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Instabilities and Pattern Formation in Thermocapillary Liquid Pools

U. Schoisswohl1 and H. C. Kuhlmann2

Abstract: The flow in thermocapillary liquid
pools heated or cooled from above can exhibit
various flow patterns depending on the thermal
conditions and the geometrical constraints. This
pattern formation and the respective physical
mechanisms are studied numerically by means of
a linear-stability analysis. We focus on the tran-
sition from the steady axisymmetric to a three-
dimensional flow.
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1 Introduction

Fusion welding is of increasing importance in
industrial applications. There is a large body
of work on the overall flow field in weld pools
(see e.g. DebRoy and David, 1995) in which
the effects of material composition, surface-active
agents, vaporization, and others on the flow has
been considered. The influence of the beam di-
ameter and the beam power has been considered
by Kamotani and Ostrach (1994) and Limmanee-
vichitr and Kou (2000). The shape of the ax-
isymmetric weld pool due to the movement of the
work piece as well as the influence of plasma ef-
fects have been studied by Do-Quang (2004). Yet,
relatively little is known about the pattern forma-
tion in weld pools during the welding process and
its dependence on the heating mode, in particular,
under conditions of weightlessness.

In this paper we investigate the melt flow for
zero-gravity conditions for the case in which the
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workpiece is at rest. This problem is relevant
to space applications of this technology and it
is a step towards those terrestrial applications in
which thermocapillary forces dominate buoyancy.
More specifically, we search for sufficient condi-
tions for an axisymmetric basic steady flow to be-
come unstable to a non-axisymmetric one and we
analyze the underlying physical mechanisms driv-
ing the instability.

The model to be described below has previ-
ously been studied by Wagner, Friedrich, and
Narayanan (1994) and others, and it has similar-
ities with the model of Kamotani, Ostrach, and
Masud (2000). A scaling analysis of the bound-
ary layer structure in the corresponding infinite
system has been carried out by Pumir and Blu-
menfeld (1996). However, an accurate prediction
and a systematic study of the stability boundaries
of the basic axisymmetric flow has not yet been
made.

2 Statement of the Problem

We consider a cylindrical volume of liquid with
a height d and a radius R bounded by solid walls
from the side and from below and by a free sur-
face from above (cf. fig.1). The aspect ratio is de-
fined as Γ = R/d. In this study we shall consider
only Γ = 1.

The analysis is carried out for the limit of large
mean surface tension. Hence, static and dynamic
deformations of the free surface are absent. The
bottom and the walls of the cylinder represent the
liquid–solid interface and are assumed to be at
the constant melting-point temperature. The tem-
perature distribution on the free surface is given
by an imposed axisymmetric heat flux Q(r) with
a maximum value Q(0) = Qmax at the center of
the free surface. To minimize the governing pa-
rameters we assume a parabolic profile for Q(r).
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Figure 1: Geometry and coordinate system.

The non-uniform heat flux causes a non-uniform
distribution of the temperature on the free sur-
face which gives rise to a non-uniform surface
tension σ(T ). Owing to the thermocapillary ef-
fect a surface stress ∼ ∇σ drives a flow from the
hotter near-axis region into the colder peripheral
regions. This thermocapillary convection is also
called Marangoni flow (see Scriven and Sternling,
1960; Mills, Keene, Brooks, and Shirali, 1998).

The temperature dependence of the surface ten-
sion σ can be approximated by

σ(T ) = σ(T0)− γ(T −T0)+O
[
(T −T0)2] , (1)

where γ is the linear Taylor expansion coefficient

γ = −∂σ
∂T

. (2)

Employing cylindrical coordinates (r,ϕ, z) the
Navier-Stokes-equations are formulated in di-
mensionless form using the scalings d, d/U ,
γΔT/ρν , and ΔT for length, time, velocity, and
temperature to obtain

(∂t +U ·∇)U = −∇P +∇2U, (3a)

Pr(∂t +U ·∇)T = ∇2T, (3b)

∇ ·U = 0. (3c)

With U = (U,V,W)T, P, and T denoting the di-
mensionless velocity, pressure and temperature
fields.

For the boundary conditions we assume no-slip
and no penetration on the rigid walls and on the
bottom of the cylindrical domain (U = 0), and
a constant wall temperature corresponding to the
melting point, i.e. T = Tmelt = T0 = 0. The thermal
boundary condition on the free surface is deter-
mined by the heat flux ∂zT =−(1−r)2. Note that
we use the temperature scale ΔT = Qmax/k, where
k is the thermal conductivity of the liquid. The
scale derives from the maximum heat flux which
is prescribed at the free surface.

Neglecting stresses in the ambient gas the stress
balance on the flat non-deformable liquid–gas in-
terface is given by (see, e.g. Kuhlmann, 1999)

S ·n +Re (I−nn) ·∇T = 0. (4)

Here S is the viscous stress tensor, I the unity ma-
trix, and n = ez the unity normal vector of the free
surface. Proper boundary conditions on the axis
complete the problem.

The two dimensionless parameters are the ther-
mocapillary Reynolds and Prandtl numbers

Re =
γΔTd
ρν2 and Pr =

ν
κ

, (5)

where κ is the thermal diffusivity and ν the kine-
matic viscosity.

3 Numerical Solution Techniques

3.1 Basic state

The basic state of the above problem features a
steady axisymmetric toroidal vortex flow (∂t ≡
0,∂ϕ ≡ 0,V ≡ 0). The solution is calculated,
using a formulation in primitive variables and a
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cylindrical coordinate system, i.e.,
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1
r

∂ (rU)
∂ r

+
∂W
∂ z

= 0. (6d)

This system of partial differential equations is re-
placed by a system of difference equations by
means of a discretization with finite volumes (Al-
bensoeder, Kuhlmann, and Rath, 2001) on a stag-
gered grid (Ferziger and Perić, 2002) with a reso-
lution of 70×70 grid cells (see also Sec.3.4). The
resulting system of difference equations is solved
by means of a Newton-Raphson-Method (Deufl-
hard, 2004) and an efficient linear-systems solver
from mathematical subroutine libraries (BLAS,
GSL, LAPACK).

3.2 Linear stability analysis

Once the 2D-axisymmetric basic state is calcu-
lated its stability is investigated by means of a
linear-stability analysis. To that end we decom-
pose the 3D non-axisymmetric flow state into the
basic state and a perturbation

(U,P,T)T = (U0,P0,T0)T +(ũ, p̃, T̃ )T. (7)

Substitution into the above equations and lin-
earization with respect to the perturbation quan-
tities yields

∂t ũ + ũ ·∇U0 +U0 ·∇ũ = −∇p̃ +∇2ũ, (8a)

Pr
(
∂t T̃ +U0 ·∇T̃ + ũ ·∇T0

)
= ∇2T̃ , (8b)

∇ · ũ = 0. (8c)

A general solution of this system can be written
as⎛
⎝ũ

p̃
T̃

⎞
⎠(r,ϕ, z, t)=

⎛
⎝û

p̂
T̂

⎞
⎠(r, z)eimϕeλ t +c.c., (9)

where m is an azimuthal wave number. Owing to
the periodicity in ϕ-direction m is an integer. Note
that the boundary conditions on the axis r = 0 for
the perturbations depend on the the wave num-
ber m (see, e.g. Xu and Davis, 1984). The com-
plex eigenvalues λ = σ + iω depend on the wave
number m. The real part σ = ℜ(λ ) represents
the temporal growth rate while the imaginary part
ω = ℑ(λ ) is an angular frequency.

Employing this normal-mode representation of
the solution and utilizing the same discretization
as for the basic state we obtain the generalized
eigenvalue problem

A ·x = λB ·x, (10)

with eigenvector x and eigenvalue λ . A and B
are the matrix representations of the linear differ-
ence equations and the boundary conditions. The
generalized eigenvalue problem is solved using
inverse iteration. In order to find a neutral sta-
bility boundary one has to find an eigenvalue λ
with a real part σ = 0. To find this neutral bound-
ary the roots of σ are searched for by means of
the secant method. During this zero search the
Reynolds number Re has to be varied, and the ba-
sic state calculation as well as the linear-stability
analysis have to be carried out repeatedly. The
search is performed until an eigenvalue λ with
a real part σ = σneut = 0 respectively a neutral
Reynolds number Reneut is found. The critical
Reynolds number Rec is defined as the minimum
envelope of the neutral Reynolds numbers Reneut.

3.3 Energy analysis

For a deeper insight into the physical mecha-
nisms driving the transition process we analyze
the transfer rates of kinetic and thermal energy be-
tween the basic state (U0,P0,T0)T and the neutral
mode (ũ, p̃, T̃ )T. The rate of change of kinetic en-
ergy Ėkin is governed by the Reynolds–Orr equa-
tion

∂Ekin

∂ t
=

1
2

∂
∂ t

∫
V

ũ2 dV = −D+Mr +Mϕ + Iv.

(11)

It can be derived by scalar multiplication of the
momentum equation (3a) by ũ and by integration
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over the volume V . The terms on the right-hand-
side are the rate of viscous dissipation

D =
∫

V
(∇× ũ)2 dV (12)

and total energy production

Iv = −
∫

V
ũ · [(ũ ·∇)U0]dV . (13)

Energy is produced by advection of basic state
momentum U0 by the perturbation flow ũ, thus
adding to the perturbation flow itself. The quanti-
ties

Mr =
∫

S
ũ∂zũdS, Mϕ =

∫
S

ṽ∂zṽdS (14)

represent the work done by Marangoni forces act-
ing on the free surface in the radial and azimuthal
directions.

In a similar way we define a thermal energy. Mul-
tiplying the temperature equation (3b) by T̃ and
integrating over the volume V we find

∂Eth

∂ t
=

1
2

∂
∂ t

∫
V

T̃ 2 dV = −DT +H + IT . (15)

Here

DT =
1

Pr

∫
V

(
∇T̃

)2
dV (16)

is the rate of heat diffusion,

H =
1
Pr

∫
S

1
2

∂z
(
T̃ 2) dS (17)

is a measure for the supply of thermal energy Eth

through the free surface, and

IT = −
∫

V
T̃ (ũ ·∇)T0 dV (18)

is the rate of production of thermal energy. It is
generated by convection of basic-state tempera-
ture T0 by the perturbation flow field ũ thus adding
to the perturbation temperature field.

For a further analysis we shall also need the lo-
cal rates of change of energy, i.e. the densities
of the rates of change of energy. These are the
integrands of the above integrals and will be de-
noted, henceforth, by lower-case letters, e.g. iT =
−T̃ (ũ ·∇)T0.

Table 1: Critical Reynolds numbers Rec as func-
tion of the grid resolution Nr ×Nz. The critical
wave numbers for Pr = 0.02 and Pr = 4.0 are
m = 3 and m = 2, respectively.

Rec
Nr ×Nz Pr = 0.02 Pr = 4
30×30 39,556 119,731
40×40 36,647 117,413
50×50 35,528 114,571
60×60 34,992 112,453
70×70 34,709 110,363
80×80 34,547 109,969
90×90 34,488 109,283

100×100 34,386 108,818

3.4 Grid and grid convergence

The calculations have been performed on a stag-
gered grid with a resolution of 70×70 cells, i.e.
Nr = Nz = 70. In order to resolve the developing
boundary layers the grid is compressed towards
the top and side walls, the stretching factor be-
ing 0.98 in both directions. The grid convergence
is demonstrated in Table 1 for two representative
Prandtl numbers.

4 Results

4.1 Basic state for low Prandtl numbers

The temperature distribution on the free surface
together with the thermocapillary effect drives a
radial fluid motion from the center to the rim of
the free surface. Owing to continuity a return flow
is created below the free surface flow, resulting in
a toroidal vortex. For a representative low Prandtl
number of Pr = 0.02 this basic flow is shown in
fig. 2a for a Reynolds number Re = Rec = 34,709
at which this flow becomes unstable. The cor-
responding basic temperature field, displayed in
fig. 2b, is almost conducting at criticality, because
the relevant critical Peclet number, i.e. the critical
Marangoni number Mac = Rec Pr = 694 is small
for this low value of the Prandtl number. Here and
in all cross sections shown in the following the di-
rection of rotation of the basic vortex is clockwise
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Figure 2: Basic state for Pr = 0.02 at critical con-
ditions Re = Rec = 34,709. (a) Stream function
ψ0 with isolines at Δψ0 = 2.046. (b) Temperature
field with isotherms at ΔT0 = 0.0263.

(ψ0 < 0).

4.2 Basic state for high Prandtl numbers

For the relatively high Prandtl number of Pr =
4 and at the critical Reynolds number Rec =
110,362 the structure of the toroidal vortex (fig.
3a) differs little from the one at low Prandtl num-
ber Pr = 0.02 (fig. 2a), even though the critical
Reynolds number Rec is more than three times
as high. However, the temperature field given in
fig. 3b differs significantly from the low-Prandtl-
number case. This is due to the high critical
Marangoni number Mac = Rec Pr = 441,448 indi-
cating a strong convective effect on the tempera-
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Figure 3: Basic state for Pr = 4 at critical condi-
tions Re = Rec = 110,362. (a) Stream function
ψ0 with isolines at Δψ0 = 0.588. (b) Temperature
field with isotherms at ΔT0 = 0.0013.

ture field. In fact, the isotherms significantly devi-
ate from the conducting state and thermal bound-
ary layers are about to be established.

4.3 Stability boundary

Neutral Reynolds numbers Reneut have been cal-
culated for Prandtl numbers in the range 10−10 ≤
Pr ≤ 8 and for wave numbers m = 1,2, and 3.
The dependence of the stability boundary on Pr
and m is shown in fig. 4 in form of neutral curves
Reneut(Pr,m). The relatively high values of the
critical Reynolds numbers are due to the temper-
ature scale used. If we would use the actual tem-
perature difference as the temperature scale crit-
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ical Reynolds numbers of the order of O(103)
would result. However, the actual temperature
difference is not known a priori, because it is part
of the solution and can thus be determined only a
posteriori.

Two ranges can clearly be distinguished: in the
low-Prandtl-number range (Pr � 1) the 2D ax-
isymmetric steady flow is unstable to a 3D non-
axisymmetric steady flow. The critical wave num-
bers for Γ = 1 are either mc = 2 or mc = 3 depend-
ing on the Prandtl number. In the high-Prandtl-
number range (Pr � 1) the basic flow for Γ = 1
is unstable to a 3D non-axisymmetric oscillatory
flow with a critical wave number mc = 2 through-
out.
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Figure 4: Neutral curves for wave numbers m =
1,2, and 3. The type of the neutral mode (steady
or time-dependent) is indicated.

4.4 Low-Prandtl-number instability mecha-
nism

Figure 5 shows the critical velocity field ũ and the
critical perturbation temperature T̃ on the free sur-
face at z = 0.5 for Pr = 0.02. We find three strong
perturbation temperature maxima and three cor-
responding minima. In addition, three weak max-
ima and minima arise. The free surface perturba-
tion flow between adjacent extrema is either from
hot to cold or from cold to hot. Most significant,
of course, are the strong perturbation temperature
extrema and the flow connecting them. For the
strong spots, the perturbation flow is always di-
rected from cold to hot. Such a motion, however,

Figure 5: Perturbation flow (arrows, interpolated
from the numerical data) and temperature field
(lines) on the free surface at z = 0.5 for Pr = 0.02.
Negative values are indicated by gray lines. The
parameters are mc = 3 and Rec = 34,709.

cannot be created by the normal Marangoni ef-
fect, since γ > 0. In fact, the Marangoni stresses
produced by the strong surface perturbation tem-
perature spots are counteracting the surface per-
turbation flow of the critical mode. Hence, the
Marangoni effect is acting stabilizing in this sit-
uation. For that reason the perturbation velocity
field must be driven by a different mechanism.
For small Prandtl numbers at which heat diffu-
sion dominates heat convection such a mechanism
should be inertial.

For the inertial instability of the axisymmet-
ric toroidal thermocapillary vortex flow in low-
Prandtl-number liquid bridges Nienhüser and
Kuhlmann (2002) have shown that vortex strain-
ing as well as centrifugal effects may contribute
to an inertial destabilization of the basic flow (for
the lid-driven cavity, see Albensoeder, Kuhlmann,
and Rath, 2001). In the following we shall ar-
gue that centrifugal mechanisms are dominating
for the present low-Prandtl-number instability for
Γ = 1.

Bayly (1988) derived a generalized Rayleigh cri-
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terion which states that the flow of an inviscid
fluid is subject to a centrifugal-type instability if
it consists of closed convex streamlines, and if
the magnitude of circulation decreases outwards.
This criterion has been reformulated by Sipp and
Jacquin (2000) as follows. A two-dimensional in-
viscid flow is centrifugally unstable if

Φ(r) :=
|U0|ω0

R
< 0 (19)

all along a closed convex streamline. Here ω0 is
the vorticity of the basic flow and R is the local
radius of curvature of a streamline which can be
calculated as (see Sipp and Jacquin, 2000)

R =
|U0|3

(∇ψ0) · (U0 ·∇U0)
. (20)

Figure 6: Vertical cut along the axis of the cylin-
der showing the basic-state stream function ψ0

(solid lines) and the regions for which Φ(r) <
0 holds (gray-shading). The data are evaluated
at the critical conditions for Pr = 0.02 (mc = 3,
Rec = 34,709).

Even though the criterion provided by Sipp and
Jacquin (2000) is valid for inviscid flows only, we
have evaluated (19) for the present viscous ba-
sic flow. The result is shown in fig. 6 for the
Prandtl number Pr = 0.02, the critical Reynolds
number Rec = 34,709, and the critical wave num-
ber mc = 3. The criterion (19) holds true in the
gray-shaded areas of fig. 6. Most notably, the
regions which would favor a centrifugal instabil-
ity in an inviscid flow are aligned with the outer
streamlines of the toroidal vortex. The region ex-
tends from the cold corner from which the accel-
erated free-surface flow is deflected into the bulk

and along the solid sidewall until the basic flow
separates from the sidewall to form the radial re-
turn flow still in the upper half of the cylindrical
domain to the central region where the return flow
approaches the free surface again.

Figure 7: Vertical cut along the axis of the
cylinder showing the total local kinetic-energy-
production rate iv (integrand of Iv) restricted to
positive values and the regions for which Φ(r)< 0
holds (gray-shading). The cut is shown at an
azimuthal angle for which the maximum local
kinetic energy production rate takes its absolute
maximum. The parameters are Pr = 0.02, mc = 3,
and Rec = 34,709. Note that iv has twice the az-
imuthal period of the critical mode.

A comparison of the regions favoring a centrifu-
gal instability with the total local production rate
of kinetic energy iv is provided in (fig. 7). In
fact, the regions in which a significant amount
of kinetic energy is produced lie well within the
regions in which (19) is satisfied. I.e., most of
the kinetic energy transfer from the basic flow to
the perturbation mode takes place in a region that
would be subject to a centrifugal-type instability
if the flow were inviscid.

Hence we conclude, that the low-Prandtl-number
flow in a cylindrical weld pool of aspect ra-
tio one and a parabolic heat flux is unstable
to a centrifugal-type instability. This behavior
is very similar to the centrifugal instabilities in
lid-driven cavities (Albensoeder, Kuhlmann, and
Rath, 2001) and the Taylor–Görtler instability
of the boundary layer flow along convex walls
Drazin and Reid (1981).
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4.5 High-Prandtl-number instability mecha-
nism

As a representative case for high Prandtl numbers
we consider Pr = 4. In this case the critical wave
number is mc = 2 and the corresponding critical
Reynolds number is Rec = 110,362. The pertur-
bation temperature on the free surface at z = 0.5
(fig. 8) exhibits four temperature extrema, two
maxima and two minima.

Figure 8: Perturbation flow (arrows, interpolated
from the numerical data) and perturbation temper-
ature field (lines) on the free surface for z = 0.5
and Pr = 4. Negative values are indicated by gray
lines. The pattern rigidly propagates in clock-
wise direction. The parameters are mc = 2 and
Rec = 110,362.

Since the perturbation flow field is essentially di-
rected from the hot to the cold perturbation tem-
perature spots, thermocapillary forces contribute
to the driving of the perturbation flow. In fact,
they may be the only effective driving force of the
perturbation flow if no other inertial mechanisms
are operating. The question then arises: how are
the surface temperature extrema created? Since
the rate of diffusion of perturbation temperature
(16) is much smaller for high Prandtl numbers
than for low ones, the surface spots could possibly
be created by the vertical component of the per-

turbation flow which must arise due to continu-
ity (similar as in the classical Marangoni problem,
see Pearson, 1958). Such a mechanism, however,
cannot hold, because the vertical temperature gra-
dient has the wrong sign: the free surface is hotter
than the fluid below it (cf. fig. 3b).

Figure 9: (color online). Perturbation flow (ar-
rows), perturbation temperature field (color) and
local thermal energy production rate iT (lines)
at a vertical cut taken at an azimuthal angle for
which the temperature perturbation takes its abso-
lute maximum, for parameters Pr = 4, Re = Rec =
110,362 and m = mc = 2.

The only other possibility that remains is heat
conduction from even stronger temperature per-
turbation extrema in the bulk. In fact, the maxi-
mum of the perturbation temperature arises in the
bulk, as can be seen from fig. 9 showing a ver-
tical cut along the axis for an azimuthal angle for
which the perturbation temperature takes its abso-
lute maximum. The azimuthal angle is indicated
by the solid line in fig.11. Again the question
arises how these high and low perturbation tem-
perature spots in the bulk are created.

The strong perturbation-temperature spots in the
bulk are generated by thermal energy production.
The extrema of the local thermal energy produc-
tion rate iT (the integrand of IT ) are located in
close vicinity of those of the perturbation temper-
ature. This is shown in fig. 10, which demon-
strates how the thermal energy is extracted from
the basic state by convection of basic-state tem-
perature due to the perturbation velocity field.
The vertical plane through the axis of the cylin-
der in which the maximum energy production
arises is indicated as a dotted line in fig. 11. The
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Figure 10: (color online). Perturbation flow (ar-
rows), local thermal energy production rate iT
(lines) and basic state temperature field (color)
shown at a vertical cut taken at an azimuthal an-
gle for which the maximum local thermal en-
ergy production rate takes an absolute maximum,
for parameters Pr = 4, Re = Rec = 110,362 and
m = mc = 2. The color scale is a range from blue
to red, corresponding to a range cold to hot.

Figure 11: (color online). Perturbation flow (ar-
rows), perturbation temperature field (color) and
local thermal energy production rate iT (lines) at
the midplane for z = 0.0, for parameters Pr = 4,
Re = Rec = 110,362 and m = mc = 2. Red (blue)
colors indicate perturbation temperature maxima
(minima). The straight solid line gives the loca-
tion of the cut in fig.9, and the straight dotted line
the location of the cut given in fig.10.

same mechanism applies to the orthogonal verti-
cal plane parallel to the axis in which the flow di-
rection and the temperature perturbations are in-
verted.

From fig. 11, which shows the fields in the mid-
plane z = 0 as viewed from above, we find that the
production extrema arise slightly ahead in clock-
wise direction of the temperature extrema. This is
an indicator for the clockwise rotation of the pat-
tern and consistent with the negative phase veloc-
ity which, for m > 0 and together with (9) is deter-
mined by the positive critical angular frequency
ωc = 54.54 for the case presented. Of course, the
critical modes arise as pairs with ω = ±ωc.

5 Discussion and Conclusion

The linear stability of the axisymmetric thermo-
capillary flow in a model weld pool has been
investigated for Prandtl numbers in the range
10−10 ≤ Pr ≤ 8. We found two different types
of instabilities. For Pr � 1 the instability is sta-
tionary and the critical flow is three-dimensional
and steady. For Pr � 2 the instability is time-
dependent leading to three-dimensional waves.
We did not investigate the intermediate region, be-
cause both branches of the critical curve increase
to very high Reynolds and Marangoni numbers
such that the numerical calculations become in-
creasingly demanding. Most likely, however, both
critical curves will intersect at some point in the
interval Pr ∈ [1;2].
For low Prandtl numbers, the temperature field
is nearly conducting and it practically decouples
from the stability problem. The basic temperature
field simply serves to drive the toroidal ring vor-
tex. The latter becomes unstable due to centrifu-
gal effects arising in the region of curved stream-
lines which originate from the cold corner. The
mechanism has been demonstrated for the spe-
cific case of Pr = 0.02. The increase of the critical
curve with the Prandtl number can be attributed to
a thermocapillary effect: The critical mode cre-
ates surface temperature perturbations which re-
sult in Marangoni stresses counteracting the flow
that produces the surface-temperature perturba-
tions.
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For Pr � 2 the instability is oscillatory. The per-
turbation flow extracts thermal energy from the
basic temperature field leading to strong tempera-
ture extrema in the bulk. By conduction the strong
bulk extrema create weak temperature perturba-
tions on the free surface which drive a thermocap-
illary perturbation flow. The corresponding return
flow reinforces the bulk flow which creates the in-
ternal extrema.

The basic flow structures and also the instabil-
ity mechanism found for low and high Prandtl
numbers are very similar to those in thermocapil-
lary liquid bridges (half-zone model) (Wanschura,
1996; Nienhüser and Kuhlmann, 2002). We con-
clude that the present low- and high-Prandtl-
number instabilities are due to centrifugal and
straining effects and hydrothermal waves, respec-
tively, just as in the half-zone model.

Acknowledgement: Computing time provided
by the Zentraler Informatik Dienst (ZID) of the
Vienna University of Technology is gratefully ac-
knowledged.

References

Albensoeder, S.; Kuhlmann, H. C.; Rath, H. J.
(2001): Three-dimensional centrifugal-flow in-
stabilities in the lid-driven cavity problem. Phys.
Fluids, vol. 13, pp. 121–135.

Bayly, B. J. (1988): Three-dimensional
centrifugal-type instabilities in inviscid two-
dimensional flows. Phys. Fluids, vol. 31, pp. 56–
64.

DebRoy, T.; David, S. A. (1995): Physical pro-
cesses in fusion welding. Rev. Mod. Phys., vol.
67, pp. 85–112.

Deuflhard, P. (2004): Newton Methods for Non-
linear Problems. Affine Invariance and Adaptive
Algorithms, volume 35 of Series Computational
Mathematics. Springer, Heidelberg, Berlin.

Do-Quang, M. (2004): Melt convection in weld-
ing and crystal growth. PhD thesis, KTH Stock-
holm, 2004.

Drazin, P. G.; Reid, W. H. (1981): Hydro-
dynamic Stability. Cambridge University Press,
Cambridge.

Ferziger, J. H.; Perić, M. (2002): Compu-
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