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Abstract: An arbitrary Lagrangian-Eulerian
(ALE) method for interfacial flows with insoluble
surfactants is presented. The interface is captured
using a coupled level set and volume of fluid
method, which takes advantage of the strengths
of both the level set method and the volume of
fluid method. By directly tracking the surfactant
mass, the method conserves surfactant mass,
and prevents surfactant from diffusing off the
interface. Interfacial area is also tracked. To
accurately approximate the interfacial area, the
fluid interface is reconstructed using piece-wise
parabolas. The surfactant concentration, which
determines the local surface tension through an
equation of state, is then computed as surfactant
mass per interfacial area. The evolution of the
level set function, volume fraction, interfacial
area, and surfactant mass is performed using
an ALE method. The fluid flow is governed by
the Stokes equations, which are solved using
a finite element method. The surface tension
force is included in the momentum equation
using a continuum surface stress formulation.
To efficiently resolve the complex interfacial
dynamics, the grid is adapted at every time step
so that the grid near the moving interface is
always refined. The method is extendible to 3D,
and can be generalized to other types of grids as
well.
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1 Introduction

Interfacial flows, fluid flows involving two flu-
ids that do not mix, are common in many natu-
ral and industrial processes, such as rain drop for-
mation, polymer blending, fiber coating, emulsi-
fication, hydrodesulphurization, targeted drug de-
livery, food processing, and so on. The inter-
facial dynamics plays an important role in these
processes. For example, in polymer blending,
the interfacial dynamics between the component
melts can strongly affect the development of the
blend morphology, which is crucial in determin-
ing the material properties of the blend. Sur-
factants, molecules of a third material distributed
in the flow system, can greatly affect the inter-
facial dynamics because the presence of surfac-
tants can alter (in most cases lower) the local sur-
face tension, and non-uniformly distributed sur-
factants can result in non-uniform surface tension,
which consequently induces a Marangoni force.
The Marangoni force is tangent to the interface,
and causes interface motion in such a way that
the surfactant concentration, and consequently the
surface tension, tends to become uniform. In the
present paper, the authors only consider insoluble
surfactants. So, it is assumed that surfactants only
reside on the interface, and are not soluble in ei-
ther of the bulk fluids.

The numerical simulation of interfacial flows, es-
pecially with surfactants, is very complicated be-
cause one has to simultaneously solve the flow
field, track/capture the interface position, and
evolve the surfactant concentration. These three
processes are coupled together in the sense that
the interface motion and the surfactant evolu-
tion directly depend on the underlying fluid flow,
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while the interface position and the surfactant dis-
tribution in turn affect the fluid motion through
the surface tension force and the Marangoni force.
Moreover, because the fluid properties are discon-
tinuous across the interface, and the surface forces
are singular at the interface, it is more difficult to
solve a flow field containing an interface. In addi-
tion, evolving the surfactant concentration along
a moving deformable surface is a very challeng-
ing task, and depending on the methodology be-
ing taken, tracking/capturing an interface also re-
quires great expertise.

In the past decades, primary works have been
performed in developing numerical methods for
tracking/capturing an interface. Many methods
have been developed. Examples include the inter-
face tracking type methods such as moving grid
methods [Hyman (1984)], front tracking meth-
ods [Peskin (1977); Glimm, Grove, Lindquist,
McBryan, and Tryggvason (1988); Unverdi and
Tryggvason (1992); Glimm, Grove, Li, Shyue,
Zeng, and Zhang (1998); Tryggvason, Bunner,
Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas,
and Jan (2001)], and (volume) marker particle
methods [Harlow and Welch (1965)], and the
interface capturing type methods such as level
set methods [Osher and Sethian (1988); Sethian
and Smereka (2003); Osher and Fedkiw (2001)],
volume-of-fluid (VOF) methods [Hirt and Nichols
(1981); Noh and Woodward (1976); Rider and
Kothe (1998); Scardovelli and Zaleski (1999)],
and phase field methods [Badalassi, Ceniceros,
and Banerjee (2003); Kim, Kang, and Lowen-
grub (2004); Jacqmin (1999); Anderson, McFad-
den, and Wheeler (1998); Keestra, Puyvelde, An-
derson, and Meijer (2003)]. Because the inter-
face tracking methods track the interface motion
directly, they are in general more accurate than
interface capturing methods. However, in cases
where interface topology changes it could be very
complicated to explicitly track the interface. In
contrast, interface capturing methods can han-
dle such topology changes automatically because
the interface is implicitly embedded in a spe-
cial function field, such as the level set function
and volume fraction, the evolution of which does
not require a continuous delineation of the inter-

face. Recently, methods that couple two differ-
ent methods have also been developed. Examples
are the coupled level-set/volume-of-fluid method
(CLSVOF) [Sussman and Puckett (2000); Suss-
man (2003); Yang, James, Lowengrub, Zheng,
and Cristini (2006)], the hybrid particle level set
method [Enright, Fedkiw, Ferziger, and Mitchell
(2002)], and the mixed markers and volume-of-
fluid method [Aulisa, Manservisi, and Scardovelli
(2003)]. A coupled method takes advantage of the
strengths of each of the individual methods, and is
therefore superior to either of the methods alone.

Significant works have also been performed in
solving fluid flows containing an interface. As
mentioned above, it is difficult to solve a flow
field containing an interface because of the dis-
continuous fluid properties and the singular sur-
face forces. One approach to overcome these dif-
ficulties is to smooth the discontinuity and the sin-
gularity, for example, by mollified Heaviside and
delta functions, respectively. The mollified sur-
face force can then be directly included in the mo-
mentum equation as a body/volume force, reduc-
ing the problem to the solution of a usual flow
field of a single fluid phase with variable fluid
properties and an applied body force. The idea
of incorporating a singular force through a mol-
lified delta function dates back to Peskin [Pe-
skin (1977)]. It was originally developed for
simulating blood flows in the heart. In the
past decades, similar ideas have been introduced
to solve interfacial flows in contexts of various
interface tracking/capturing methods [Brackbill,
Kothe, and Zemach (1992); Unverdi and Tryg-
gvason (1992); Chang, Hou, Merriman, and Os-
her (1996)]. After [Brackbill, Kothe, and Zemach
(1992)], this kind of method has been called the
continuum surface force (CSF) method. Because
they are easy to implement, CSF formulations
have been widely used. However, because the sur-
face force is mollified/spread, resulting in an error
in modeling the original singular surface force,
these methods are usually not so accurate as the
sharp interface methods, which will be addressed
next, and intuitively the spreading of the surface
force can directly influence the fluid flows near
the interface, and consequently the interface mo-
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tion.

Another common type of method are the sharp
interface methods, in which interface jump con-
ditions are, more or less, directly handled, and
thus the singular surface forces remain sharp.
So, there is no modeling error in such meth-
ods, and consequently, high order accuracy can
be achieved. However, directly handling the
jump conditions can make the algorithm more
complicated than a CSF formulation. To ap-
ply the jump conditions, the interface location
has to be explicitly known, while in a CSF
method this is not always necessary. Exam-
ples of sharp interface methods are moving-
grid methods [Hyman (1984)], the immersed in-
terface method [LeVeque and Li (1994, 1997);
Li (1994)], the ghost-fluid/boundary-capturing
method [Fedkiw, Aslam, Merriman, and Osher
(1999); Liu, Fedkiw, and Kang (2000); Hou and
Liu (2005)], the method of Helenbrook et al. [He-
lenbrook, Martinelli, and Law (1999)], and the
boundary integral method [Hou, Lowengrub, and
Shelley (2001); Pozrikidis (2001)].

Although there have been many methods devel-
oped for interface tracking/capturing, and the so-
lution of the flow field containing an interface
has been tackled since the commencement of the
numerical simulation of interfacial flows, works
that have incorporated the effects of surfactants
are very few. Moreover, most such works have
been performed in the context of boundary in-
tegral methods. Examples are [Stone and Leal
(1990); Milliken, Stone, and Leal (1993); Pawar
and Stebe (1996); Eggleton, Tsai, and Stebe
(2001); Eggleton, Pawar, and Stebe (1999); Li
and Pozrikidis (1997); Yon and Pozrikidis (1998);
Pozrikidis (2001, 2004); DeBisschop, Miksis, and
Eckmann (2002)]. The authors refer readers to
Table I in the review article [Pozrikidis (2001)]
for some applications. However, because the
boundary integral method can not handle interface
topology changes, for example when drop pinch-
ing occurs, this method is unable to resolve the
dynamics of the interface beyond pinch-off. In
addition, boundary integral methods are typically
limited to inviscid and Stokes flows only. It is not
easy to extend them to Navier-Stokes flows.

Works performed in the context of other meth-
ods are much fewer. In [Renardy, Renardy, and
Cristini (2002)], Renardy et al. presented a
method for interfacial flows with surfactant in the
context of a volume-of-fluid method. This method
is somewhat special because the formulation de-
pends on the assumption of a linear equation of
state. In [James and Lowengrub (2004)], James
and Lowengrub presented a surfactant-conserving
volume-of-fluid method for interfacial flows with
insoluble surfactant, in which the surface tension
could be related to the surfactant concentration
using any equation of state. The evolution of the
surfactant concentration was performed by track-
ing the interfacial area and the surfactant mass
separately. The surfactant concentration was then
recovered as the surfactant mass per interfacial
area. By directly tracking the surfactant mass,
surfactant mass was easily conserved. In [Xu, Li,
Lowengrub, and Zhao (2006)], Xu et al. presented
a level-set/immersed-interface method for two di-
mensional interfacial flows with insoluble surfac-
tant. The evolution of the surfactant concentration
was performed by solving a convection-diffusion
equation using an Eulerian approach, first pre-
sented in [Xu and Zhao (2003)]. In this method,
the surface diffusion operator was expressed in
global derivatives, and the surfactant concentra-
tion, which was supposed to be only defined along
the interface, was extended off the interface into a
narrow band enclosing the interface [Adalsteins-
son and Sethian (1999)]. The extended concentra-
tion was then evolved in this narrow band, similar
to the local level set strategy. Thus, the evolu-
tion of the concentration along the interface (zero
level set contour) was embedded in the evolu-
tion of the extended concentration in the narrow
band. One advantage of this method is that the
evolution of the extended concentration can be
easily performed using standard numerical meth-
ods, such as the finite difference and finite volume
methods, on the same Eulerian grid as used for
the representation of the flow field, avoiding ex-
plicitly discretizing the interface. However, due
to numerical diffusion, surfactant mass can dif-
fuse off the interface, resulting in surfactant loss.
An ad hoc method was introduced by the authors
to conserve the surfactant mass. Similar works
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on evolving quantities along a moving interface
in the context of level set methods can be found
in [Adalsteinsson and Sethian (2003); Bertalmio,
Cheng, Osher, and Sapiro (2001); Harabetian,
Osher, and Shu (1996)], although they are not
specifically applied to evolve surfactant concen-
tration. In [Ceniceros (2003)], Ceniceros pre-
sented an immersed-interface/hybrid-level-set-
front-tracking method for the study of the effects
of surfactants on capillary waves. A dynamically
adaptive front-tracking method was used to rep-
resent interfacial quantities (surfactant concentra-
tion and surface tension) using surface markers,
while a level set approach was employed to up-
date the material properties (density and viscos-
ity) of the flow. The evolution of the surfac-
tant concentration was performed by solving a
convection-diffusion equation along the interface
using a finite difference approach. In [Lee and
Pozrikidis (2006)], Lee & Pozrikidis presented
a method which combines Peskin’s immersed-
interface method with a diffuse-interface approxi-
mation. The convection-diffusion equation gov-
erning surfactant evolution was solved using a
finite volume method. In [Kruijt-Stegeman,
van de Vosse, and Meijer (2004); Stegeman
(2002)], Kruijt-Stegeman et al. presented a finite-
element/marker method. The interface was rep-
resented and tracked by marker points. The
convection-diffusion equation governing surfac-
tant evolution was solved on the moving interface
using a finite element approach.

In the present paper, the authors present an arbi-
trary Lagrangian-Eulerian (ALE) method to sim-
ulate interfacial flows with insoluble surfactants.
The interface is captured using a coupled level-
set/volume-of-fluid (CLSVOF) method, which
combines the strengths of both the level set
method and the VOF method. The evolution of
the level set function, volume fraction, surfactant
mass, and the interfacial area is performed using
an arbitrary Lagrangian-Eulerian (ALE) method.
The surfactant concentration, which determines
the local surface tension through an equation of
state, is then computed as surfactant mass per in-
terfacial area. By directly tracking the surfac-
tant mass, instead of the surfactant concentration,

the method conserves surfactant mass, and pre-
vents surfactant from diffusing off the interface.
The idea of decomposing the surfactant concen-
tration into surfactant mass and interfacial area
was first introduced in [James and Lowengrub
(2004)]. The big difference here is that James
& Lowengrub solved the evolution equations for
the surfactant mass and the interfacial area on a
fixed rectangular grid using an Eulerian approach,
while, in the present work, the solution of all the
equations is performed on unstructured triangular
grids using an ALE approach. The fluid flow is
modeled by the Stokes equations for illustration,
which are solved using a finite element method.
The surface forces are included in the momentum
equation using a continuum surface stress formu-
lation. To efficiently resolve the complex inter-
facial dynamics, interfaces of complex configura-
tions, regions of high surface curvature, and near
contact regions between interacting interfaces, the
grid is adapted at every time step so that the grid
near the moving interface is always refined. The
method is extendible to the axisymmetric and 3D
cases, and can be generalized to other types of
flows and grids.

The rest of the paper is organized as follows. In
section 2, the governing equations are introduced.
In section 3, the numerical method are presented.
In section 4, test problems are performed to vali-
date the method. Finally, in section 5, conclusions
are drawn, and future work is addressed.

2 Governing equations

2.1 The dimensional form of the governing
equations

The fluid flow is modeled by Stokes equations

−∇ · (μ(∇u+(∇u)t ))+∇p = ∇ ·Fs, (1)

∇ ·u = 0, (2)

where μ is the dynamic viscosity of the local
fluid, u is the velocity, the superscript t denotes a
matrix transpose, p is the pressure, Fs = σδΣ(I −
n⊗n) is the capillary pressure tensor, σ is the sur-
face tension, δΣ = δ (φ )|∇φ | is the surface delta
function, φ is the level set function, and n is the
unit normal vector to the interface. Notice that the
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surface forces have been incorporated in the mo-
mentum equation as a singular body force. The
term ∇ · Fs models both the normal surface ten-
sion stress and the tangential Marangoni stress. It
can be shown that [James and Lowengrub (2004)]

∇ · (σδΣ(I−n⊗n)) = σκδΣn+(∇sσ)δΣ, (3)

where κ is the surface curvature, and ∇s is the
surface gradient operator. Notice that the two
terms on the right hand side of the equation ac-
count for the normal surface tension and the tan-
gential Marangoni stress, respectively. The inclu-
sion of the normal surface tension force as a sin-
gular body force in the momentum equation has
been derived in [Chang, Hou, Merriman, and Os-
her (1996)]. One can show that the Marangoni
force can be included in a similar way. Notice
that the curvature does not explicitly appear in the
above formulation. In addition, we could also ex-
tend this to solve Navier-Stokes equations, with-
out complicating the overall algorithm. Finite el-
ement Navier-Stokes solvers with surface tension
have been developed for both 2D and 3D cases
(e.g., [Zheng, Lowengrub, Anderson, and Cristini
(2005)]).

Surface tension depends on the surfactant con-
centration, Γ, according to an equation of state.
Many equations of state have been proposed. In
the present work, the Langmuir equation of state,
one of the most popularly used, will be used for il-
lustration, though other types of equations of state
can be used without any further complication. In
dimensional form, the Langmuir equation of state
is given as

σ(Γ) = σ0 +RT Γ∞ ln(1−Γ/Γ∞), (4)

where σ0 is the surface tension of a clean drop
(Γ = 0), R is the universal gas constant, T
is the absolute (Kelvin) temperature, Γ∞ is the
surfactant concentration in the maximum pack-
ing limit, which exists because each surfactant
molecule occupies a finite surface area, putting a
limit on the maximum possible surface concen-
tration. For polymeric surfactants, Γ∞ ≈ 0.1 ∼
0.5chain/nm2 [Hu and Lips (2003)].

The evolution of the surfactant concentration is

governed by

∂Γ
∂ t

+∇s · (Γus)+Γ(∇s ·n)(u ·n) = Ds∇2
s Γ, (5)

where us is the velocity tangent to the interface,
and Ds is the surface diffusivity of surfactant. In
this equation, the second term accounts for the
convection of Γ along the interface, the third term
accounts for the change in Γ due to surface ex-
pansion or contraction in the surface normal di-
rection, and the term on the right hand side ac-
counts for surfactant diffusion along the interface.
See [Stone (1990); Wong, Rumschitzki, and Mal-
darelli (1996); James and Lowengrub (2004)] for
a derivation.

To facilitate the ALE formulation and the con-
servation of the surfactant mass, Eq. (5) can be
integrated over an arbitrary material surface ele-
ment S(t) on the interface. Let M =

∫
S(t) ΓdS be

the mass of the surfactant residing on the surface
element S(t). One can show that [Stone (1990);
James and Lowengrub (2004)]

DM
Dt

= Ds

∫
∂S(t)

∇sΓds, (6)

where ∂S(t) is the boundary of S(t). Eq. (6) is
equivalent to saying that the time rate of change of
the surfactant mass in a material surface element
is due to surfactant diffusion along the interface.
The right hand side has been written as a line in-
tegral for easy finite volume discretization. One
can also write the right hand side as DsA∇2

s Γ with
A being the surface area of S(t) (see [James and
Lowengrub (2004)]), which is convenient for fi-
nite difference discretization. By solving Eq. (6),
instead of Eq. (5), the surfactant mass, instead
of the surfactant concentration, is directly han-
dled, and thus surfactant mass conservation can
be more easily enforced in a numerical algorithm.
By definition, the surfactant concentration is re-
covered from the surfactant mass as

Γ =
M
A

, (7)

and therefore, to determine Γ one has to also track
A.
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The time rate of change of the interfacial area of
a material surface element is governed by

DA
Dt

= −A(n ·∇u ·n), (8)

which is derived by James et al. in [James and
Lowengrub (2004)], and by Batchelor in [Batch-
elor (1967)], and says that the area of a material
surface element may change by surface stretch-
ing. Notice that, although the components of ∇u
are in general discontinuous across the interface,
n ·∇u ·n is continuous (see appendix A in [James
and Lowengrub (2004)] for a proof).

The idea of tracking M and A, instead of Γ,
has been introduced in [James and Lowengrub
(2004)]. In the current work, however, rewrit-
ing Eq. (5) as two integral equations for M and A
also facilitates the ALE formulation. In addition,
A will be used together with the volume fraction
in the interface reconstruction. This will enable
reconstructing a ’self-consistent’ interface, which
will not only enclose a prescribed amount of fluid,
but also span a prescribed interfacial area.

The evolution of the interface is captured using
a CLSVOF method. So, both the level set func-
tion, φ , and the volume fraction, f , are tracked.
The evolution of the level set function and volume
fraction are, respectively, governed by

Dφ
Dt

=φt +u ·∇φ = 0, (9)

D f
Dt

= ft +u ·∇ f = 0. (10)

We refer readers to [Yang, James, Lowengrub,
Zheng, and Cristini (2006)] for more informa-
tion about the method. One difference is that
in [Yang, James, Lowengrub, Zheng, and Cristini
(2006)] the evolution of the level set function was
performed by solving Eq. 9 using a discontinu-
ous Galerkin method on an Eulerian grid. In the
present work, however, both the level set function
and volume fraction are evolved using an ALE ap-
proach, which will be described in detail in sec-
tion 3.

Lastly, because in an ALE formulation, the vari-
ables are first evolved in time using a Lagrangian
approach, for which each grid cell is treated as

a material element and transports with the local
fluid velocity, we need the following kinematic
condition
dx
dt

= u, (11)

where x is the position of an arbitrary point on
the border of an element. This equation will be
solved to transport the material fluid elements dur-
ing each Lagrangian step.

2.2 The non-dimensional form of the govern-
ing equations

The equations are non-dimensionalized by an ar-
bitrary velocity scale U , a length scale L, time
scale L/U , and pressure scale μ2U/L, where μ2 is
the dynamic viscosity of fluid 2 (for convenience,
let us call one fluid fluid 1 and the other fluid fluid
2). The viscosity is scaled by μ2. The surfactant
concentration is scaled by an ‘equilibrium’ con-
centration Γeq. The surface tension is scaled by
σeq, the surface tension corresponding to the equi-
librium concentration Γeq. With this scaling, the
non-dimensional parameters are the viscosity ra-
tio λ , the capillary number Ca, the surface Peclet
number Pes, the surfactant elasticity E, and the
surfactant coverage x, which are respectively de-
fined as

λ =
μ1

μ2
; Ca =

μ2U
σeq

; Pes =
UL
Ds

;

E =
RTΓ∞

σ0
; x =

Γeq

Γ∞
.

(12)

For simplicity, the non-dimensional variables will
not be distinguished from the original variables.
From here on, all variables are referred to as non-
dimensional, unless otherwise noted.

The resulting non-dimensional Stokes equations
are

−∇ · (μ(∇u+(∇u)t ))+∇p =
1

Ca
∇ ·Fs, (13)

∇ ·u = 0, (14)

where Fs remains in the same form, except that
all the terms in it should be evaluated as non-
dimensional, and μ is the non-dimensional dy-
namic viscosity

μ =
{

λ in fluid 1,

1 in fluid 2.
(15)
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Figure 1: Dependence of surface tension on sur-
factant concentration.

The dimensionless Langmuir equation of state is

σ =
1+E ln(1−xΓ)
1+E ln(1−x)

. (16)

Fig. 1 shows the dependence of σ on Γ for typi-
cal values of E and x. It is seen that the relation
between σ and Γ is highly nonlinear. Especially,
as Γ approaches the packing limit, the change in
σ is very steep. Eq. (16) adequately describes the
behavior of a wide range of surfactants. However,
one should keep in mind that it gives unrealistic
negative surface tension as Γ gets very close to the
packing limit. In real systems, solubility of sur-
factant in one or both of the bulk fluids provides
a natural cut off. In the current work, surfactant
is constrained to the interface. Solubility will be
considered in future work.

For cases where E and x are small (for example,
for a polymer E is about 0.1 ∼ 0.5; and x is small
for dilute surfactant coverage), Eq. (16) can be ap-
proximated using a linear equation of state

σ = 1+β (1−Γ), (17)

where β = Ex. However, as the surfactant ac-
cumulates at the tips of a drop, for example,
Γ gets large at the tips, and this approximation
fails. The linear equation of state should be
used only for cases with small β and with rea-
sonably mild value of Γ. However, because it
is very easy to cope with a linear equation of

state, and the essential physics of the surfactant
effects are mostly captured in a linear equation of
state, linear equations of state have been used by
many earlier researchers [Stone and Leal (1990);
Li and Pozrikidis (1997); Ceniceros (2003); Re-
nardy, Renardy, and Cristini (2002)].

By non-dimensionalization, Eq. (6) becomes

DM
Dt

=
1

Pes

∫
∂S(t)

∇sΓds, (18)

Eq. (7), (8), (9), (10), and (11) remain the same.

3 Computational method

In the present paper, the governing equations are
discretized on a 2D adaptive unstructured trian-
gular mesh for illustration, though the method
can be, in general, extended to the axisymmet-
ric and 3D cases and can be generalized to other
types of grids. For example, a 3D finite element
Navier-Stokes flow solver for interfacial flows can
be found in [Zheng, Lowengrub, Anderson, and
Cristini (2005)], and a 3D VOF method with
parabolic interface reconstruction can be found
in [Khismatullin, Renardy, and Renardy (2006)].

The time evolution of the interface and surfactant
variables is performed using an ALE approach,
which consists of four sub-steps: Lagrangian inte-
gration, reconstruction, grid adaptation, and map-
ping. During the Lagrangian integration, grid
cells are considered material elements, and all de-
pendent variables are evolved using a Lagrangian
approach. Thus, each grid cell or fluid element
transports with the local fluid velocity. See Fig. 2
for an example. In a time step, cell ABC trav-
els to a new position A′B′C′. The distance that
a grid node travels in a time step is simply the
integration of the local fluid velocity over time.
By moving/projecting all grid cells this way, the
projected grid cells form a new grid, which is
called a Lagrangian grid. In contrast, the origi-
nal grid is called an Eulerian grid. The values of
dependent variables on the Lagrangian grid can
then be obtained by time-integrating the govern-
ing equations using a Lagrangian approach. For
example, according to Eq. (10), the volume frac-
tion in a material element or a grid cell remains a
constant during a Lagrangian integration. In the
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Figure 2: An illustration of the ALE algorithm.
The interface in cell A′B′C′ is approximated using
quadratic segment E ′F ′.

second step, we reconstruct the interface on the
Lagrangian grid, based on the level set function,
volume fraction, and the interfacial area. By re-
constructing the interface, we know where the in-
terface is, and consequently where fluids 1 and 2
are. See Fig. 2 for an example. The reconstructed
interface E ′F ′ separates the two fluids in the La-
grangian cell A′B′C′. Fluid 1 entirely occupies the
region A′B′E ′F ′, and fluid 2 occupies the rest of
the cell, region E ′F ′C′. Based on this informa-
tion, the new updated values of all the variables
on the original grid can then be obtained by map-
ping the variables from the Lagrangian grid back
to the original grid. Let us consider the mapping
of volume fraction for example (see Fig. 2 for il-
lustration). We see that by mapping, part of fluid
1 in region A′B′E ′F ′ maps back into the original
cell ABC, and that the rest of fluid 1 in region
A′B′E ′F ′ maps into some cells adjacent to ABC.
The new volume fraction in the original cell ABC
is then the total volume of fluid 1 that maps into
this cell divided by the volume of the cell. Sim-
ilarly, the new interfacial area in cell ABC is just
the length of the portion of the interface that maps
into the cell, and the surfactant mass in the cell is
the amount of surfactant that resides on this por-
tion of the interface. The new surfactant concen-
tration in the cell is simply the surfactant mass di-

vided by the interfacial area. The new level set
function at a grid node in the original grid is di-
rectly calculated as a signed distance function to
the reconstructed interface. This also reinitializes
the level set function to a signed distance func-
tion. The new velocity in the original grid is ob-
tained by interpolation. In general, however, we
can map the variables on the Lagrangian grid to
any arbitrary grid, and in practice, we adapt the
original grid before mapping so that the grid near
the moving interface is always refined. The vari-
ables on the adapted grid can be obtained through
a similar mapping.

In summary, we first evolve all the variables us-
ing a Lagrangian approach. Then we reconstruct
the interface on the Lagrangian grid, and adapt the
original grid. The new variables on the adapted
grid are then obtained by mapping. Details about
each of the sub-steps are given as follows.

3.1 The RK Lagrangian integration

The Lagrangian integration is performed using a
two-stage Runge-Kutta (RK) method, consisting
of a half time step forward Euler integration fol-
lowed by a full time step midpoint integration.

Since the grid cells are considered material el-
ements, each grid cell transports with the local
fluid velocity. Let us assume that as a grid cell
transports, a triangle remains a triangle, although
it may deform. This is true for linear velocity
fields, and it will be assumed that during every
grid transportation the fluid velocity in a cell is
locally linear. Under this assumption, the new po-
sition of a grid cell after transportation can be de-
termined from the new position of its three ver-
tices. From Eq. (11), the new position of a vertex,
i, after a half time step transportation can be com-
puted as

x̃
n+ 1

2
i = xn

i +
Δt
2

u(xn
i , t

n), i = 1, ...,MT, (19)

where the symbol˜denotes a Lagrangian variable,
and MT is the total number of grid nodes. The
transported grid cells form a new mesh, which is
called the intermediate Lagrangian mesh.

From Eq. (9), (10), and (8), the intermediate La-
grangian level set function, volume fraction, and
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the interfacial area are computed as follows

φ̃ n+1/2
i = φ n

i , i = 1, ...,MT, (20)

f̃ n+1/2
K = f n

K , ∀K ∈ Th, (21)

Ãn+1/2
K = An

K − Δt
2

An
K(n ·∇u ·n)n

K ,

∀K ∈ Th, (22)

where K denotes an arbitrary grid cell in the do-
main, and Th is a triangulation of the domain.
Notice that the level set function is defined at the
vertices, while volume fraction, interfacial area,
surfactant mass, and concentration are associated
with the grid cells. In Eq. (22), ∇u is computed by
taking the derivative of the velocity approximated
by the finite elements, and n is computed from the
level set function using a least squares fitting. The
method for computing n is the same as the one
introduced in [Yang, James, Lowengrub, Zheng,
and Cristini (2006)], which is described below for
completeness.

To calculate n in a cell, a quadratic function for φ
is fitted using a least squares method over a stencil
that consists of the vertices of the cell and of all
the cells that share at least a vertex with the cell,
as shown in Fig. 3. To simplify the calculation,
a local Cartesian coordinate system x′ − y′ is de-
fined for each normal calculation (see Fig. 3). The
origin of the local coordinate system is located at
the center of the cell under consideration, at which
the normal is located. The local coordinate axes
x′ and y′ are parallel to the global coordinate axes
x and y, respectively. Let (xc,yc) be the global co-
ordinates of the cell center. Then, the local and
global coordinates of a point are related to each
other via x′ = x−xc and y′ = y−yc.

In each local coordinate system, the quadratic
function for φ has the generic form

φ = a1x′2 +a2x′y′+a3y′2 +a4x′ +a5y′+a6, (23)

where a1, a2, a3, a4, a5, and a6 are coefficients
to be determined using the least squares method.
In particular, a1, a2, a3, a4, a5, and a6 are the
least squares solution of the over-constrained lin-
ear system

Qs = r, (24)

A’

C’B’

n

x

y

x’

y’

(xc,yc)

Figure 3: The stencil for calculating the interface
normal vector in element A′B′C′. The normal vec-
tor and the origin of the local coordinate system
x′ −y′ are located at the center of element A′B′C′.

where

Q =

⎛
⎜⎜⎜⎝

x′1
2 x′1y′1 y′1

2 x′1 y′1 1
x′2

2 x′2y′2 y′2
2 x′2 y′2 1

...
...

...
...

...
...

x′N
2 x′Ny′N y′N

2 x′N y′N 1

⎞
⎟⎟⎟⎠ ,

s =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

a5

a6

⎞
⎟⎟⎟⎟⎟⎟⎠

, r =

⎛
⎜⎜⎜⎝

φ1

φ2
...
φN

⎞
⎟⎟⎟⎠ ,

(x′i,y′i), i = 1, · · · ,N, are the local coordinates of
the ith node in the stencil, N is the total number
of nodes in the stencil, and φi, i = 1, · · · ,N, is the
level set value at the ith node. The least squares
solution of this linear system is s = (QtQ)−1Qtr,
where the superscript t denotes matrix transpose
and −1 denotes matrix inversion. Since QtQ is
symmetric positive definite, it can be efficiently
inverted using Cholesky decomposition. Once the
coefficients are known, the unit normal vector,
which is located at the origin of the local coor-
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dinate system, is simply

n =
∇φ
|∇φ | =

⎛
⎝ a4√

a2
4 +a2

5

,
a5√

a2
4 +a2

5

⎞
⎠ .

From Eq. (18), the surfactant mass on the inter-
mediate Lagrangian mesh is computed as

M̃n+1/2
K = Mn

K +
Δt

2Pes

Nc0

∑
j=1

Γ̃n+1/2
K j − Γ̃n+1/2

K

L̃n+1/2
K j

,

∀K ∈ Th, (25)

where Nc0 is the number of adjacent grid cells that
contain an interface segment, and L̃n+1/2

K j is the
surface distance between the midpoints of the in-
terface segment in cell K and the jth adjacent in-
terface segment. It is apparent that the gradient of
the surfactant concentration in Eq. (18) has been
discretized using a central finite difference. Nor-
mally, in 2D, Nc0 = 2, i.e., there are exactly two
interface segments adjacent to the interface seg-
ment under consideration, as shown in Fig. 4(a).
However, in the cases shown in Fig. 4(b), 4(c) and
4(d), Nc0 may be different from 2. Special treat-
ment of these three cases will be addressed in de-
tail later. For now, it is assumed that Nc0 = 2. In
addition, in order to locate the midpoint of an in-
terface segment, in general one needs first to re-
construct the interface segment in the cell, which
will be described in section 3.2. However, in 2D
the interfacial area is the same as the arc-length
of the interface. Thus, L̃n+1/2

K j can be alternatively
computed as

L̃n+1/2
K j =

Ãn+1/2
K + Ãn+1/2

K j

2
.

Notice that all equations have been discretized ex-
plicitly, except that the surfactant diffusion term
in Eq. (18) is discretized implicitly. The sur-
factant diffuses along the interface, which is ap-
proximated in each interfacial cell by a facet (in
3D) or segment (in 2D), which could be linear or
parabolic, for example. The size of the facet or
segment ranges from just bigger than zero to the
size of the cell itself, depending on how the inter-
face intersects the cell. When a very small facet
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Figure 4: Interface complexity. (a) typical case;
(b) multiple intersections; (c) high curvature; (d)
near-contact interfaces.
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or segment is produced, an explicit method be-
comes impractical due to the time step restriction
for stability, and an implicit discretization must
be used. On the other hand, due to the implicit
discretization, Eq. (25) involves both M̃n+1/2

K and

Γ̃n+1/2
K , which makes it impossible to update M

directly based solely on Eq. (25). Thus, follow-
ing the same procedure as in [James and Lowen-
grub (2004)], and utilizing Eq. (7), Eq. (25) can be
rewritten as an implicit equation solely for Γ̃n+1/2

K ,
i.e.,

Ãn+1/2
K Γ̃n+1/2

K = Mn
K +

Δt
2Pes

Nc0

∑
j=1

Γ̃n+1/2
K j − Γ̃n+1/2

K

L̃n+1/2
K j

,

∀K ∈ Th, (26)

which is solved iteratively for Γ̃n+1/2
K using the

point Gauss-Seidel method. The surfactant mass
is recovered as

M̃n+1/2
K = Ãn+1/2

K Γ̃n+1/2
K . (27)

The intermediate Lagrangian velocity
ũ(x̃n+1/2

i , tn+ 1
2 ) and pressure are obtained by

solving the Stokes equations on the intermediate
Lagrangian grid. Notice that the Stokes equa-
tions do not explicitly involve time derivatives.
They can be solved as a quasi-static problem at
any time instance to provide the instantaneous
velocity field. Details of the flow solver will be
described in section 3.5. For time dependent
flows, for example the unsteady Navier-Stokes
flows, the flow equations could also be solved
using an ALE approach. See [Hirt, Amsden, and
Cook (1974)] for a finite volume implementation
and [W. Dettmer (2003); Zhang, Gerstenberger,
Wang, and Liu (2004)] for finite element imple-
mentations. Alternatively, one could also employ
a flow solver written in an Eulerian way, while
still evolving the interface position, interfacial
area and surfactant mass and concentration using
an ALE approach. However, this would require
some communication between the Eulerian and
Lagrangian meshes at every sub-step of the RK
integration. That is, one needs mapping (and thus
reconstruction) or interpolating the variables on
the Lagrangian mesh to the Eulerian mesh, or
vice versa.

Knowing the values of all the variables on the in-
termediate Lagrangian mesh, the final Lagrangian
variables are then computed using a midpoint
time integration. Specifically, the position of each
final Lagrangian grid node is computed as

x̃n+1
i = xn

i +Δtũ(x̃n+1/2
i , tn+ 1

2 ), i = 1, ...,MT.

(28)

The time dependent variables on the final La-
grangian mesh are computed as

φ̃ n+1
i = φ n

i , i = 1, ...,MT, (29)

f̃ n+1
K = f n

K, ∀K ∈ Th, (30)

Ãn+1
K = An

K −ΔtÃn+1/2
K (ñ ·∇ũ · ñ)n+1/2

K ,

∀K ∈ Th, (31)

M̃n+1
K = Mn

K +
Δt
Pes

Nc0

∑
j=1

Γ̃n+1/2
K j − Γ̃n+1/2

K

L̃n+1/2
K j

,

∀K ∈ Th, (32)

Γ̃n+1
K = M̃n+1

K /Ãn+1
K , ∀K ∈ Th. (33)

The implementations of these equations are sim-
ilar to those in the first RK step. The velocity
on the final Lagrangian grid is computed by the
Stokes flow solver.

3.2 Interface reconstruction

Knowing all the variables on the final Lagrangian
grid, an interface is reconstructed on the final
Lagrangian grid based on the level set function,
volume fraction, and the interfacial area. Pre-
vious research indicated that interfaces recon-
structed using piecewise linear segments were
not adequate to accurately represent the inter-
facial area [James and Lowengrub (2004)]. In
the present work, interfaces are approximated us-
ing piecewise parabolic segments. Previous re-
search, for example [Price, Reader, Rowe, and
Bugg (1998)] and [Renardy and Renardy (2002)],
has shown that reconstructing the interface us-
ing parabolic instead of linear segments can im-
prove the accuracy greatly. In the present work,
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Figure 5: Reconstructing a piecewise parabolic
interface. The dashed line is an extension of the
parabolic interface segment EF in cell ABC.

a self-consistent piecewise parabolic interface re-
construction (PPIC) method has been developed,
in which the parabolic interface segment in a cell
not only truncates the cell by the given volume
fraction, but also spans a given interfacial area.

The method can be considered an extension of the
PPIC method developed in [Price, Reader, Rowe,
and Bugg (1998)]. As is illustrated in Fig. 5, the
parabolic interface segment in cell ABC is defined
in a local Cartesian coordinate system ξ −η . The
origin of the local coordinate system is located at
the cell center (xc,yc). The orientation of the local
coordinate system is measured by angle θ , the an-
gle formed between the ξ -axis and the x-axis. The
local and global coordinates of a point are related
to each other as follows

ξ = (x−xc)cosθ +(y−yc) sinθ , (34)

η = (y−yc)cosθ − (x−xc) sinθ . (35)

In the local coordinate system, a parabolic curve
has the generic form

η = aξ 2 +bξ +c. (36)

Our interface reconstruction algorithm thus must
determine the set of θ , a, b, and c that minimize

A

B C

FE

A

B CG

E

F

H

(a) (b)

Figure 6: Clipping a triangular cell by a parabola.
The dashed lines represent the extended parabolic
interface segments.

the following quadratic error function

Es =
Ns

∑
i=1

(mi( f̂i − fi))2 +(mNs+1(Â−A))2, (37)

where Ns is the number of cells in the stencil, as
shown in Fig. 5, which consists of the cell un-
der consideration, i.e. ABC, and all the adjacent
cells that share at least a vertex with ABC, mi is a
weight on the corresponding term, fi is the given
volume fraction in the ith cell in the stencil, A is
the given interfacial area in the cell under consid-
eration, and f̂i and Â are the corresponding vol-
ume fractions and the interfacial area obtained by
truncating the cells in the stencil by an extended
parabolic curve defined by a set of θ , a, b, and c.
Thus, minimizing the error function Es results in
the set of θ , a, b, and c that define a parabola that
best fits the volume fraction in every cell in the
stencil and the interfacial area in the cell under
consideration in a least squares sense.

Notice that f̂i, Â, and thus Es are nonlinear func-
tions of θ , a, b, and c. Given a set of θ , a, b,
and c, f̂i and Â can be found by clipping each grid
cell in the stencil by the extended parabolic curve
defined by θ , a, b, and c, as illustrated in Fig. 6.
Algorithm 1 describes how to clip a general poly-
gon p1 p2 · · · pn by a parabola P . The algorithm
always returns the region under the parabola, and
it is assumed that fluid 1 always occupies this re-
gion. If fluid 1 were above the parabola, the min-
imization process would automatically re-orient
the local coordinate system by modifying θ so
that fluid 1 lies under the parabola in the new co-
ordinate system. Simple modification could be
made to the algorithm to return the region above
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the parabola as well. For convenience, the vertices
of the returned region are named q1q2 · · ·qm, and it
is assumed that pn = p1 and qm = q1. Because the
interface segment is parabolic, the returned region
consists of both linear and parabolic edges. For
convenience, we call such a region a generalized
polygon. For example, in Fig. 6(a) it is BEFC,
and in Fig. 6(b) it is the sum of the two general-
ized polygons BEF and GHC. In practice, in the
second example the algorithm will return a sin-
gle generalized polygon BEHCGF, of which the
parabolic edge GF is coincident with part of the
other parabolic edge EH. So, BEHCGF is a con-
nection of BEF and GHC by the infinitely thin
parabolic channel FG. Let (ξi,ηi), i = 0, · · · ,n,
be the coordinates of the vertices of a generalized
polygon with ξn = ξ0 and ηn = η0. Then, the vol-
ume of fluid in a generalized polygonal fluid ele-
ment, i.e. the area of the generalized polygon, can
be computed as [Price, Reader, Rowe, and Bugg
(1998)]

S =
1
2

n−1

∑
i=0

(
ξiηi+1 −ξi+1ηi +

a′i(ξi+1 −ξi)3

3

)
,

(38)

where a′i = a if the edge between vertices i and
(i + 1) is parabolic, and a′i = 0 if it is linear, and
S is positive if the vertices are in counterclock-
wise order, and negative otherwise. Following the
idea of Sunday [Sunday (2002)], one more effi-
cient formula can be obtained, i.e.,

S =
1
2

n

∑
i=1

(
ξi(ηi+1 −ηi−1)+

a′i(ξi+1 −ξi)3

3

)
,

(39)

where ξn+1 = ξ1 and ηn+1 = η1. Notice that the
second formula reduces the number of multiplica-
tions in the first two terms by a half.

The interfacial area in a cell is the total length
of the parabolic interface segments, which are, in
most cases, the parabolic edges of the generalized
polygon that contains fluid 1. One exception is the
case illustrated in Fig. 6(b), in which the general-
ized polygon containing fluid 1 has overlapping
parabolic edges, i.e., the parabolic edge GF over-
laps part of the parabolic edge EH. Notice that

Algorithm 1 Clipping a polygon by a parabola.
Set k = 0.
for j = 1, · · · ,n−1 do

Calculate the intersection(s) w1 (and w2)
between the linear edge p j p j+1 and the
parabola P (note: a parabola could have 0,
1, or 2 intersections with a linear segment; if
there are two intersections, it is assumed that
w1 is closer to p j than w2 is; and a tangent
point is not considered an intersection in this
algorithm).
if 0 intersections then

if p j and p j+1 are under P then
k = k + 1; qk = p j; tag edge qkqk+1 as
linear.

else
Do nothing.

end if
else if 1 intersection then

if p j is under P and p j+1 is above P
then

k = k + 1; qk = p j; tag edge qkqk+1 as
linear.
k = k + 1; qk = w1; tag edge qkqk+1 as
parabolic.

else
k = k + 1; qk = w1; tag edge qkqk+1 as
linear.

end if
else if 2 intersections then

if the parabola opens upward then
k = k + 1; qk = p j; tag edge qkqk+1 as
linear.
k = k + 1; qk = w1; tag edge qkqk+1 as
parabolic.
k = k + 1; qk = w2; tag edge qkqk+1 as
linear.

else
k = k + 1; qk = w1; tag edge qkqk+1 as
linear.
k = k + 1; qk = w2; tag edge qkqk+1 as
parabolic.

end if
end if

end for
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Figure 7: Initial guess of the parabolic interface
segment EF . E ′F ′ is a linear approximation of
EF .

this happens only when the two parabolic edges
follow opposite directions along the parabola.
More specifically, for the generalized polygon
BEHCGF the parabolic edge EH is from E to H,
i.e. from a vertex of smaller ξ -coordinate to a
vertex of larger ξ -coordinate, while the parabolic
edge GF is from G to F, i.e. from a vertex
of larger ξ -coordinate to a vertex of smaller ξ -
coordinate. For this case, the real parabolic in-
terface segments must be the part of the longest
parabolic edge (e.g., EH) obtained by removing
the parts that are coincident with the edges in the
opposite direction (e.g., GF).

The minimization of Es is performed using the
Levenberg-Marquardt method, for which Fortran
source codes are available to download from
http://www.netlib.org. The method requires initial
guesses for θ , a, b, and c, which are determined
from a piecewise linear interface reconstruction
(PLIC), as illustrated in Fig. 7. Specifically, θ is
determined by requiring that the η-axis points in
the same direction as the interface normal vector
obtained using the least squares method described
in section 3.1. a is determined by requiring that
the peak curvature of the parabola is the same
as the one estimated from taking the second or-
der derivative of a quadratic function of the level
set function obtained using the same least squares
method. Assuming that the quadratic function of
φ has the generic form defined by Eq. (23), the

curvature of the interface can be computed as

κ = −∇ · ( ∇φ
|∇φ | ) =

2(a2a4a5 −a2a2
5 −a3a2

4)
(a2

4 +a2
5)

3/2
.

(40)

b is determined by requiring that the symmetry
axis of the parabola is also the perpendicular bi-
sector of the linear interface segment obtained
from the piecewise linear interface reconstruction.
The linear interface is obtained using the ana-
lytic PLIC method developed in [Yang, James,
Lowengrub, Zheng, and Cristini (2006)]. We re-
fer readers to [Yang, James, Lowengrub, Zheng,
and Cristini (2006)] for details. Lastly, c is deter-
mined by enforcing volume conservation.

3.3 Grid adaptation

To efficiently resolve the complex interfacial dy-
namics, after we obtain the Lagrangian grid,
the original Eulerian grid is adapted so that the
grid near the moving interface is always re-
fined. In addition, by adapting/re-zoning the
grid, grid tangling, which often occurs in a
pure Lagrangian method due to large deforma-
tion of fluid elements, can be successfully pre-
vented. We use the adaptive volume re-meshing
algorithm developed in [Anderson, Zheng, and
Cristini (2005); Zheng, Lowengrub, Anderson,
and Cristini (2005)], which is an adaptation to flat
domains of the adaptive surface triangulated mesh
of [Cristini, Blawzdziewicz, and Loewenberg
(2001)]. For brevity, we refer readers to [Ander-
son, Zheng, and Cristini (2005); Zheng, Lowen-
grub, Anderson, and Cristini (2005); Cristini,
Blawzdziewicz, and Loewenberg (2001)] for de-
tails. An application of the method in the con-
text of an adaptive CLSVOF interface capturing
can be found in [Yang, James, Lowengrub, Zheng,
and Cristini (2006)].

3.4 Mapping

The variables on the adapted grid are obtained
by mapping. The mapping is, in nature, equiva-
lent to the convection in a pure Eulerian method,
which accounts for the relative motion between
the Lagrangian fluid elements and the Eulerian
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Figure 8: Mapping the fluid on the Lagrangian
grid onto the Eulerian grid.

grid cells [Hirt, Amsden, and Cook (1974)]. The
details are as follows.

3.4.1 Mapping volume fraction

The volume fraction f n+1 on the adapted Eu-
lerian grid is obtained by mapping each fluid
element on the Lagrangian grid onto the Eule-
rian grid. For example, in Fig. 8, the two flu-
ids in the Lagrangian cell A′B′C′ are separated
by the parabolic interface segment E ′F ′, which
is obtained through the interface reconstruction
process. Fluid 1 occupies the entire volume
B′C′E ′F ′. By mapping, one sees that part of
fluid 1 in B′C′E ′F ′ maps into cell ABC on the Eu-
lerian grid, and that the rest of fluid 1 in B′C′E ′F ′

maps into the adjacent cells of ABC.

Geometrically, the mapping of volume fraction is
equivalent to performing a sequence of polygon-
polygon clippings, in which fluid elements and
grid cells are treated as generalized polygons, and
each fluid region filled with fluid 1, such as re-
gion B′C′E ′F ′ in Fig. 8, is clipped against every
grid cell in the Eulerian mesh. The clipping algo-
rithm returns the polygonal intersection between a
Lagrangian fluid region and an Eulerian grid cell,
the volume of which can then be computed via
Eq. (39). The new volume fraction in a cell on the

3q

4p

p2

q2

p1

q1

p3
3q

4p

q1

q2

r1

r2

p3

(a) (b)

4pq2

q1

r3

r4

r2

r1

p3

3q

q2

q1

r3

r4

r1

p3

3q

r2 r6

r5

(c) (d)

q2

q1

r3

r4

r1

p3

3q

r2 r6

r5

(e)

Figure 9: Clipping of a four-sided generalized
polygonal fluid element against a triangular grid
cell. (a) The polygons before clipping. (b) Clip-
ping of p1 p2p3 p4 against edge q1q2. (c) Clipping
of r1r2 p3p4 against edge q2q3. (d) Clipping of
r1r2r3r4p3 p4 against edge q3q1. (e) The polygons
after clipping.

Eulerian mesh is then the total volume of fluid 1
that maps into this cell divided by the volume of
the cell.

As an example, Fig. 9 illustrates clipping of a
four-sided generalized polygonal fluid element
p1 p2 p3p4 against a triangular grid cell q1q2q3.
In [Yang, James, Lowengrub, Zheng, and Cristini
(2006)], Yang et al. employed the Sutherland-
Hodgeman algorithm [Sutherland and Hodgeman
(1974)] for polygon clippings. It is worth point-
ing out that in previous works the Sutherland-
Hodgeman algorithm was often used to clip poly-
gons only consisting of linear edges. In the
present work, because the interface is approxi-
mated using piecewise parabolic segments, the
fluid elements consist of both linear and parabolic
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edges (notice that in Fig. 9 edge p2 p3 of the
fluid element is parabolic). We have generalized
the standard Sutherland-Hodgeman algorithm to
clip generalized polygons consisting of both lin-
ear and parabolic edges.

The basic idea of the clipping algorithm is to
“trim” a polygonal fluid region by each of the
edges of a grid cell, as illustrated in Fig. 9. To
illustrate the “trimming” process, let us consider
the clipping of p1 p2 p3 p4 against the first edge
q1q2 of the grid cell for example. For conve-
nience, let us name the infinitely-long line ob-
tained by infinitely extending edge q1q2, L , and
define that a vertex p j is on the “right” side of L
if p j is on the same side of L as the other vertex
q3 is, and is on the “left” side otherwise. Then,
the trimming process can be described as in algo-
rithm 2, where, to be general, the vertices of the
fluid region are denoted by p1 p2 · · · pn, and it is
assumed that pn = p1. The vertices of the clipped
polygon that lie on the right side of L are denoted
by r1r2 · · ·rn. In this example, the list of the ver-
tices produced from the trimming process define
the clipped polygon r1r2 p3 p4 (see Fig. 9(b)). In
general, the trimming process is reentered to clip
the previously clipped polygon against the subse-
quent edges of the grid cell (Fig. 9(c) and (d)),
and the overall clipping completes as soon as the
polygonal fluid element has been trimmed by all
the extended edges of the grid cell (Fig. 9(e)).

As is in [Yang, James, Lowengrub, Zheng, and
Cristini (2006)], in order to save the computa-
tional time, in practice we only need to clip a
grid cell against the fluid regions which are in the
vicinity of the cell. Since the Lagrangian fluid el-
ements are connected consecutively without any
gap or intersections between them, the new vol-
ume fraction on the Eulerian mesh must be be-
tween 0 and 1, and the total volume of fluid is
conserved exactly during mapping.

3.4.2 Mapping the interfacial area

Mapping the interfacial area is equivalent to clip-
ping each parabolic interface segment on the La-
grangian grid against each grid cell on the Eule-
rian grid. For example, in Fig. 8, to compute how
much of the interfacial area in the Lagrangian cell

Algorithm 2 Trimming a generalized polygon by
a line.

Set k = 0.

for j = 1, · · · ,n−1 do

Calculate the intersection(s) w1 (and w2) between edge

p j p j+1 and the extended line L (note: if there are

two intersections, it is assumed that w1 is closer to p j

than w2 is; and a tangent point is not considered an

intersection in this algorithm).

if edge p j p j+1 is parabolic then

if 0 intersections then

if p j and p j+1 are on the right side of L then

k = k +1; rk = p j; tag rkrk+1 as parabolic.

else

Do nothing.

end if

else if 1 intersection then

if p j is on the right and p j+1 on the left then

k = k +1; rk = p j; tag rkrk+1 as parabolic.

k = k +1; rk = w1; tag rkrk+1 as linear.

else if p j is on the left and p j+1 on the right

then

k = k +1; rk = w1; tag rkrk+1 as parabolic.

end if

else if 2 intersections then

if p j and p j+1 are on the right side of L then

k = k +1; rk = p j; tag rkrk+1 as parabolic.

k = k +1; rk = w1; tag rkrk+1 as linear.

k = k +1; rk = w2; tag rkrk+1 as parabolic.

else if p j and p j+1 are on the left side of L then

k = k +1; rk = w1; tag rkrk+1 as parabolic.

k = k +1; rk = w2; tag rkrk+1 as linear.

end if

end if

else if edge p j p j+1 is linear then

if both p j and p j+1 are on the right side of L then

k = k +1; rk = p j; tag rkrk+1 as linear.

else if p j is on the right and p j+1 on the left then

k = k +1; rk = p j; tag rkrk+1 as linear.

k = k +1; rk = w1; tag rkrk+1 as linear.

else if p j is on the left and p j+1 on the right then

k = k +1; rk = w1; tag rkrk+1 as linear.

else

Do nothing.

end if

end if

end for



An ALE method for interfacial flows with insoluble surfactants 81

A′B′C′ maps into the Eulerian cell ABC, we need
to determine the portion of the parabolic interface
segment E ′F ′ that overlaps cell ABC, the length of
which is then the interfacial area that maps from
cell A′B′C′ into cell ABC.

The clipping of a parabolic segment against a
polygonal cell can be performed by utilizing ei-
ther algorithm 1 or algorithm 2. The computa-
tional effort is about the same. When using algo-
rithm 1, for example, one first clips the polygo-
nal cell by an extended parabola obtained by in-
finitely extending the parabolic interface segment
under consideration. Then, the portion of the
parabolic interface segment that maps into the cell
is just the common part of the clipped parabolic
segment resulted from clipping and the parabolic
interface segment itself.

3.4.3 Mapping the surfactant

The new surfactant mass in an Eulerian grid cell
is simply the amount of surfactant residing on the
part of the interface that maps into the cell. It is
assumed that the surfactant within a cell is linearly
distributed along the interface.

In most cases, there is only one interface segment
in a grid cell, which is adjacent to exactly two
interface segments in its adjacent cells, as illus-
trated in Fig. 4(a). Let us define a one dimen-
sional curvilinear local coordinate, s, along an in-
terface segment EF , with its origin located at E
and pointing toward F . Then, the linear distribu-
tion of the surfactant along the interface segment
EF can be expressed as

Γ = ∇sΓ(s− s)+ΓK , (41)

where ∇sΓ is the slope, s is the s-coordinate of the
midpoint of the interface segment, and ΓK is the
average concentration in cell ABC.

To preserve monotonicity, the van Leer limiter is
applied to the calculation of the slope. So, the
slope of the distribution is computed as

∇sΓ =

⎧⎨
⎩

sgn(s1)min{|s1|, |s2|, |s3|}
if sgn(s1) = sgn(s2) = sgn(s3)

0 otherwise,

(42)

where

s1 = 2(ΓK −ΓK1)/AK,

s2 = (ΓK2 −ΓK1)/(AK +AK1/2+AK2/2),
s3 = 2(ΓK2−ΓK )/AK,

K1 and K2 denote the two adjacent cells contain-
ing interface segments DE and FG, respectively,
and ‘sgn’ is the sign function. This distribution
guarantees that the linear distribution in cell ABC
will not take values beyond the average values in
the neighboring cells, and thus, it also preserves
the positivity of Γ automatically. More complex
cases as illustrated in Fig. 4(b), (c), and (d) will
be discussed separately in section 3.4.5.

After the slope is determined, the surfactant mass
on an interface segment is obtained by integrating
Eq. (41) over the segment area. Surfactant mass
is conserved during mapping.

3.4.4 Mapping the velocity, pressure, and the
level set function

The velocity and pressure on the new Eulerian
grid are obtained by interpolation. Specifically,
to find the value of a function at a node PE on the
Eulerian grid, we first locate the element KL on
the Lagrangian mesh such that PE ∈ KL. Then,
the value of the function at node PE is obtained
from the local representation of the function on
KL. To efficiently locate the element KL, a steep-
est descent type algorithm is used, in which the
search proceeds in the direction of the most neg-
ative barycentric coordinate of PE with respect to
the current element on the Lagrangian mesh. See
also [Zheng, Lowengrub, Anderson, and Cristini
(2005)].

The level set function at a nodal point on the
new Eulerian grid is directly calculated as the
signed distance of the point to the piecewise
parabolic interface reconstructed previously on
the Lagrangian grid. The distance of a point to
the interface is the minimum of the distances be-
tween the point and each parabolic interface seg-
ment. Notice that after mapping the new level set
function has been reinitialized to a signed distance
function, as is desired.
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3.4.5 Surfactant diffusion and distribution for
complex cases

In sections 3.1 and 3.4.3, we have assumed that
there is only one interface segment in a grid cell,
and that the single interface is adjacent to ex-
actly two other interface segments, as illustrated
in Fig. 4(a). In practice, however, there are ex-
treme cases where these assumptions do not hold.
See Fig. 4(b), (c) and (d) for an illustration of
these cases.

In Fig. 4(b), the interface intersects cell ABC
through one its edges, resulting in two interface
segments in the cell. Consequently, all three cells
that share an edge with cell ABC contain an inter-
face, and for the cell containing the parabolic seg-
ment FG only one of its adjacent cells, i.e. ABC,
contains the interface. When this occurs, it can
be assumed that the surfactant distribution has the
same slope on FG, EF and GH, and that the net
surfactant diffusion between FG, EF and GH is
zero. That is, we treat FG, EF and GH together
as a single interface segment. The surfactant mass
and interfacial area of the ‘merged’ segment are,
respectively, the sum of the surfactant mass and
interfacial area in cell ABC and the cell contain-
ing segment FG. We are also implementing a
mechanism in the grid adaptation for preventing
the grid nodes from being too close to an inter-
face, which should greatly, if not completely, re-
duce the chance of the case happening.

In Fig. 4(c), cell ABC contains three interface seg-
ments. This happens only when the radius of cur-
vature of the interface is roughly less than the size
of the grid cell, indicating inadequate resolution.
Because the interface is not well resolved, it is of
little importance to determine how the surfactant
is distributed or diffused. When this happens, the
diffusion in the cell is simply neglected, and the
slope is set to zero. This case will not occur if the
high curvature is well resolved.

When two interfaces come very close, there may
still be one interface segment in cell ABC, as illus-
trated in Fig. 4(d), but all three cells that share an
edge with cell ABC contain an interface. For this
case, the segment in cell ABC is considered to be
connected to the interface segments in the adja-

cent cells that themselves have only two adjacent
cells containing an interface segment. According
to this criterion, segment EF will be considered
to be connected to DE and FI, but not GH, and
the surfactant diffusion will occur between these
connected segments and the surfactant distribu-
tion slope will be computed from the concentra-
tions in these cells. Notice that this case happens
just because the grid resolution is too low relative
to the thickness of the film formed between the
two interfaces. If the film is well resolved, the
case will not occur.

As discussed above, the cases shown in Fig. 4(c)
and (d) occur solely because of inadequate reso-
lution. So, in practice, it is of little importance to
develop sophisticated algorithms to handle these
cases because the overall solution is not well re-
solved anyway. One can simply ignore the sur-
factant diffusion in these cases, and set the surfac-
tant distribution slope to zero. The case shown in
Fig. 4(b) deserves more carefully handling. It is
of great benefit to align the grid points away from
the interface so that the interface intersects a grid
cell roughly through the middle of the cell, which
will prevent the case shown in Fig. 4(b) from oc-
curring, eliminate the difficulty in reconstructing
the interfacial area (when the interface almost co-
incides with an edge, slight changes in the orien-
tation of the reconstructed interface can result in
large errors in the interfacial area), and avoid tiny
interface segments and/or extremely small fluid
volumes when the interface intersects a grid cell
near a corner.

3.5 The Stokes flow solver

The Stokes equations are solved using a Galerkin
finite element method. The velocity and pres-
sure are approximated using continuous piece-
wise quadratic and piecewise linear functions, re-
spectively. In particular, the finite element spaces
for velocity and pressure are, respectively, defined
as

Vh = {v ∈ (H1(Ω))2 : v|T ∈ (P2(T))2,∀T ∈ Th,

v|∂ΩD
= 0,v ·n|∂ΩN

= 0} (43)
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Qh = {q∈C0(Ω)∩L2(Ω) : q|T ∈ P1(T ),∀T ∈Th,∫
Ω

q = 0}, (44)

where ∂ΩD denotes Dirichlet boundary, ∂ΩN de-
notes Neumann-type boundary, and n is the nor-
mal to ∂ΩN .

Multiplying Eq. (13) by vh ∈ Vh and Eq. (14) by
qh ∈ Qh, we get the weak formulation for the un-
knowns (uh, ph) ∈ Vh×Qh:
∫

Ω
μ(∇uh +(∇uh)t) : ∇vh −

∫
Ω

ph∇ ·vh

= − 1
Ca

∫
Ω

Fs : ∇vh, (45)

∫
Ω

qh∇ ·uh = 0, (46)

for all test functions (vh,qh) ∈ Vh × Qh.
See [Zheng, Lowengrub, Anderson, and Cristini
(2005)] for a derivation.

To evaluate the surface stress in the above weak
formulation, the normal vector n at a cell vertex
is calculated from the level set function using a
least squares fit similar to that described in sec-
tion 3.1. The only differences are that here the
origin of the local coordinate system is located at
the cell vertex, and the fitting is over a stencil that
consists of the vertex under consideration and all
its nearest neighbors. The surfactant concentra-
tion at a vertex is obtained by extending the con-
centration off the interface through a linear inter-
polation. As in [Zheng, Lowengrub, Anderson,
and Cristini (2005); Yang, James, Lowengrub,
Zheng, and Cristini (2006)], in practice the Dirac
delta function δ (φ ) is replaced by a smoothed ver-
sion δε (φ ), where δε (φ ) = dHε/dφ and Hε is a
smoothed Heaviside function, defined as

Hε(φ ) =

⎧⎨
⎩

0 if φ < −ε ,
1
2(1+ φ

ε + 1
π sin(πφ

ε )) if |φ | ≤ ε ,

1 if φ > ε ,

(47)

where the parameter ε is taken to be 2 ∼ 4 times
the smallest mesh size. The local dynamic viscos-
ity μ is also smoothed using the smoothed Heav-
iside function. Thus,

μ = λ +(1−λ )Hε (φ ). (48)

The linear system resulting from the discretiza-
tion is solved using an inexact Uzawa method [El-
man and Golub (1994)]. Matrix inversions are
performed using an SSOR preconditioned conju-
gate gradient method. See also [Zheng, Lowen-
grub, Anderson, and Cristini (2005)].

4 Code validation

A number of test problems are performed to val-
idate the method. For convergence studies, we
define errors in volume fraction, interfacial area,
surfactant mass, and concentration as

E f = ∑
K∈Th

| f computed
K − f exact

K |VK, (49)

EA = ∑
K∈Th

|Acomputed
K −Aexact

K |, (50)

EM = ∑
K∈Th

|Mcomputed
K −Mexact

K |, (51)

EΓ = ∑
K∈Th

|Γcomputed
K −Γexact

K |Aexact
K , (52)

where VK is the volume of the Kth grid cell. To
quantify the mass error in each fluid phase, we
define a time-averaged mass error as

EV =
∑N

n=1 |∑K∈Th
f n
KV n

K −∑K∈Th
f 0
KV 0

K |Δtn

∑N
n=1 Δtn

,

(53)

where N is the number of time steps. Recall that
our method conserves the total surfactant mass ex-
actly. So, we do not tabulate the errors in total sur-
factant mass. Indeed, all tests we have performed
show that the total surfactant mass is conserved.

4.1 Simple translation test

An initially circular fluid body of radius 0.25 cen-
tered in a (−0.6,0.6)×(−0.6,0.6) computational
domain is translated by a uniform velocity field
along the 45◦ domain diagonal. The flow velocity
is specified and remains constant with unit com-
ponents, but changes sign at times 0.25 and 0.75
respectively. Therefore, the fluid body should re-
turn to its initial position after 1 time unit with-
out any interface deformation, allowing errors in
volume fraction and interfacial area to be quan-
tified with Eq. (49) and (50), respectively. The
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Figure 10: The final reconstructed interface and
the computational grid for a simple translation
test. hmin = 0.016.

surfactant concentration is initially uniform, and
it should remain uniform during a simple transla-
tion of the interface. Thus, errors in surfactant
mass and concentration can be quantified with
Eq. (51) and (52), respectively. To prevent surfac-
tant diffusion from damping out any error in sur-
factant mass or concentration, surfactant diffusion
is turned off in this test by setting Pes to be a very
large number. In particular, we use Pes = 1010.
Although there is no interface deformation, sur-
face area stretching, or surfactant diffusion, and
the flow velocity is simply specified, this test pro-
vides a simple, direct evaluation of the overall al-
gorithm (except the particular components listed
above), including the Lagrangian advection, in-
terface reconstruction, and mapping. Validation
of the other specific components will be presented
in subsequent sections.

Fig. 10 shows the final reconstructed interface,
and the corresponding computational grid. No-
tice that the grid is refined near the interface. The
grid cells at the interface have minimum edge
lengths of roughly hmin = 0.016. Various errors
obtained on grids of different hmin and the corre-
sponding convergence rates are tabulated in Ta-

ble 1. It is shown that the interface capturing
(measured by the E f error) is third order accu-
rate and the evolution of the interfacial area and
surfactant mass is second order accurate. It is in-
teresting to notice that errors in interfacial area
and surfactant mass are exactly identical, and con-
sequently the error in surfactant concentration is
approximately zero. This is because the error in
surfactant mass is solely due to the inaccuracy in
representing/reconstructing the interface, which is
also the only cause of the error in interfacial area
in this test. Notice that because the velocity field
is simply constant, the RK Lagrangian time inte-
gration and the calculation of the interfacial area
stretching term are exact; that because surfactant
diffusion is negligible, surfactant mass is locally
conserved in each Lagrangian grid cell; and that
the mapping processes themselves are exact. So,
the error in interfacial area is solely due to a posi-
tion mismatch caused by interface reconstruction.
Finally, we see that the total mass error is iden-
tically zero, again because the time integration is
exact for this test. So, in this test, the non-zero
errors are essentially a measure of the accuracy in
interface reconstruction.

4.2 Single vortex flow test

The single vortex flow test has been widely used
by many researchers and has become one of the
standard test problems for assessing the integrity
and capability of an interface tracking/capturing
method [Rider and Kothe (1995, 1998)]. In the
present work, however, we use this test to assess
not only the capability of the interface capturing
part of our method, but also the capability of our
method for evolving the interfacial area and the
surfactant concentration.

The flow field is a time-reversing single vortex
centered in a (0,1)×(0,1) computational domain
(see Fig. 11(a)), and is defined by the stream func-
tion

Ψ =
1
π

cos

(
πt
Tf

)
sin2(πx) sin2(πy), (54)

where the velocity vector is defined by
(−∂Ψ/∂y,∂Ψ/∂x), and Tf determines the
flow period. An initially circular fluid body of
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Table 1: Errors and convergence rates for the simple translation test.

hmin E f order EA order EM order EΓ E
V

0.032 1.29E-6 - 2.08E-4 - 2.08E-4 - <1.E-15 0
0.016 8.98E-8 3.84 3.33E-5 2.64 3.33E-5 2.64 <1.E-15 0
0.008 6.65E-9 3.76 5.97E-6 2.48 5.97E-6 2.48 <1.E-15 0

radius 0.15, centered at (0.5,0.75), is evolved in
this vortex flow field. The surfactant is initially
uniformly distributed along the interface.

In the first Tf /2 time units, the vortex spins the
fluid elements in the clockwise direction, stretch-
ing the circular fluid body into a filament (see
Fig. 11(b)). Thus, each fluid element can undergo
very large deformation. The interface not only
translates and rotates, but also deforms, stretches
and compresses. Due to the time-reversing co-
sine term in the stream function, the flow reverses
at time Tf /2. Consequently, any fluid element
should return to its initial position at time Tf , and
the final interface should exactly coincide with
the initial one, allowing errors in volume fraction
and interfacial area to be quantified with Eq. (49)
and (50), respectively. Clearly, all the convec-
tion terms and the interfacial area stretching term
are time-reversible. However, the surfactant dif-
fusion term is not time-reversible. So, in this
test, surfactant diffusion is turned off by setting
Pes = 1010. Fig. 11(c) shows the surfactant con-
centration along the interface shown in Fig. 11(b).
Because the interface undergoes very complicated
evolution, high surfactant concentrations develop
at the nose and tail of the fluid body. Especially,
the concentration gradient at the tail is remarkably
large, and it will be larger when the fluid body de-
forms more under larger Tf , requiring more reso-
lution at the tail to accurately describe the surfac-
tant concentration. Without diffusion, the surfac-
tant distribution, which has undergone very com-
plicated evolution, should become uniform as it
was initially, when the flow field reverses to its
initial state, allowing errors in surfactant mass
and concentration to be quantified with Eq. (51)
and (52), respectively. Therefore, this test pro-
vides rigorous tests on volume fraction advection,
interfacial area advection and stretching, and sur-

factant convection and dilution.

The errors and convergence rates are shown in Ta-
ble 2 and Table 3 for Tf = 0.5 and Tf = 1, respec-
tively. It is seen that the convection of volume
fraction is second order, that the evolution of the
interfacial area and surfactant mass is first order,
and that the evolution of the surfactant concentra-
tion is second order. Because the time integration
is performed using second order RK method, we
can only achieve second order convergence in vol-
ume tracking. However, the error levels are much
smaller than those obtained using piecewise lin-
ear interface reconstruction methods (see [Yang,
James, Lowengrub, Zheng, and Cristini (2006)]
for a comparison). In addition, notice that, simi-
lar to the translation test, the errors in interfacial
area and surfactant mass are of similar orders, re-
sulting in higher (second) order convergence in
surfactant concentration. It is important that the
concentration converges with second order accu-
racy because it is the concentration that is finally
used to compute the surface tension.

4.3 Surfactant diffusion test

This test is specifically performed for assessing
the discretization of the surfactant diffusion term.
Surfactant diffusion along a circular interface of
unit radius, centered in a (−2,2)× (−2,2) com-
putational domain, is considered. The flow veloc-
ity is fixed at zero everywhere so that the inter-
face is stationary. Thus, there is no convection of
the volume fraction, interfacial area, and surfac-
tant, and there is no interfacial area stretching and
surfactant dilution. Only surfactant diffusion is
present in this test problem. An analytic solution
for this test problem is

Γ(ψ , t) = 1+exp

( −t
Pes

)
cosψ , (55)
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Table 2: Errors and convergence rates for the single vortex flow test. Tf = 0.5.

hmin E f order EA order EM order EΓ order EV

0.032 2.39E-5 - 2.95E-3 - 3.20E-3 - 1.23E-3 - 5.88E-6
0.016 7.27E-6 1.72 1.79E-3 0.72 1.80E-3 0.83 2.95E-4 2.06 1.43E-7
0.008 1.36E-6 2.42 6.25E-4 1.52 6.27E-4 1.52 7.68E-5 1.94 4.75E-8
0.004 2.47E-7 2.46 2.25E-4 1.47 2.28E-4 1.46 1.73E-5 2.15 2.67E-8

Table 3: Errors and convergence rates for the single vortex flow test. Tf = 1.0.

hmin E f order EA order EM order EΓ order E
V

0.032 6.48E-5 - 8.33E-3 - 1.09E-2 - 6.01E-3 - 1.33E-5
0.016 1.61E-5 2.00 3.45E-3 1.27 4.15E-3 1.39 1.76E-3 1.77 1.83E-6
0.008 3.76E-6 2.10 1.76E-3 0.97 1.89E-3 1.13 4.63E-4 1.93 1.64E-7
0.004 8.66E-7 2.12 8.20E-4 1.10 8.21E-4 1.20 8.37E-5 2.47 8.09E-8

Table 4: Errors and convergence rates for surfac-
tant diffusion along a circular interface. Errors are
computed at t = 1.

hmin EΓ order
0.2 1.14E-3 -
0.1 3.74E-4 1.61

0.05 8.03E-5 2.22
0.025 2.02E-5 1.99

where ψ is the angle formed by the position vector
of a point on the interface and the y coordinate
axis. The surfactant concentration is initialized
with the exact solution and then allowed to diffuse
in time numerically.

Fig. 12 shows the surfactant concentration profiles
at various time instances. The result is obtained
using an adaptive grid with hmin = 0.2, a time step
of 0.005, and Pes = 1. It is seen that the numeri-
cal solution agrees very well with the analytic so-
lution. Table 4 shows the concentration errors at
t = 1 on grids of different resolutions, and the cor-
responding convergence rates. It is seen that the
discretization of surfactant diffusion is second or-
der accurate.

Notice that, according to the exact solution given

by Eq. (55), for any given Pes if one allows
the surfactant to diffuse for a time of Pes units,
one gets the same surfactant distribution at time
Pes, that is 1 + exp(−1) sinψ . Furthermore, from
Eq. (25) and (32) it is seen that if one chooses
the time step such that Δt/Pes is a constant, then
one gets exactly the same numerical solution at
time Pes for any Pes, when other conditions are
the same. Therefore, the test for Pes = 1 applies
to any Pes.

4.4 Surfactant redistribution through
Marangoni convection

This test is performed to assess the implementa-
tion of the Marangoni force. Surfactant evolu-
tion along an initially circular interface of unit
radius, centered in a (−10,10)× (−10,10) com-
putational domain, is considered. Different from
the previous diffusion test, the flow velocity at the
boundary of the computational domain is fixed at
zero, while the flow inside the domain is allowed
to evolve in time. The surfactant concentration is
initialized as

Γ(ψ) = 1+Γ′ cos(2ψ), (56)

where Γ′ is a constant defining the amplitude of
the nonuniformity. Since the concentration is not
uniform, there is a Marangoni force along the in-
terface. The Marangoni force causes interface
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Figure 11: Evolution of a circular interface in a
time-reversing single vortex flow field. (a) The
initial interface and the single vortex flow field;
(b) The reconstructed interface and the computa-
tional grid at t = Tf /2 for Tf = 1. hmin = 0.016.
(c) The surfactant concentration along the inter-
face shown in (b).
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Figure 12: Surfactant concentration profiles at
various time levels for surfactant diffusion test.
Pes = 1. hmin = 0.2.

motion and redistributes the surfactant in a way
such that the surfactant distribution eventually be-
comes uniform.

For qualitative comparison, an analytic solution is
developed. First, notice that, since the concentra-
tion defined by Eq. (56) is symmetric about both
the x and y axes, the induced Marangoni force will
also be symmetric about both axes. Consequently
the concentration and the flow field will remain
symmetric about the two axes as they evolve in
time, and the drop will remain centered at the
origin. Then, for simplicity, we assume a lin-
ear equation of state, a unit viscosity ratio, that
the flow is stationary far away from the drop,
and that drop deformation is negligible, which is
a valid assumption under Stokes flow conditions
(see [Chen and Stebe (1997)]). To isolate the ef-
fect of surfactant diffusion, the term that accounts
for surfactant diffusion is eliminated from the
governing equation for surfactant evolution. The
length scale for the problem is the drop radius.
The velocity scale is chosen to be σeq/μ2, with
which Ca = 1. Under these conditions, a Fourier
series solution can be found (see Appendix A:).
With the first three leading order terms in Γ′, it is

Γ(ψ , t) = 1+Γ′ exp(−1
2

β t)cos(2ψ)

−1
2

Γ′2β t exp(−β t)cos(4ψ). (57)
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Figure 13: Surfactant concentration profiles at
various time levels for the Marangoni test. Solid
lines represent analytic solution. Dashed lines
represent numerical solution. The curves corre-
spond to t = 0, 2, and 4, respectively. Linear
equation of state. hmin = 0.05, Pes = 1010, λ = 1,
Ca = 1, β = 0.2, and Γ′ = 0.2.

A case with β = 0.2 and Γ′ = 0.2 is simulated and
compared to the analytic solution. To suppress the
surfactant diffusion effect in the numerical simu-
lations, we set Pes = 1010. Fig. 13 shows the evo-
lution of the concentration profiles along the in-
terface. The result is obtained on an adaptive grid
with hmin = 0.05. It is seen that with Marangoni
convection the surfactant concentration tends to
become uniform.

Fig. 14 shows the reconstructed interface and the
velocity vectors at t = 4. It is clearly seen that the
Marangoni force induces fluid circulation near the
interface. In addition, the numerical result veri-
fies the assumption that drop deformation is neg-
ligible. In all simulations, the radius of the drop
differs from unity by less than 0.001.

Fig. 15 shows the concentration profiles at t =
4 obtained using grids of different resolutions.
It is seen that the numerical solution monoton-
ically converges towards the analytic solution.
Concentration errors and convergence rates are
quantified in Table 5. Again, the result indicates
the convergence of the numerical solution.
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Figure 14: Reconstructed interface and velocity
vectors at t = 4 for the Marangoni test. Linear
equation of state. hmin = 0.05, Pes = 1010, λ = 1,
Ca = 1, β = 0.2, and Γ′ = 0.2.
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Figure 15: Surfactant concentration profiles at t =
4 for the Marangoni test. Linear equation of state.
Pes = 1010, λ = 1, Ca = 1, β = 0.2, and Γ′ = 0.2.

Table 5: Errors and convergence rates for the
Marangoni test. Errors are computed at t = 4.

hmin EΓ order
0.1 7.65E-2 -

0.05 4.40E-2 0.80
0.025 2.35E-2 0.90
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5 Conclusions and future work

An ALE method has been developed for simulat-
ing interfacial flows with insoluble surfactant. By
directly tracking the surfactant mass, the method
conserves surfactant to machine accuracy, and
prevents surfactant from diffusing off the inter-
face. The method can be, in general, used with
any equation of state, coupled to any flow solver,
and can be extended to other types of grids. In the
context of the ALE algorithm, the implementation
of grid adaptation is convenient. The code can be
extended in several ways by: incorporating sur-
factant solubility; coupling the interface capturing
method and the surfactant evolution method to a
Navier-Stokes solver; and extending the code to
the axisymmetric or 3D cases. The code will be
applied to study tip-streaming phenomenon in an
extensional flow.
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Appendix A: An analytic solution for the
Marangoni convection about a
circular interface

An analytic solution is developed for the
Marangoni convection test problem performed in
section 4.4. For convenience, the equations and
variables are recast in the standard polar coordi-
nates (r,θ ). We use the conditions and assump-
tions described in section 4.4. All variables are
nondimensionalized as described in section 4.4.
The Stokes equations are rewritten in a stream-
function form so that in the drop fluid and the sur-
rounding fluid the following biharmonic equation
holds

∇4Ψ(i) = 0, (58)

where ∇4 = ∇2∇2 is the biharmonic operator, Ψ is
the stream-function, and i = 1 or 2 denotes the so-
lution in drop fluid or in the surrounding fluid, re-
spectively. By definition, the radial and azimuthal
velocities are u = 1

r
∂Ψ
∂θ and v =−∂Ψ

∂r , respectively.

There is a general solution to the biharmonic
equation [Meleshko (2003)]. We start from the
following 2π-periodic general solution

Ψ =

A0r2 +B0r2(lnr−1)+C0 lnr

+(A1r +B1r−1 +C1r3 +D1r lnr)cos(θ )

+(E1r +F1r−1 +G1r3 +H1r lnr) sin(θ )

+
∞

∑
n=2

(Anrn +Bnr−n +Cnrn+2 +Dnr−n+2)cos(nθ )

+
∞

∑
n=2

(Enrn +Fnr−n +Gnrn+2 +Hnr−n+2) sin(nθ ),

(59)

where A0, · · · ,Hn are time-dependent coefficients
to be determined. This general solution applies to
both Ψ(1) and Ψ(2). As it will be seen next, the
terms that appear in solution Ψ(1) will not appear
in solution Ψ(2), and vice versa. So, it is not nec-
essary to use two sets of coefficients for Ψ(1) and
Ψ(2), respectively.

The next step is to determine the coefficients by
applying boundary conditions. The following
conditions are applied in turn:

1. At r = 0, the velocity and pressure or
the viscous stress must be finite. So,
u(1)|r=0 = 1

r
∂Ψ(1)

∂θ |r→0, v(1)|r=0 =−∂Ψ(1)

∂r |r→0,

and τ (1)
rθ |r=0 =

(
∂v1

∂r − v1

r + 1
r

∂u1

∂θ

)
|r→0 =(

−∂2Ψ1

∂r2 + 1
r

∂Ψ1

∂r + 1
r2

∂2Ψ1

∂θ 2

)
|r→0 must be fi-

nite, where τ i
rθ = ∂vi

∂r − vi

r + 1
r

∂ui

∂θ is the vis-
cous shear stress in the azimuthal direction.

2. Far away from the drop, the velocity of
the surrounding fluid approaches zero. So,
u(2)|r→∞ = 1

r
∂Ψ(2)

∂θ |r→∞ = 0 and v(2)|r→∞ =
−∂Ψ(2)

∂r |r→∞ = 0.

3. Because drop deformation is negligible and
the velocity is continuous across the inter-
face, u(1)|r=1 = u(2)|r=1 = 0, or 1

r
∂Ψ(1)

∂θ |r=1 =
1
r

∂Ψ(2)

∂θ |r=1 = 0.

4. Also, by velocity continuity, v(1)|r=1 =
v(2)|r=1, or −∂Ψ(1)

∂r |r=1 = −∂Ψ(2)

∂r |r=1.

5. Lastly, the jump in the viscous shear stress in
the azimuthal direction across the interface
balances the Marangoni force. So, τ (2)

rθ |r=1−
τ (1)

rθ |r=1 = −∇sσ = β ∂Γ
∂θ for linear equation

of state. Because we have assumed no drop
deformation, the conventional normal force
balance is not applied.

To successfully apply condition 5, we assume that
Γ has the following general Fourier series solution

Γ(t,θ ) = 1+
∞

∑
n=1

(In cos(nθ )+Jn sin(nθ )), (60)

where In and Jn are time-dependent coefficients.

By applying all these conditions, one ends up with

Ψ1 = −β
8

∞

∑
n=2

Jn(rn− rn+2)cos(nθ )

+
β
8

∞

∑
n=2

In(rn− rn+2) sin(nθ ), (61)



94 Copyright c© 2007 Tech Science Press FDMP, vol.3, no.1, pp.65-95, 2007

Ψ2 = −β
8

∞

∑
n=2

Jn(r−n− r−n+2)cos(nθ )

+
β
8

∞

∑
n=2

In(r−n− r−n+2) sin(nθ ), (62)

and from which the tangential velocity at the in-
terface is

vs = v(1)|r=1

= v(2)|r=1

= −β
4

∞

∑
n=2

Jn cos(nθ )+
β
4

∞

∑
n=2

In sin(nθ ).(63)

In addition, I1 and J1 must be zero. Physically, if
I1 or J1 is not zero, then the concentration, and
consequently the induced Marangoni force and
the flow field, will not be symmetric about both
the x and y axes, and the drop will migrate towards
where the concentration is higher or the surface
tension is lower (see [Chen and Stebe (1997);
Lavrenteva, Tsemakh, and Nir (2005)] for exam-
ple). This violates our boundary condition that
the flow velocity far away from the drop is zero.
One can incorporate the case where I1 or J1 is not
zero simply by modifying the boundary condition
so that far away from the drop the fluid moves
relative to the drop with some time-dependent ve-
locity, which will be naturally determined by ap-
plying the above conditions with the far field ve-
locity condition modified. Also, notice that by
applying condition 4 the coefficients for Ψ1 and
Ψ2 have been related, which are further related to
the coefficients of the Fourier series solution to Γ
(Eq. (60)) by applying condition 5.

Lastly, the coefficients In and Jn are determined
by solving the equation that governs the evolution
of the surfactant concentration. Without surfac-
tant diffusion and normal surface expansion (re-
call that the drop is assumed not to deform), the
dimensionless surfactant evolution equation be-
comes

∂Γ
∂ t

+vs
∂Γ
∂θ

+Γ
∂vs

∂θ
= 0. (64)

By substituting Eq. (60) and (63) into Eq. (64), af-
ter doing some algebra and collecting terms, one

obtains

∞

∑
n=2

(
dIn

dt
cos(nθ )+

dJn

dt
sin(nθ )

)

+
∞

∑
n=2

nβ
4

(In cos(nθ )+Jn sin(nθ ))

+
∞

∑
n=2

nβ
4

(
(I2

n −J2
n )cos(2nθ )+2InJn sin(2nθ )

)

+
∞

∑
n=2

∞

∑
m>n

(m+n)β
4

((InIm −JnJm)cos((m+n)θ )

+(InJm + ImJn) sin((m+n)θ ))
= 0.

(65)

By equating the coefficients of the Fourier modes
to zero, Eq. (65) can be transformed into a set
of ordinary differential equations for In and Jn,
which can be solved with the initial condition
given by Eq. (56), for which I2|t=0 = −Γ′ and
coefficients of all other modes are initially zero
(notice that θ = ψ − π/2). The solution for Γ,
including four leading terms in Γ′, is

Γ(t,θ ) =

1−Γ′ exp(−1
2

β t)cos(2θ )

− 1
2

β t(Γ′)2 exp(−β t)cos(4θ )

− 3
8
(β t)2(Γ′)3 exp(−3

2
β t)cos(6θ ).

(66)

As mentioned above, if I1 or J1 is not zero, the
drop will migrate towards where the concentra-
tion is higher or the surface tension is lower. Let
us consider an initial concentration profile defined
as

Γ(θ ) = 1+Γ′ sin(θ ). (67)

For this profile, the concentration is the highest at
θ = π/2 and the lowest at θ = (3/2)π . The drop
will migrate in the positive y direction. Let the mi-
gration speed be U0, and define the polar coordi-
nate system with its origin located at the drop cen-
ter. Then, as r → ∞, the surrounding fluid moves
with a relative speed U0 in the negative y direc-
tion. So, u(2)|r→∞ = 1

r
∂Ψ(2)

∂θ |r→∞ =−U0 sin(θ ) and
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v(2)|r→∞ = −∂Ψ(2)

∂r |r→∞ = −U0 cos(θ ). With other
conditions the same as before, and going through
the same procedure as above, one can find that the
solution for Γ with four leading terms is

Γ(t,θ ) =

1+Γ′ exp(−1
4

β t) sin(θ )

+
1
4

β t(Γ′)2 exp(−1
2

β t)cos(2θ )

− 3
32

(β t)2(Γ′)3 exp(−3
4

β t) sin(3θ ),

(68)

and that the migration velocity is

U0 =
β
8

J1 =
β
8

Γ′ exp(−1
4

β t). (69)

The distance that the drop migrates in time t is

∫ t

0
U0(t ′)dt ′ =

Γ′

2
(1−exp(−1

4
β t)). (70)

Letting t → ∞, we can find the maximum distance
that the drop can migrate is Γ′

2 .




