = 1,Gr = 0, it
is not m = 1 as it should be in an infinitely long
liquid bridge according to the theory, but m = 2
[Shevtsova, Melnikov, and Legros (2001)]). The
first empirical correlation for the determination of
the critical mode, m ≈ 2.2/Γ, has been suggested
in [Preisser, Schwabe, and Scharmann (1983)]
analyzing the experimental data for a fluid with
Pr = 8.9. In the above expressions Γ stands for
aspect ratio (height to radius ratio).

A slightly different correlation, m ≈ 2.0/Γ, has
been obtained numerically for Pr < 7 assum-
ing pure Marangoni convection without buoyancy
force [Leypoldt, Kuhlmann, and Rath (2000)].
The relation m ≈ 2.0/Γ does not hold if Pr ≥ 30.
It was experimentally demonstrated for aspect ra-
tios close to one for different silicone oils with
Pr ≥ 30 that m = 1 at the threshold of instabil-
ity [Carotenuto, Castagnolo, Albanese, and Monti
(1998); Shevtsova, Mojahed, and Legros (1999);
Muehlner, Schatz, Petrov, McCormic, Swift, and
Swinney (1997)]. The three-dimensional nu-
merical calculations [Shevtsova, Melnikov, and
Legros (2001)] have also confirmed that this em-
pirical relation is not valid for Pr = 35. Further
increasing the temperature difference gives birth
to higher wave numbers (m > 1), which can either
co-exist with [Melnikov, Shevtsova, and Legros
(2004)] or develop independently of the critical
mode [Shevtsova, Melnikov, and Legros (2003)].

Both the above-mentioned relations and the re-
sult of the theoretical study rule out any possi-
bility of existing a solution with m = 0 mode
in geometries with Γ < 2. It is worth mention-
ing however that existence of stable solution in
a form of axially running wave was predicted
for infinitely large non-isothermal liquid columns

with Pr > 50 [Xu and Davis (1984)]. Neverthe-
less, there was an experimental evidence of oc-
currence of the m = 0 mode [Velten, Schwabe,
and Scharmann (1991)]. Investigating the oscil-
lation modes over wide ranges of aspect ratios
and ΔT by using three thermocouples positioned
at an angle of 45 degrees from one another, Vel-
ten and co-workers identified them via the phase
shifts between the thermocouple signals. They
found that in some cases phase shifts did not oc-
cur, while in some other cases phase shifts con-
tinuously changed with increasing the tempera-
ture difference. This occurrence was explained
by the existence of axially running waves. Zero
phase shifts were explained by the axially running
waves with symmetric wave fronts while the con-
tinuously changing were justified by the axially
running waves but with deformed wave fronts.

In ground experiments on a 10 cSt silicone oil liq-
uid bridge with aspect ratio 1.2, Shevtsova and
coauthors [Shevtsova, Mojahed, Melnikov, and
Legros (2003)] have reported on an oscillatory
regime of the flow characterized by m = 0 criti-
cal mode. This solution existed only in a narrow
range of values of the temperature difference just
after the onset of oscillations, and it was rapidly
suppressed by m = 1 mode with a lower frequency
while increasing ΔT . The m = 0 regime of the
flow is an azimuthally uniform oscillatory solu-
tion. Thus, thermocouples placed at the same ver-
tical position would record in-phase temperature
oscillations.

In the present work, a three-dimensional full
Navier-Stokes equations were solved numerically
for a liquid bridge of Γ = 1.8 aspect ratio formed
by 1 cSt silicone oil with Pr = 14. We show
that instability occurs first at zero azimuthal wave
number. It begins as oscillatory m = 0 mode,
which remains stable up to ≈ 1.5 ΔTcr and gets
dominated by m = 1 traveling wave at higher Re.
Within the range of parameters where both wave
numbers co-exist, the system’s dynamics become
very complicated resulting from complex non-
linear interactions between them. Their under-
standing, therefore, demands a profound analy-
sis by decomposing the complex flow into simple
waves and quantifying the effect of each of them.



Axially Running Waves in Liquid Bridge 331

2 Description of model

A cylindrical liquid bridge of radius R and of
height d is sketched in Fig. 1. The tempera-
tures Thot and Tcold (Thot > Tcold) are prescribed
at the upper and lower walls respectively, ΔT =
Thot − Tcold. Density ρ , surface tension σ , and
kinematic viscosity ν of the liquid are taken as
linear functions of the temperature:

ρ = ρ(T0)−ρoβ (T −T0), β = −ρ−1
0

∂ρ
∂T

,

σ(T ) = σ(T0)−σT (T −T0), σT = −∂σ
∂T

,

ν(T) = ν(T0)+νT (T −T0), νT =
∂ν
∂T

.

where T0 = Tcold.

Figure 1: Liquid bridge

The phenomena to be considered are described
by a system of three-dimensional Navier-Stokes
equation with a buoyancy force term, the incom-
pressibility constraint and the energy equation:

∂V
∂ t

+(V ·∇)V = −∇P +2RνS×∇(Θ+ z)

+(1+Rν (Θ+ z))�V+�ez Gr (Θ+ z), (1)

∇ ·V = 0, (2)

∂Θ
∂ t

+V ·∇Θ = −Vz +
1

Pr
�Θ, (3)

where V = (Vr,Vϕ,Vz) is velocity, Θ = (T −
T0)/ΔT − z = Θ0 − z is temperature and t is

time. The strain rate tensor S = {Si j} =
(1/2)(∂Vi/∂xk +∂Vk/∂xi).

The dimensionless parameters in eqs.(1)-(3) are
Prandtl, Grashof, "thermocapillary" Reynolds
numbers and viscosity contrast:

Pr =
ν(T0)

k
, Gr =

gβ ΔTd3

ν(T0)2 ,

Re =
σT ΔT d

ρ(T0)ν(T0)2 , Rν =
νT ΔT
ν(T0)

.

where k, β and g are thermal diffusivity, ther-
mal expansion coefficient and acceleration due to
gravity.

A following set of boundary conditions is pre-
scribed. On the rigid thermally conducting
boundaries (z = 0,1) there are no slip, imperme-
ability and fixed temperature conditions:

V(r,ϕ, z = 0, t) = V(r,ϕ, z = 1, t) = 0.

Θ(r,ϕ, z = 0, t) = Θ(r,ϕ, z = 1, t) = 0.

On the adiabatic free surface (r = 1):

Vr = 0,

2[1+Rν(Θ+ z)]S · er

+Re

(
ez∂z +eφ

1
r

∂φ

)
(Θ+ z) = 0,

∂Θ/∂ r = 0.

The three-dimensional governing equations are
solved on a [Nr,Nϕ ,Nz] = [24 × 16 × 30] mesh
non-uniform both in the radial and axial directions
with minimum intervals near the interface (0.025)
and at the cold wall (0.02). Also, a test was per-
formed on a [Nr,Nϕ ,Nz] = [48×16×40] mesh for
a slightly supercritical value Re = 1155 to verify
that the solution is correct. The [24×16×30] grid
was proved to be sufficient in case of a liquid with
Pr = 18 (see [Melnikov, Shevtsova, and Legros
(2004)]). Both description of numerical method
and code validation could be found in the same
paper.

In the present study we consider a liquid bridge of
R = 2.5 mm radius and d = 4.5 mm height (thus,
with aspect ratio Γ = d/R = 1.8) formed by 1 cSt
silicone oil of Pr = 14. The control parameter
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for the system is the applied temperature differ-
ence, ΔT , changing it entrains variations of Re, Gr
and Rν . Re is varied between 0 and 1250 and the
Grashof number and the relative viscosity contrast
are changing together with the Reynolds number
according to:

Gr/Re = 3.11, Rν/Re = 1.46 ·10−5.

The analyzed below solutions exhibit, that above
the threshold of instability, the flow organization
includes combination of azimuthal and longitudi-
nal waves. In general, the oscillatory motion con-
sists of two pairs of counter propagating waves
both in the azimuthal ϕ and axial z directions:

(V,Θ)(r,ϕ, z,t)= (V,Θ)(r, z)

+(V̂le f t , Θ̂le f t)exp(i[mϕ − (iλ1 +ω1)t])

+(V̂right, Θ̂right)exp(i[−mϕ−(iλ1+ω1)t +g(r, z)])

+(V̂up, Θ̂up)exp(i[nz− (iλ2 +ω2t)])

+(V̂down, Θ̂down)exp(i[−nz− (iλ2 +ω2t)])+c.c.

where k = (0;m;n) and ω1,ω2 are wave vector
and frequencies of azimuthal and axial waves, re-
spectively; λ1,λ2 are growth rates; m is earlier
introduced azimuthal wave number. The func-
tion g(r, z) is the phase describing the inclina-
tion of the wave with respect to the vertical axis.
V,Θ denote velocity and temperature fields of
two-dimensional basic state, and the subscripts
le f t, right,up,down stand for amplitudes of the
waves propagating counterclockwise, clockwise,
up and down stream. Depending upon the ra-
tios between amplitude of two counter propa-
gating waves, one can observe either standing
(equal amplitudes) or traveling (different ampli-
tudes) waves.

For examined parameters different flow organiza-
tions are possible:

• m = 0, n �= 0. Axially spreading (longitudinal)
wave.

• m �= 0, n = 0. Azimuthal standing or traveling
wave.

• m �= 0, n �= 0. Mixed wave, the wave vector
forms some angle with respect to the axial direc-
tion.

3 Results

Before proceeding further with our discussion of
results of simulations, let’s briefly reflect on some
of the properties of the three mentioned above so-
lutions. One of the integral quantities of the flow
past bifurcation is net azimuthal flow. A flow
in the azimuthal direction is caused by a non-
uniformity of the temperature field in this direc-
tion. The net azimuthal flow is an integral of the
mean azimuthal velocity over the volume

V mean(r, z, t) =
1

2π

∫ 2π

0
Vϕ(r, z,ϕ, t)dϕ,

Φ =
∫

V mean(r, z, t)rdrdz. (4)

It provides information about the nonlinear char-
acteristics of the flow organization allowing to
say if the wave is standing (Φ = 0) or travel-
ing (Φ �= 0) [Shevtsova, Melnikov, and Legros
(2001)].

The net azimuthal flow is non-zero only in case
of traveling azimuthal wave, for which V̂le f t �=
V̂right . If the wave is standing then Φ = 0. In case
of m = 0, there is an absolute uniformity in the
ϕ direction. Thus, longitudinal wave is a motion
with Vϕ = 0 (Φ = 0).

To distinguish between axially running m = 0
and azimuthal standing waves one needs to an-
alyze local temperature oscillations. Similar to
experiment, we monitored temperature field lo-
cally at four locations. Since longitudinal wave
is azimuthally uniform, the temperature signals
recorded at two arbitrary points with the same ra-
dial and axial coordinates but shifted azimuthally
on some angle α should coincide regardless the
angle. In turn, the temperature signals do not
coincide in case of azimuthal wave unless α �=
2π/m.

Let’s now pass to discussion of findings of the
work.

3.1 Axially running wave (ARW), m = 0

A wave spreading in axial direction bifurcates di-
rectly from the two-dimensional subcritical flow
at the critical value of the Reynolds number
Recr = 990. Temperature time-series recorded
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Figure 2: Axially running wave when Re =
1050. Temperature time-series monitored at four
equidistant locations at (r = 1, z = 0.9).

at any points with the same radius and height
absolutely coincide (Fig. 2). This is a feature of
the solution with m = 0, i.e. azimuthal uniformity
of the variables. Analysis shows that the wave
is more intensive closer to the interface, where
the temperature oscillates with a larger amplitude.
The closer to the symmetry axis r = 0, the smaller
the amplitude of the temperature oscillations is.

The liquid bridge is known to be particularly sen-
sitive to initial state in the supercritical area (see
e.g. [Melnikov, Shevtsova, and Legros (2005)]).
To check if the longitudinal wave is really a
unique and stable solution at the threshold of in-
stability, three different initial guesses were taken
for the simulations: two-dimensional (2D) and
three-dimensional (3D) both azimuthally standing
and traveling waves. Within the appropriate range
of the Reynolds numbers (between 990 and 1155)
any initial state has always been converging to the
same final solution, i.e. longitudinal hydrother-
mal wave with m = 0.

To visualize the axially running wave slightly
above the bifurcation point at Re = 1050, Fig. 3
is suggested. It shows time-series of the mean
temperature < Θ > (eq. 5) at different heights.
The mean temperature is an averaged in a cross-
section field:

< Θ > (z, t) =
1

2π

∫ 1

0

∫ 2π

0
Θ0(r,ϕ, z, t)rdrdϕ. (5)

Amplitude of the < Θ > oscillations is not con-
stant, it attains its maximum values near the cold
and the hot walls and is of one order of magnitude
smaller in the mid-plane region (Fig. 3, 4). Con-
trary to our results, in a set of experiments carried

Figure 3: Axially running wave at Re = 1050. Os-
cillations of mean temperature < Θ > recorded at
different heights.

out on a Pr = 30 and much longer liquid bridge of
Γ = 5 under 0−g (see Fig.8 in [Schwabe (2005)]),
the temperature oscillations are of the largest am-
plitude in the mid-plane area and are very weak
near the walls, especially near the hot end-wall.

The axially spreading wave is non-sinusoidal
(Fig. 4) with its amplitude equal zero at the rigid
walls. The oscillations of < Θ > near the hot and
the cold walls are in counter phase, i.e. when a
hot pattern is formed in the upper part there is
a cold one bellow. The length of periodicity of
the ARW could be estimated as a double distance
between minima and maxima of < Θ >. Our
estimations show that it is approximately 50%
larger compared to the height of the liquid bridge,
λ = 1.5d. Moreover, one might think that the ax-
ial wave is standing but indeed it is traveling as
there are no points along the medium which ap-
pear to be standing still (nodes) - a typical fea-
ture of any standing wave. In Fig. 4 one can
see < Θ > profiles for six consecutive equidis-
tant in time moments showing that the node is not
standing. Interestingly, there are time instances
when the mean temperature profile along z has
two nodes (dash-dot curve on Fig. 4) and < Θ >
has the same sign both near the cold and hot walls.
Thus, at any time the mean temperature always
deviates from zero.
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Figure 4: Snapshots of < Θ > profile along the
liquid bridge’s length at 6 consecutive times. Pro-
files are made for Re = 1050. Consequence of
the frames is the following: 1 - solid, 2- dotted,
3 - dashed, 4 - dash-dot, 5 - dash-dot-dot-dot, 6 -
long-dashes lines.

Fig. 4 suggests that the node (the point where the
curves cross < Θ >= 0) is moving up stream (the
frames are presented in the following order: the
first frame is plotted by the solid line, followed by
the dotted, dashed and then by the dash-dot,dash-
dot-dot-dot, long-dashes lines). The node and the
axially running wave are traveling in the same di-
rection, i.e. the longitudinal wave originates near
the cold wall.

Knowing the frequency ω2, one can estimate
speed of propagation of the ARW assuming that
the latter is harmonic. The frequencies of the
temperature oscillations recorded at (r,ϕ, z) =
(1.0,0,0.5) point are plotted on Fig. 5 for the
whole studied range of the Reynolds numbers.
Solid line represents the frequencies of the ax-
ial wave. To get the dimensional value of the
frequency, one should multiply the correspond-
ing value from Fig. 5 by 0.008sec−1. Thus, es-
timations give the velocity of the spreading of the
axially running wave VARW = 0.008 · 1.5d ·ω2 ≈
2.30 mm/s at Re = 1000 and increasing up to
2.61 mm/s when Re = 1230.

The frequency of the axially running wave grows
almost linearly with increase of the Reynolds
number (Fig. 5):

ω2 = 42.47+0.022Re.

Analysis shows that the amplitude of the m = 0

Figure 5: Frequencies of axially running (solid
line) and azimuthally traveling (dashed line)
waves. Hydrothermal wave running in axial direc-
tion described by m = 0 wave number bifurcated
directly from two-dimensional basic state 2D.

mode also increases. Thus the wave motion trans-
ports more energy when the applied ΔT is larger.
The amplitude of the < Θ > oscillations is slightly
larger near the hot wall (Fig. 4), i.e. the hydrother-
mal wave gets amplified while moving up stream
crossing the region of higher temperature.

3.2 Azimuthal wave (HTW), m = 1

At about Re = 1155 a second solution appears. A
hydrothermal wave (HTW ) running in azimuthal
direction appears at the second bifurcation. Anal-
ysis shows that it is described by m = 1 wave
number (one hot and one cold rotating patterns
seen in the temperature disturbances field). This
second solution has a slightly higher frequency
ω1 compared to the one of the axial wave ω2

(Fig. 5) which does not vary much within 1155 <
Re < 1250 (dashed line on Fig. 5). The second
independent solution with m = 1 starts to mani-
fest itself in splitting the temperature oscillations
recorded at different locations. The temperature
time-series in two points with the same radial and
axial co-ordinates do not completely coincide as
before at Re < 1155 (compare Figs. 6 and 2).
This slight splitting is a result of propagation of
the second wave in the azimuthal direction, which
at Re = 1200 is still relatively weak compared to
the m = 0 developed oscillations.

As was already mentioned in the introduction,
ground-based experimental observations revealed
that the frequency of the azimuthally traveling
wave was lower than the one of the axially run-
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Figure 6: Axial and azimuthal waves co-existing
at Re = 1200. Temperature time-series monitored
at four equidistant locations at (r = 1, z = 0.9).

ning waves [Shevtsova, Mojahed, Melnikov, and
Legros (2003)]. Direct comparison with the ex-
periment could not be done since the calculations
were performed for different liquid and aspect ra-
tio. However, for the considered system the calcu-
lations led to an opposite situation although they
coincide as for the consequence of the bifurcating
solutions.

Reconstructed < Θ > time-series for the az-
imuthally traveling wave do not show any oscil-
lations, which we observed in the case of longi-
tudinal wave (see Fig. 3). At any two opposite
points in a horizontal cross-section (r,ϕ, z) and
(r,π +ϕ, z) the temperature disturbances have the
same absolute values but different signs and thus,
they will give zero input to < Θ >.

The azimuthally running and the hydrothermal
waves co-exist between Re = 1155 and 1232, a
so-called mixed mode solution when the wave
vector k = (0;m;n) has both nonzero wave vec-
tor components. The stable mixed modes have
already been observed in some studies on liquid
bridge [Melnikov, Shevtsova, and Legros (2004)]
where two azimuthally traveling waves with m =
1 and 2 were spreading in liquid bridge simulta-
neously. The mixed mode was not observed in
the experiment [Shevtsova, Mojahed, Melnikov,
and Legros (2003)]. The two waves described by
m = 0 and 1 co-existed for extremely short inter-
val of ΔT .

Fig. 7 represents how the net azimuthal flow
(eq. 4) changes versus the Reynolds number. The
bifurcation points are:

• Onset of instability at Re = 990 in form of axi-
ally running wave ( it is not seen as Φ keeps zero

value).

• origin of the HTW at about Re = 1155 where Φ
deviates from zero.

• the third bifurcation at Re ≈ 1232 where the
mode m = 1 becomes dominant.

At Re = 1155, the point where the azimuthally
traveling wave originates, the net azimuthal flow
starts growing. This is an expected result, given
the fact that for any azimuthally traveling wave
Φ �= 0.

At Re > 1232 only pure m = 1 azimuthally trav-
eling wave pattern exists. The oscillations of tem-
perature recorded at the four equidistant locations
are π/2 phase shifted. They are of the same am-
plitude at all the four points. At Re ≈ 1232, the
point where the axial wave disappears, the net
azimuthal flow’s growth rate increases resulting
from redistribution of energy available for hydro
thermal waves propagation. Its growth rate be-
came higher due to the fact that no more energy is
taken for the growing m = 0 mode.

Similar effect, which we called deviation from
regular branch when studied transition to chaotic
flow in a liquid bridge with Pr = 4 [Shevtsova,
Melnikov, and Legros (2003)], is caused by re-
distribution of the energy among modes. We ob-
served that within a region where the solution be-
came quasi-periodic or aperiodic Φ got reduced
and thus deviated from smooth regular curve. We
suggested an explanation that it happened due to
the energy transfer from the mean flow into the
growing disturbances.

This mechanism could work for explanation of
the third bifurcation in the considered problem.
Since the axial wave vanishes and thus all the
energy goes to the azimuthally running motion,
whose intensity grows leading to increasing the
net azimuthal flow.

Interestingly, it seems that the m = 0 axial wave
exists only in some narrow range of parameters
and under specific conditions. Changing gravity,
for example, results in changing the wave vector.
Under microgravity conditions, a m = 1 travel-
ing wave bifurcates from the 2D state. It permits
to suggest that a simultaneous effect of several
factors (aspect ratio and ratio between buoyancy
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Figure 7: Net azimuthal flow allowing to trace
two bifurcations passed by the flow at Re = 1155
and Re = 1232. Instability begins at Re = 990 as
m = 0 axial wave with zero net azimuthal flow.

and thermocapillary force Gr/Re) may generate
a longitudinal wave motion. The system should
be long enough for the axially running wave to
have room to get established, but not too long to
avoid strong prevailing of one of the two men-
tioned above forces. To find conditions when the
axially running wave is stable demands a future
study which will involve variations of both grav-
ity and of the length of the liquid bridge.

4 Conclusions

In this paper, a convective flow caused by coupled
thermocapillary forces and buoyancy is studied
via direct computer simulations in a high Prandtl
number liquid (Pr = 14). In the considered long
non-isothermal liquid column of 2.5 cm radius
and 4.5 cm length under normal gravity condi-
tions, instability starts as a pure m = 0 axially run-
ning wave that does not break the azimuthal sym-
metry of the basic two-dimensional state. This
solution is a new finding, which has never been
predicted for Pr < 50. Calculations performed on
different computational grids prove that this is a
unique and stable solution near the threshold of
instability. The axially running wave originates in
the near cold wall region and travels up stream
with an estimated velocity varied between 2.30
and 2.61 mm/s depending on the Reynolds num-
ber. Increasing Re increases the wave velocity.

Even if the instability starts as a m = 0 axially run-
ning wave, an azimuthally traveling one always
appears at a higher value of the Reynolds num-
ber. There is a range of Re where the two waves

co-exist and finally the growing azimuthal oscil-
latory motion "overpowers" the longitudinal one
and the latter disappears. This phenomenon is
clearly seen on the net azimuthal flow curve when
its growth rate noticeably increases compared to
the mixed m = 0+1 solution.
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