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Phase field models and Marangoni flows

Rodica Borcia1,2 and Michael Bestehorn2

Abstract: We developed a phase field model
for Marangoni convection in compressible fluids
of van der Waals type far from criticality. The the-
oretical description is based on the Navier-Stokes
equation with extra terms responsible for describ-
ing the Marangoni effect, the classical heat equa-
tion, and the continuity equation. The model
previously developed for a two-layer geometry
is now extended to drops and bubbles. Finally,
we report on 2D numerical simulations for drop
Marangoni migration in a vertical temperature
gradient.
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1 Introduction

Composite systems of two or more phases like
two immiscible fluids or a fluid with a free sur-
face can be described using an additional phase
field. This field contains information about the lo-
cal state of the composition and permits to distin-
guish between different phases. With the help of
the phase field variable all system parameters can
be expressed as functions varying continuously
from one medium to another. Therefore, the prob-
lem is treated like an entire one phase problem
and the interface conditions will be substituted
by some extra-terms in the Navier-Stokes equa-
tion. Because they reduce the system of equa-
tions (they don’t need different equations for each
medium) and eliminate the explicit interface con-
ditions, the phase field models have been success-
fully applied to the case of large interface defor-
mations, are more flexible in handling interface
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geometries, and are very attractive in view of their
numerical simplicity.

The present work extends our phase field model
previously elaborated for describing Marangoni
convection in two-layer systems (Borcia and
Bestehorn 2003; Borcia et al. 2004; Borcia and
Bestehorn 2005; Borcia and Bestehorn 2006; Bor-
cia et al. 2006) to drops and bubbles and presents
some phase field simulations for Marangoni mi-
gration in compressible fluids. Discovered by
Young et al. (1959), the Marangoni migration
consists in the motion of a droplet placed in a
temperature gradient towards the hotter wall, ”at-
tracted” by the hot objects. This is the motion
of the droplet relative to the shearing Marangoni
flow induced along its surface by surface ten-
sion gradients. Droplet migration appears of-
ten in many material processing applications, be-
cause temperature gradients occur here in a nat-
ural way by using heating or cooling as inte-
gral part of the process (see, e.g., Balasubrama-
niam and Subramanian 2000; Balasubramaniam
and Subramanian 2004; Esmaeeli 2005; Hadland
et al. 1999; Onuki and Kanatoni 2005; Savino
et al. 2001; Zhang et al. 2001 and references
therein). Concentration gradients along a surface
can also lead to interfacial stress variations. Re-
cently, Lavrenteva et al. (2005) report on the drop
Marangoni migration on a surface - active sub-
stance induced by the concentration gradient of
the surfactant.

The outline of the paper is as follows: The
phase field formulation for Marangoni convec-
tion in a two-phase system is briefly depicted in
Sec. 2. The appearance and the coalescence
of drops/bubbles in a system without gravity and
without temperature gradients is discussed in Sec.
3. The Marangoni migration in a temperature gra-
dient in the frame of the phase field model is pre-
sented in Sec. 4. We gather the conclusions in
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Sec. 5.

2 Model

We study a liquid with its own vapor, a situa-
tion for which the most natural phase field vari-
able is the density ρ , scaled by the liquid density.
So ρ = 1 designates the liquid phase and ρ ≈ 0
the vapor bulk. For a two-phase system with dif-
fuse interface and without evaporation phenom-
ena the Helmoltz free-energy functional is given
by (see, e.g., Jasnow and Viñals 1996; Pismen and
Pomeau 2000)

F [ρ ] =
∫

V

[
f (ρ)+

K

2
(∇ρ)2

]
dV (1)

where the first term in (1) represents the free-
energy density for the homogeneous phases and
the second term is a ”gradient energy” which is a
function of the local composition. For a flat inter-
face of area ΔA between two coexisting isotropic
phases, we obtain for the total free energy F (ρ)
of the system:

F = ΔA
∫ +∞

−∞

[
f (ρ)+

K

2
(∇ρ)2

]
dz.

The specific interfacial free-energy γ is, by def-
inition, the difference per unit area of interface
between the actual free energy of the system and
that which it would have if the properties of the
phases were continuous throughout. Hence the
free-energy excess of the interface takes the form
(Cahn and Hilliard 1958)

γ =
∫ +∞

−∞
K (∇ρ)2 dz.

In order to describe thermocapillary convection
in the frame of the phase field model we have
to consider the generalized surface tension co-
efficient K weakly depending on temperature
K = K0 −KT T (KT > 0). As already shown
in Borcia and Bestehorn (2003) or Borcia et al.
(2004), minimizing the free-energy functional (1),
one can derive the non-classical phase field terms
which has to be included in the Navier-Stokes
equation for assuring the shear stress balance at

the droplet interface:

ρ
d�v
dt

= −∇p+ρ∇(∇ · (K ∇ρ))+∇ · (η∇�v)

+∇(λ ∇ ·�v)+ρ�g λ ≈ η
3

. (2)

To close the system of equations we need another
two equations for T and ρ . The temperature field
from (2) is described by the energy equation

ρc
dT
dt

= ∇ · (κ∇T ) (3)

with c as the specific heat capacity, and κ as the
thermal conductivity, and the fluid density by the
continuity equation

∂ρ
∂ t

+∇ · (ρ�v) = 0. (4)

The energy equation (3) assumes the continuity
of the temperature heat transfer at the droplet in-
terface, and the continuity equation (4) fulfils the
mass conservation. For a system in equilibrium
and without interfacial mass exchange the free-
energy density has to be a symmetrical double-
well potential with two minima corresponding to
the two alternative phases: ρ = 1 for the liquid
and ρ = 0 for the vapor state. We choose the free-
energy density given by

f (ρ) =
C
2

ρ2(ρ −1)2. (5)

If one represents the thermodynamical pressure
p(ρ) = ρ ∂ f

∂ρ − f (ρ) against the unit volume 1/ρ
for the free-energy density (5) one observes a
curve of van der Waals type (see Figure 1).

With (5), the Navier-Stokes equation (2) admits
an analytical solution for the stationary state:

ρ0(z) = 1/[1+exp
(z−1)

�
], � ∝

√
K /C.

The parameter � describes the thickness of the in-
terface. For small enough values of � this solu-
tion describes two superposed liquid-vapor lay-
ers with the liquid boundary at z = 0, the vapor
boundary at z = 2, and the diffuse interface around
z = 1. Thermocapillary convection in two planar
layers vertically heated was investigated in Bor-
cia and Bestehorn (2005), Borcia and Bestehorn



Phase field models and Marangoni flows 289

0 8 16 24
v

-0.2

-0.1

0

0.1

0.2
p 

( 
v 

)

Figure 1: The pressure corresponding to the free-
energy density (5) as function of the unit volume
v = 1/ρ . The unit volumes for liquid and vapor
phase are vl = 1 and vv = ∞, respectively.

(2006), and Borcia et al. (2006) in the frame of
the phase field model. A linear stability analysis
and a comparison with the classical models were
done in Borcia and Bestehorn (2005). The linear
stability analysis shows a good convergence be-
tween the phase field model and the regular mod-
els in the limit of sharp interfaces, i.e. � ≤ 0.03
for water-vapor parameters. The fully nonlinear
evolution for the same problem with evaporation
was described in Borcia et al. (2006). Figure 2
shows a pattern specific for the short-wave insta-
bility at threshold, coming from Eqs. (2)-(4), for a
water-vapor system heated from below. This pat-
tern consists of two convective roll systems, one
developed in the liquid and the second one in the
vapor medium. Convection in the liquid pushes
the liquid against the interface which leads to an
increase of density at the interface on the liquid
side. The advection of vapor from the top plate
creates a lower density at the interface. The den-
sity perturbations at the diffuse interface induced
by Marangoni convection are depicted in Figure 2
in a grey scale (for more details, see Borcia and
Bestehorn 2005).

Figure 2: Stream-lines and surface deflections
induced by the Marangoni instability with short
wavelength in a liquid-vapor system heated from
below. The numerical simulations are based on
the phase field model described in Sec. 2, for
more details see Borcia and Bestehorn (2005).

3 Drops and bubbles

Now we wish to apply the Eqs. (2)-(4) to the for-
mation of drops and bubbles. For this new ge-
ometry one has no analytical solution for the sta-
tionary state and no linear stability analysis can be
done. Instead, one can solve the problem numeri-
cally starting from an initial noise density:

ρinitial(x, z) = Cm ξ (x, z), (6)

where Cm is the noise intensity and ξ is a ran-
dom distribution between 0 and 1. The constant
Cm controls the total mass of the system. Depend-
ing on its value, the asymptotically stable state of
lowest free energy corresponds to a single liquid
drop in a vapor atmosphere (small Cm) or a gas
bubble in a liquid (large Cm). The noise character
of (6) may act as seeds for phase separation in the
unstable or metastable regime of Figure 1. In the
latter, drops or bubbles are found by nucleation
and need a finite initial disturbance. In both cases,
the dynamical process is dominated by coarsening
and relaxes towards one of the ”fixed points” de-
scribed above.

For numerical simulations, first we analyse an
isothermal system without gravity. The material
parameters η , λ , κ and c are considered linearly
coupled to the density. We developed a numerical
code in two spatial dimensions based on a finite
difference method with 200×200 mesh points for



290 Copyright c© 2007 Tech Science Press FDMP, vol.3, no.4, pp.287-293, 2007

water-vapor parameters (Burelbach et al. 1988).
The interface is about 3% from the size of the
box, that means a resolution around 7 points in
the diffuse layer. No-slip conditions for the ve-
locity field were imposed at the wall boundaries
(�v = 0).

For a low total mass the formation of a drop in
a vapor system is energetically favoured. Figure
3 displays 2D time series for Cm = 0.5 (the time
indicated in the labels is scaled by d2/χ where d
is the length of the box and χ = κ/ρ c is the liq-
uid thermal diffusivity). The density distributions
are emphasized in a grey scale, where the white
regions describe the maxima of fluid density, the
dark regions the minima. Small liquid drops are
coalescing forming larger and larger drops as the
time evolves. When the saturation state is reached
(t > 5000) a single liquid drop remains.

We have to point out that the boundary conditions
for the density at the solid walls play an impor-
tant role for the contact angle at the solid sur-
face and determine the position of the droplet. In
our model we have controlled the contact angle
through the density at the solid boundary. For the
simulations presented in this paper the boundary
conditions constrain the drops to be pushed away
from the solid walls (no-wetting properties), fact
which explains the symmetry of the Figure 3-b.
The influence of the boundary conditions on the
droplet contact angle will be described in more
detail elsewhere.

4 Drop migration caused by a temperature
gradient

We consider the case illustrated in Figure 3 but
now with a gravitational field. We obtain a liquid
drop falling down (see Figure 4) under a sedimen-
tation force, which is the resultant of the gravity
and the Archimedian force. Additionally we ap-
ply an external heating at the upper wall in or-
der to simulate the experimental results given by
Savino et al. (2001), concerning Marangoni mi-
gration on Fluorinert drops in a silicone oil. The
temperature gradient generates a surface tension
gradient along the droplet interface. The lower-
ing of surface tension at its leading pole – hot-
ter than the rear pole – induces Marangoni flows

Figure 3: Time series for the formation of a liq-
uid drop in vapor atmosphere for a system without
gravity and without external heating (Cm = 0.5).
The density is represented using grey-scale pic-
tures, with white and black for liquid and vapor,
respectively.

Figure 4: The same as Fig. 3 but now under the
gravitational field (Cm = 0.5).
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Figure 5: The balance between Marangoni and
gravity effects leads to a floating droplet (Cm =
0.35, ΔT = 6K, d = 0.1mm). Frame (a) shows
the profile of the temperature (the system is
heated from above), (b) the stream-lines, and (c)
the density.

Figure 6: Drop levitation under Marangoni mi-
gration for droplets of different sizes, for the
same vertical temperature gradient and the same
size of the box (ΔT = 2K, d = 0.1mm). (a)
Cm = 0.35; (b) Cm = 0.5; (c) Cm = 0.7.



292 Copyright c© 2007 Tech Science Press FDMP, vol.3, no.4, pp.287-293, 2007

inside and outside the drop (see the stream-lines
plotted in Figure 5-b). The shearing around the
droplet surface creates a net force on the drop,
a Marangoni pushing force �FM directed upwards,
towards the hotter wall. This force is the resultant
of the viscosity and the pressure forces along the
drop [Savino et al. (2001)]:

(FM)i =
∫

S
n j σi j dS−

∫
S

pni dS

(σ−the viscous stress tensor).

For a sufficiently high temperature gradient (suf-
ficient Marangoni stress), the Marangoni push-
ing force �FM can balance the sedimentation force
caused by the gravitational field. Hence in the
steady state a floating liquid drop can occur, as
depicted in Figure 5-c. Figure 6 emphasizes drop
levitation under Marangoni migration for droplets
with different sizes for a fixed vertical tempera-
ture gradient.

5 Conclusions

Summarizing, we developed a phase field model
for describing Marangoni flows in two–phase sys-
tems. The model previously developed for pla-
nar layers is now extended to drops and bubbles.
A randomly distributed initial density evolves to
phase separation and single droplet formation.
Depending on the total mass, one can have either
a drop in a vapor atmosphere or a bubble in liq-
uid. Simple, flexible and elegant, the actual model
can become a useful tool for describing differ-
ent phenomena with large applications in mate-
rial and chemical engineering as Marangoni mi-
gration induced by a temperature gradient, chem-
ically driven running drops, drop spreading on a
solid surface, drop motion on an inclined sub-
strate under gravity effects or oscillatory thermo-
capillary convection around bubbles heated from
above at very large Marangoni numbers.
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